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Abstract: The economic model derived from the supply and demand of crude oil prices is a significant
component that measures economic development and sustainability. Therefore, it is essential to
mitigate crude oil price volatility risks by establishing models that will effectively predict prices.
A promising approach is the application of long short-term memory artificial neural networks for
time-series forecasting. However, their ability to tackle complex time series is limited. Therefore,
a decomposition-forecasting approach is taken. Furthermore, machine learning model accuracy is
highly dependent on hyper-parameter settings. Therefore, in this paper, a modified version of the salp
swarm algorithm is tasked with determining satisfying parameters of the long short-term memory
model to improve the performance and accuracy of the prediction algorithm. The proposed approach
is validated on real-world West Texas Intermediate (WTI) crude oil price data throughout two types
of experiments, one with the original time series and one with the decomposed series after applying
variation mode decomposition. In both cases, models were adjusted to conduct one, three, and
five-steps ahead predictions. According to the findings of comparative analysis with contemporary
metaheuristics, it was concluded that the proposed hybrid approach is promising for crude oil price
forecasting, outscoring all competitors.

Keywords: optimization; crude oil price; prediction; swarm intelligence; salp swarm algorithm;
VMD; LSTM; machine learning tuning

1. Introduction

The most robust economies globally have become more vulnerable to oil price spikes
due to armed conflicts, as the world witnessed in 2022. This indicates that the economic
model derived from the supply and demand of crude oil prices is a significant influence
factor measuring the world’s economic development and sustainability. For instance,
the world’s largest oil importer, China, experiences squeezed consumer spending and
lowered corporate profitability due to the impact of armed conflicts in Europe. Since
the financial crisis in 2018, many internal and external factors, such as the change in the
geopolitical environment, conflicts between countries, trade sanctions, the complexity and
diverse nature of influencing factors on oil price prediction, etc., have made the prediction
models highly non-reliable. The volatility of crude oil prices coupled with inflation strongly
influences individual and corporate financing and investment decisions causing damage
to global economic development. Therefore, it is essential to mitigate the crude oil price
volatility risk by analyzing the associated metrics influencing simple oil price forecasting
using machine learning to attain accurately predicted results.
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Price prediction is an easy process, to begin with. However, the results may not be as
accurate as they should be because some of the excluded factors may also be important in
explaining the movement of prices. Additionally, geopolitical dynamics can affect oil prices.
Markets tend not to be globalized but rather becoming regionalized due to the influence
of geopolitical factors [1,2]. Accordingly, crude oil prices are nonlinear time series and
highly volatile. As [3] examined the factors for natural oil price prediction and identified
that the influence factors and their impact magnitude have changed over the period. With
this changing environment, traditional approaches for price prediction may not serve the
purpose as accurately as expected. That is why several studies that have attempted to
forecast the price could not successfully bring the accuracy of their predicted outcomes.

To tackle crude oil price prediction, with a more refined accuracy, novel approaches are
needed, that apply the latest technologies to the task at hand. As stated, predicting crude
oil prices is a very challenging, yet potentially extremely lucrative endeavor. Artificial
intelligence (AI) is a promising branch of computer science, that models learning processes
observed in biological brains and groups of organisms, to address and adapt to resolving
complex tasks in a changing environment. By developing and exploring machine learning
(ML) models, which is a branch of AI, researchers have improved the way complex tasks
are handled. Additionally, another promising member of the AI family are metaheuris-
tics optimizers, such as swarm intelligence, that simulate group behaviors observed in
nature and they are also capable of resolving non-deterministic polynomial hard (NP-hard)
problems, considered impossible to accomplish with traditional deterministic methods.

However, it is important to note that the performance of ML algorithms is heavily
dependent on their configuration. Many algorithms need to remain flexible enough to
address a general set of problems, but also to target a specific challenge. Adaptations
(tuning) of ML models for a concrete task at hand are performed by tuning its un-trainable
parameters, which are referred to as hyper-parameters. The hyper-parameters define the
intricacies of the algorithm. However, finding its optimal (sub-optimal) values for specific
tasks is a complex NP-hard challenge.

To address this, researchers have developed approaches to automate the process of
hyper-parameter selection, called hyper-parameters tuning. Since hyper-parameter tuning
can be formulated as a typical optimization problem, researchers have employed various
optimization algorithms to select the optimal (sub-optimal) hyper-parameter values and
attain the best possible performance for the model. A particularly well-performing group
of algorithms that excels in tackling optimization tasks is swarm intelligence. Often used
to address complex, and even NP-hard problems, this group of algorithms is particularly
popular among researchers, due to its relative simplicity and not-so-high computational
demands. With this in mind, this work explores the use of a particularly interesting
algorithm that emulated the behavior of salp foraging for food, the salp swarm algorithm
(SSA) [4], which was adopted for ML hyper-parameters optimization.

However, besides tuning the model for time-series forecasting, facing problems where
output doesn’t only depend on previous values, but also its order, is also influenced by
some additional challenges. Time-series are complex and non-linear dependencies between
data points and as such interpreting them is complex. Time series data will often show
trends and patterns in the way it changes. However, while some trends are apparent,
certain more subtle trends are harder to detect. A similar problem is present in the field
of signal processing, where researchers often need to extract signal components from
complex compound inputs. To address these issues, methods for decomposing data into
sub-components have been developed. The variational mode decomposition (VMD) [5]
is a relatively novel algorithm that shows great promise when tackling complex series of
data. By treating and formulating financial data as a signal, data decomposition methods
can be applied to deter, observe and extract trends in price changes. This approach allows
for work with larger datasets or simpler components rather than with one exceedingly
complex signal.
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It is important to note that a noticeable research gap is present in modern literature
from the domain of tacking crude oil price prediction as a pressing economical task, by
ML approaches. Furthermore, the use of decomposition methods for data processing has
been tackled by very few researchers. A notably interesting approach has been proposed
in [6], where VMD signal decomposition is efficiently coupled with kernel extreme learning
machine (KELM) for crude oil price forecasting. Therefore, this paper served as an inspi-
ration for the research conducted in this work, while the motivation stems from the fact
that this very important issue has not been enough investigated in the modern literature by
applying ML models and that there is a lot of free space for improving forecasting accuracy.

Therefore, to tackle oil-price forecasting, this research employs a single layer long term
short memory (LSTM) model, to create as simple as a possible neural network, capable
of tackling this problem efficiently, from aspects of prediction accuracy and the use of
computational resources. However, since the LSTM should be tuned for each specific
time-series, the introduced modified SSA algorithm is utilized for LSTM hyper-parameters
tuning challenge. It’s worthwhile mentioning that the previous research findings confirmed
that the LSTM is very efficient when dealing with time-series data [7–9].

To ensure a more robust and accurate performance analysis, the proposed research
is based on two experiments, that have been carried out. The first makes use of a simple
LSTM network, while the second applied VMD to the data with the K components used
as inputs for the LSTM. The second experiment adopts well-known TEI@I (integration of
text mining, Econometrics, and intelligence) complex system research methodology [10],
that employs a decomposition algorithm (in this case VMD) and a prediction model (in this
case LSTM network).

Both experiments made predictions for crude oil prices one, three, and five steps ahead.
The accuracy of prediction results has been evaluated based on the standard regression and
time-series forecasting metrics. Additionally, a rigid comparative analysis was performed
with evolved LSTM models by other state-of-the-art metaheuristics methods.

Simulations were carried out using West Texas Intermediate (WTI) real-world crude
oil price data, that covers daily prices, for the period 2 January 1986–11 July 2022, not
including weekends.

The scientific contributions of this work may be summarized as the following:

• A proposal of an improved version of the SSA designed to improve on the admirable
performance of the original algorithm.

• The application of VMD decomposition technique to address crude oil time-series
data complexity.

• Adjusting LSTM using the novel proposed swarm intelligence algorithm to improve
performance when predicting directional trends in data components.

• Further investigating and filling the research gap from the crude oil price forecasting
domain by applying hybrid methods between LSTM and swarm intelligence.

The remainder of this work is structured according to the following: Section 2 provides
a look into works preceding this research, as well as the approaches involved in realizing
it. The proposed improved swarm intelligence method is described in detail in Section 3.
The experimental setup and dataset used in simulations are covered in section 4, while the
attained results with comparative analysis are discussed in Section 5. Finally, Section 6
presents a conclusion on the conducted research and discusses future work in the field.

2. Review of the Literature and Basic Background

In recent times, machine learning (ML) has been widely used in research in the
field of economics and finance, where some predictions are to be executed to arrive at
precise estimations. Crude oil price fluctuations are generally nonlinear and irregular,
challenging researchers to predict future trends accurately. However, crude oil price
prediction is an essential input variable for individuals, corporates, and government sectors
for their financial planning. Considering this fact, [11] examined the application o fML and
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computational model to predict monthly crude oil prices. The results prove the effectiveness
of the data and provide a better prospect for oil price prediction in the future.

As [12] argued that research accuracy depends on the relevance and correctness of
information gathered and the algorithms employed. According to [13,14], ML has been the
most sought-after predicting mechanism in finance and economics. Additionally, [15] has
adopted ML models to predict stock prices.

According to [16], varied factors influence oil price fluctuations. The effects of these
factors are much more complicated and dynamic. So, it is not easy to extend the results
of a model predicting the oil prices now to a future period unless the model considers
the dynamism of the effect of input variables. Thus, they tried the deep learning model
approach to measure the movement of oil prices due to the nonlinear variables. The price
data in the WTI crude oil markets validate the accuracy of the model results, which shows
that the model provides a better prediction.

As [17] examined the appropriateness of artificial intelligence techniques in predicting
oil prices. The prediction of oil prices is complex as their movement is highly irregular,
which is very complex to predict. They examined the potential of AI in oil price prediction.
They examined various models for oil price forecasting, covering thirty-five research
papers published from 2001 to 2013, based on the following parameters: (a) input variables,
(b) input variables selection method, (c) data characteristics, (d) forecasting accuracy, and
(e) model architecture. Their results highlighted the appropriateness of AI methods used in
complex oil price-related studies and the specific shortcomings. They suggested how to
improve them in the future.

Notably, research [18] has predicted the stock prices of construction companies in
Taiwan using a promising nonlinear prediction model. Researchers [19] analyzed extensive
information using machine learning algorithms to examine the movement of stock market
indices. Work presented in [20] examined two models: the generic deep belief network
model and the adaptive neural fuzzy inference system for predicting crude oil prices. The
results of these two models were compared with the traditional strategies such as a naïve
strategy, a moving average convergence divergence model, and an auto-regressive moving
average (MV) model. The proposed two models achieved better results comparatively,
providing higher accuracy.

2.1. Artificial Neural Networks and Long Short Term Memory

Artificial neural networks (ANN) [21] form the basis of deep learning methods. Heav-
ily inspired by learning mechanisms observed in human brains, this group of algorithms
leverages computing power to mimic the mechanisms by which neurons transmit and
interpret signals between each other. These algorithms are capable of inferring correlations
between data through a training process, effectively learning by example. This ability
makes them especially attractive for tackling complex non-linear problems.

Notwithstanding that many efficient deep learning models exist, the long short-term
memory (LSTM) proved as one of the most promising models when tackling time-series
forecasting challenges [7,8,19]. The LSTM allows the storage of information inside the
network. This way, future outcomes are influenced by the results of previous inputs,
which means they are suitable for time-series predictions. Cells in traditional networks
are switched out for memory cells in hidden layers, therefore, allowing for the memory
retention mechanism. Using input gates, output gates, and forget gates, memory cells can
selectively store and release the data that goes through them.

Data first makes its way through the forget gate where a decision is made on whether
to discard the memorized data from the memory cell. It can be described as per Equation (1).

ft = σ(W f xt + U f ht−1 + b f ) (1)

in which fc marks the gate with the [0, 1] range. The sigmoid function is represented by σ;
while W f , U f are variable weight matrices, ht−1 defines the output of the previous LSTM
block and b f is the bias vector.
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The subsequent stem picks the data for storage within memory cells. The sigmoid
function of gate it selects renewed values determined by Equation (2).

it = σ(Wixt + Uiht−1 + bi) (2)

in which it has a (0, 1) range. The series of learnable parameters of an input gate are bi, Wi,
and Ui. Potential update vectors Ct are computed by Equation (3)

Ct = tanh(Wcxt + Ucht−1 + bc) (3)

where bc, Wc, Uc, similarly stand for a series of learnable parameters.
After the initial decision steps that select data to be stored, the given cell‘s state Ct is

computed according to Equation (4)

Ct = ft � Ct−1 + it � Ct (4)

with � signification and element-wise multiplication. Data determined for erasure is
defined as Ct−1. Correspondingly, the data meant for storage is defined as ft � Ct, where ft
represents the forget gate. The novel information that will be stored in a memory cell Ct is
denoted as it � Ct.

By using the sigma function in regards to Equation (5), the output gate ot value that
defines the hidden state ht, with t representing the current iteration, can be calculated.

ot = σ(Woxt + Uoht−1 + bo) (5)

in which the range of ot is (0, 1), and bo Wo and Uo stand for learnable parameters for the
input gate. Lastly, the result of ot and tanh value of Ct is the output value ht in accordance
with Equation (6)

ht = ot � tanh(Ct) (6)

2.2. Variational Mode Decomposition (VMD)

By applying signal decomposition to a complex signal, its principal modes may be
extracted via the use of VMD [5]. When applied to price data, this approach allows different
band-limited intrinsic mode functions (IMF) to be extracted from the base data. These
IMFs represent an observed sub-trend present in the original data. While resulting in a
larger overall dataset, the components have a more regular shape, allowing algorithms
to tackle them individually in a more effective manner. By determining relevant bands
adaptively VMD estimates the corresponding modes concurrently, thus properly balancing
errors between them.

Each mode may be defined according to Equation (7):

ui(t) = Ai(t) cos[φi(t)] (7)

where ui(t) represents the i-th amplitude-frequency modulation signal mode component,
Ai the current amplitude, and cos[φi(t)] the phase.

The VMD approach leverages center frequency and bandwidth to extract different
signal components. Every mode is compressed around a central pulsation ωi, while the
bandwidth is estimated via the L2 norm of the gradient. A more complete elaboration of
the L2 norm can be found in [22]. The composition process can be performed according to
Equation (8)

min{ui},{ωi}

{ K

∑
i=1

∥∥∥∂t[δ(t) +
j

πt
∗ ui(t)]e−jωit

∥∥∥2

2

}
s.t. x(t) =

K

∑
i=1

ui(t)

(8)
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with K representing the amount of modes, {ui} = {u1, u2, . . . , ui} and {ωi} = {ω1, ω2, . . . , ωi}
are sets of estimated modes and their center frequencies. Further, j2 = −1, ∂t represents
the gradient function, and δ(t) denotes the Dirac distribution.

Using the Lagrangian multiplier λ along with the penalty factor ℵ, the constrained
variational problem is transformed into an unconstrained one, that is described according
to Equation (9):

L({ui}, {ωi}, λ) = ℵ
K

∑
i=1

∥∥∥∂t

[(
δ(t) +

j
πt
∗ ui(t)

]
e−jωit

∥∥∥2

2
+ ||x(t)−

K

∑
i=1

ui(t)||22 + 〈λ(t), x(t)−
K

∑
i=1

ui(t)〉 (9)

Alternating direction methods of multipliers are applied to locate a local minimum
of the Lagrangian function. Estimated modes ûi is determined according to Equation (10)
while its central frequency ωi is determined with respect to Equation (11):

ûn+1
i (ω) =

x̂(ω)−∑j 6=i ûj(ω) + λ̂(ω)
2

1 + 2ℵ(ω + ωi)2 , (10)

ωn+1
i =

∫ ∞
0 ω|ûi(ω)|2dω∫ ∞

0 |ûi(ω)|2dω
(11)

where n determines the number of iterations. The λ Lagrange operator is determined
according to Equation (12):

λ̂n+1(ω) = λ̂n(ω) + τ
[

x̂(ω)−
K

∑
i=1

ûn+1
i (ω)

]
(12)

with τ representing noise tolerance control parameter.This equation will be repeated until
Equation (13) is fulfilled.

K

∑
i=1

||ûn+1
i − ûn

i ||22
||ûn

i ||22
< ε (13)

Four control parameters are present in the VMD method. These include the noise
tolerance τ, convergence error ε, the number of model components K, and finally the
quadratic penalty factor ℵ. With parameters K and ℵ having a more significant effect on
attained results.

2.3. Swarm Intelligence

Swarm intelligence presents a particularly powerful group of metaheuristic optimiza-
tion algorithms, often inspired by groups observed in nature such as the artificial bee
colony (ABC) [23], whale optimization algorithm (WOA) [24], firefly algorithm (FA) [25].
However, this is not always the case, as more abstract mathematical concepts have served
as inspiration for several notable algorithms such as the sine cosine algorithm (SCA) [26]
and arithmetic optimization algorithm (AOA) [27]. Best known for their ability to address
complex tasks including NP-hard problems swarm intelligence algorithms are particularly
popular among researchers for tackling optimization problems. It is important to note
that due to the random nature inherent in the mechanisms of these algorithms, an optimal
solution can never be guaranteed. However, with each successive iteration the odds of
finding a true optima increase.

Algorithms from this group make use of populations of agents, that obey subsets of
rules. This mechanism allows for complex intelligent behavior to occur on a global scale as
agents strive towards a common goal guided by an objective function. The formulation of
an objective function depends on the specific problem being addressed. Furthermore, it is
important to note that despite admirable flexibility, there is no single approach that works
best applied to all problems, this is further enforced by the no free lunch theorem [28].
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Constant experimentation and adjustments are needed to further adjust and improve
applications of swarm intelligence.

As such, much research and experimentation has been done with swarm intelligence
algorithms with many optimization applications in several fields [29–34].

3. Proposed Method

This section first provides a brief overview of the original SSA metaheuristics, followed
by its observed cons, and concludes with a detailed description of a modified approach
proposed in this research.

It is noted that when the original SSA is described, notations from its introducing paper
are preserved [4], while the approach used in this study uses slightly different notation,
which is more adapted to commonly used practices in the metaheuristics literature, e.g.,
current iteration and a total number of iterations in a run are denoted as l and L, respectively,
in the original SSA, while the method in this study uses notations t and T.

Moreover, despite the fact that the authors do not agree with introducing new ter-
minology for each devised metaheuristics, the terms which are used in the original SSA
paper [4], is also preserved, e.g., solutions are known as salps, the current best solution is
referred as the leader, the second best as a follower, etc. Authors think that ’nature-inspired’
terminology should be avoided when new algorithms are introduced and that the uniform
terminology from the metaheuristics domain should be followed.

3.1. Salp Swarm Algorithm

The SSA [4] algorithm is inspired by the foraging behaviors of salp. To find the safest
route to the sustenance supply individual salps band together by creating a chain with their
bodies connected. This mechanism is used as a model for exploration and exploitation. The
former leader adapts positioning towards the direction of the sustenance supply which
represents the current optimum.

Agent positions in population with size N in d-dimensional space is determined via
two-dimensional matrix X as per Equation (14):

Xi =


x1

1 x1
2 . . . x1

d
x2

1 x2
2 . . . x2

d
...

... . . .
...

xN
1 xN

2 . . . xN
d

 (14)

With the sustenance supply defined as F, the leader‘s position (best solution) in the
j-th dimension is updated by the following function (15):

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj), c3 ≥ 0.5
Fj − c1((ubj − lbj)c2 + lbj), c3 < 0.5,

(15)

where x1 defines ladder positioning, Fj marks the current optimal solution location, the
upper and lower boundaries are defined by ubj and lbj, c1, c2 and c3 represent pseudo-
random values in range [0, 1].

Parameters c2 and c3 dictate step size and control should the position of the new solu-
tion be directed towards positive or negative infinity. Nevertheless, c1 remains important
since it directly dictates the ratio between exploration and exploitation. The c1 can be
determined according to Equation (16):

c1 = 2e−(
4l
L )2

, (16)

in which the current iteration is labeled as l and L stands for maximum iterations in one run.
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Follower positions are updated using Equation (17)

xi
j =

1
2

at2 + V0t, (17)

where xi
j represents i-th follower in the j-th dimension and i ≥ 2. Annotation t labels time

and a =
Vf inal

V0
, i which V = x−x0

t , and the initial speed is V0.
Considering that time in all optimization processes based around iterations, the dispar-

ity between iterations is 1 and V0 = 0 at the beginning, Equation (18) can be redefined as:

xi
j =

1
2
(xi

j + xi−1
j ) (18)

3.2. Cons of the Original Algorithm

Most basic optimization algorithms have some downsides, the SSA being no differ-
ent. Observed deficiencies of the basic SSA in short are insufficient exploration, average
exploitation power (conditional drawback), and intensification-diversification trade-off.

According to modern literature sources [35], an optimization algorithm might be bet-
tered with minor modifications, e.g., small changes added to the search equation, additional
mechanisms, and/or by imposing significant changes by hybridization with other meth-
ods For the needs of the present study, basic SSA was improved by adding a disputation
operator, that performs a group search within the cluster of promising solutions.

Using the results of previous research [36], in addition to extensive experimentation
using standard CEC2013 benchmark test functions [37] that were done specifically for this
study, a conclusion was reached that the diversification process of basic SSA shows some
shortcomings, leading to the inappropriate balance of intensification-diversification, with
the dis-balance usually leaning towards exploitation.

3.3. Ssa with Disputation Operator

The SSA algorithm proposed in this manuscript tackles the observed flaws of the
original SSA implementation by applying the disputation operator, proposed by the social
network search (SNS) algorithm in [38]. This operator is used to guide the search within
a chosen subgroup of solutions from the population. The original SNS has defined this
process where the users of the social network are explaining and also defending their
opinions on a certain topic with other network users. The users can also establish new
groups for the elaboration of different topics. Consequently, it is possible to affect the users
through other users’ opinions on specific topics. The mathematical formulation of this
process is given by Equation (19) [38], which shows the update process of the solution x for
the i-th parameter.

xi new = xi + rand(0, 1)× (M− AF× xi)

M =
∑Nr

t xt

Nr
AF = 1 + round(rand),

(19)

where xi describes the vector representing the view of i− th user, rand(0, 1) stands for a
random vector within the range [0, 1] and M denotes the mean of views of users belonging to
the commentator group. The AF value represents the admission factor used as an indicator
of the persistence of the users that hold to their opinions while discussing with other users
and it can have integer values of 1 or 2. Function round() has a role to round the input to
the nearest integer value, while rand represents an arbitrary number within the range [0, 1].
Variable Nr denotes the number of commentators or group size. Consequently, it can hold
integer values between 1 and N, N representing the total number of the network’s users.

The parameter AF controls the search step size, therefore impacting the trade-off
between the intensification and diversification phases. In case the value of AF is set to 2,
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the exploration is favored, while in the case of value 1, the disputation phase is supported,
leading to intensified exploitation.

This work uses a modified disputation operator as described in the remaining of
this section. The basic implementation of the SNS metaheuristics presumes that the first
operand of AF equation (Equation (19)) has been hardcoded to value 1, therefore the
possible values AF can take just 1 and 2. However, the extensive simulations with the
original version of the algorithm have empirically shown that it is more convenient to
define a larger initial step size that focuses on the exploration, and to decrease it at a
slow pace over the iterations, to focus more on the exploitation process. Furthermore, it is
more effective to regard the AF as a continuous parameter, to enable metaheuristics search
process fine-tuning.

Considering these observations, instead of determining the step size AF by using
Equation (19), the method presented in this paper uses one supplementary dynamic group
search control parameter (gsp) and utilizes the Equation (20) to determine AF in each round.

AF = gsp + round(rand). (20)

where the gsp parameter decreases dynamically in each iteration t, from its initial value
of 2. This reflects the need to focus more on the exploration during the initial phases
and shift the focus to exploitation in the later rounds. The proposed approach uses a
fine-grained step size AF, that allows more accurate control of the search process than the
basic SNS implementation.

Additionally, the introduced method incorporates a two-mode group search, that is
implemented as follows: the first mode is performing the search within the group of Nr
randomly chosen solutions from the population, while the second mode is focused on
the group of Nb best solutions within the swarm. Both Nr and Nb are established in each
iteration, as random values within the range [1, N]. The Equation (19) is utilized in both
modes, while the step size is calculated as defined in Equation (20). The second mode is
applied in later iterations to focus on the search process near the current best solutions,
with the assumption that the algorithm has successfully converged to the optimal region
of the search domain. The switching between modes 1 and 2 is performed by the control
parameter cmt, labeled as change mode trigger, with respect to the termination condition.

Based on the empirical simulations, it was concluded that the basic SSA search mecha-
nism is able to converge fast to the optimal solution in cases where the initial population
was produced near the optimal regions. To give a chance to the basic SSA search and not
increase significantly the complexity of the method, the proposed group search procedure
is not initiated in early iterations, but after passing of gss (group search start) iterations.
In each iteration, if the condition for the group search is fulfilled, the proposed method
produces a new individual xnew, and performs the greedy selection procedure between the
produced solution and arbitrarily selected individual from the 50% of the worst solutions
from population xrnd_worst.

The proposed method was dubbed SSA with disputation operator (SSA-DO), to reflect
the implemented search mechanism. In addition, the proposed method makes use of three
supplementary control variables, which all depend on the termination condition (either
T, which represents the maximal number of iterations or the fitness function evaluation
FFEs count), while one among them has dynamic nature. Their values were determined
empirically, as given in Table 1.

Table 1. Settings of the important SSA-DO control parameters.

Parameter Expression Description

gsp gsp = gsp− t
T dynamic group search parameter, initially 2

gss gss = T
3 group search start

cmt cmt = gss + T
3 change mode trigger
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To determine the complexity of the suggested SSA-DO approach, the complexity of
the original SSA must be considered with respect to the FFEs. The FFEs is a common
way to establish the complexity of the metaheuristics algorithms, as stated in [39]. When
compared to the basic SSA, the SSA-DO complexity is higher by only (T− gss) FFEs, since
only one new individual is generated in every iteration after enabling the group search.
This fact was taken into consideration when compared to other algorithms to provide a fair
basis for analysis.

It should be noted here that a similar technique was recently suggested in [40], by
the same research group. The approach given in [40] is replacing the latest worst individ-
ual xworst with the solution produced through the group search mechanism. Continued
research has shown that in some cases it may lead to the loss of diversity, specifically, if the
solutions that have better fitness than the latest xworst are dwelling in sub-optimal areas.
Consequently, the work presented in this paper utilizes a different strategy.

Lastly, the introduced SSA-DO pseudo-code is presented in Algorithm 1.

Algorithm 1 The SSA-DO pseudo-code.

Set values for N and T parameters
Set basic SSA control parameters
Set specific SSA-DO parameters
Initialize swarm xi(i = 1, 2, . . . , N)
Initialize iteration counter, t = 0
while t < T do

Determine best-performing agents
Designate F as the best solution
for All agents(xi) do

if i == 1 then
Update best solution’s position according to Equation (15)

else
Update follower positions according to Equation (18)

end if
end for
Move all solutions from outside of boundaries back into the search space
if t > gss then

if t < cmt then
Produce new agent xnew by utilizing the group search mode 1 operator

else
Produce new agent xnew by applying group search mode 2 operator

end if
Perform greedy selection between xnew and xrnd_worst

end if
Rank all solutions to find the current best agent
Update C1 according to Equation (16)
Update gsp as specified in Table 1

end while
return Best solution

4. Experimental Setup

For the purpose of exhibited research two experiments have been conducted. The first
experiment applied LSTM to predict crude oil prices from the original time-series, while
the second experiment applied VMD to data before applying LSTM to the output results of
the VMD (VMD-LSTM approach). For both experiments, a lag of 6 data points has been
used for predictions, and 3 simulations, for one, three, and five steps (days) ahead have
been conducted and evaluated for each experiment.

The proposed research uses a similar experimental setup as in [6,41], which served as
motivation for conducted investigations shown in this manuscript.



Sustainability 2022, 14, 14616 11 of 29

This section describes in detail the dataset employed in simulations, experimental
setup, solutions encoding, and flowchart of the proposed simulation framework. Addi-
tionally, metrics used for evaluation purposes, and details of the algorithms used in the
comparative analysis and simulation conditions are provided.

4.1. Dataset, Hyper-Parameters, Solution Encoding, and Flow-Chart

This research makes use of real-world financial data on WTI crude oil trading prices.
The data encompass closing spot prices of trading days from 2 January 1986 to 11 July 2022,
excluding weekends, and has been acquired from public sources provided by the United
States Energy Information Administration (EIA) at https://www.eia.gov/petroleum/
gasdiesel/ (accessed on 20 July 2022).

During all experimentation, the dataset has been split into training, test, and validation
segments, with training being made up of the first 70% of available data, and validation
of 10% subsequent data points, while the remaining 20% of data series has been used for
testing, as shown in Figure 1. Furthermore, Figure 1 shows the datasets plot after applying
the min-max normalization.

Figure 1. Train/validation/test of WTI daily oil prices used in simulations.

As already stated, the purpose of both experiments is to employ proposed SSA-
DO metaheuristics to develop the best possible WTI crude oil trading prices forecasting
model by tuning LSTM. Therefore, each agent for a given metaheuristic represents a set of
LSTM network hyper-parameter values that are optimized. In the first experiment, every
individual had 4 components (D = 4), representing the 4 tuned LSTM hyper-parameters.
A full list of optimized LSTM hyper-parameters with their respective lower and upper
boundaries and data types are given in Table 2.

Table 2. The LSTM hyper-parameters tuned in experiments.

Parameter Boundaries Data Type

number of neurons in the LSTM layer (nn ) lb = 20, ub = 200 integer
learning rate (lr) lb = 0.0001, ub = 0.01 double
dropout rate (dr) lb = 0.001, ub = 0.01 double

number of training epochs (epochs) lb = 100, ub = 300 integer

The values’ ranges for hyper-parameters have been empirically determined through
extensive simulation testing using various control parameter values. For the second experi-
ment, which incorporated VMD, the length of individuals is expended to D = 4 · (K + 1),
with K representing the number of VMD signal decomposition modes. However, the
decomposition process also includes a remainder (residual), hence K + 1. The second ex-
periment optimized the same set of hyper-parameters as the first experiment with the same
ranges, however, for each time-series, including residual, generated by VMD, a separate
LSTM network was developed, e.g., if K is set to 5, six LSTM structures were generated by
every swarm agent.

https://www.eia.gov/petroleum/gasdiesel/
https://www.eia.gov/petroleum/gasdiesel/
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The VMD value of parameter K has been determined empirically and it was set to 4
(K = 4), according to extensive testing with different K values as follows: for varying K
values from the range [2, 12], the SSA-DO was employed for evolving LSTM structures for
one step ahead simulations with 6 individuals and 5 iterations, and the mean square error
(MSE) performance metric was recorded. Afterward, guided by the “elbow approach”, the
K value for which the best (lowest) MSE was found is used in further experiments. Obtained
results with varying K are visualized in Figure 2. It is noted that for VMD implementation,
python vmd-python library was used with the following parameters: ℵ = 2000, τ = 0,
DC = 0, int = 1 and tol = 1× 10−7. For more details, readers can check the following
URL: https://github.com/vrcarva/vmdpy (accessed on 20 July 2022).

2 4 6 8 10 12
K value

0.0001325

0.0001350

0.0001375

0.0001400

0.0001425

0.0001450

0.0001475

0.0001500

0.0001525

M
SE

 v
al

ue

MSE for varying VMD K values

Figure 2. The “Elbow” method approach for determining best K value for VMD.

In both experiments, LSTM and VMD-LSTM, the number of LSTM neurons in the
output layer is set to the number of forecasting steps ahead, where each neuron makes one
prediction, e.g., for three steps ahead, there are 3 neurons in the output layer. Additionally,
to improve LSTM network training, before splitting the dataset into training, testing,
and validation datasets, and the normalization of all data points to the range [0, 1] was
performed. In the scenarios of VMD experiments, data series are decomposed after they
have been normalized. At the end of the simulation, to generate graphs for the best-
performing LSTM/VMD-LSTM models, all data points have been denormalized. Visual
representation of the original test set data series after normalization and 4 signals along
with residual generated by VMD is given in Figure 3.

https://github.com/vrcarva/vmdpy
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Figure 3. Original test data after normalization and signals generated by VMD.

The simulation framework, as well as SSA-DO and all methods used in the compara-
tive analysis, were developed in Python using standard data science and machine learning
libraries numpy, scypi, pandas, scikit-learn, tensorflow 2.0 and keras, while visualization is
aided by matplotlib and seaborn.

A flowchart for the developed VMD-LSTM framework is shown in Figure 4.

Figure 4. The VMD-LSTM-SSA-DO method flowchart.
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4.2. Evaluation Metrics, Basic Setup, and Opponent Methods

To evaluate the results of the proposed method four evaluation metrics have been used:
root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE),
and coefficient of determination (R2), calculated according to Equation (21), Equation (22),
Equation (23), to Equation (24) respectively.

RMSE =

√
1
n

n

∑
i =1

(yi − ŷi)
2 (21)

MAE =
1
n

n

∑
i =1
|yi − ŷi| (22)

MSE =
1
n

n

∑
i =1

(yi − ŷi)
2

yi
(23)

R2 = 1− ∑n
i =1 (yi − ŷi)

2

∑n
i =1 (yi − ȳ)2 , (24)

where yi and ŷi denote observed (real) and predicted values for i-th observation, respec-
tively, ȳ is arithmetic mean of real data and n is the size of the sample.

As already stated above, in one, two, and three-steps ahead experiments, generated
LSTMs in the output layer have one, two, and three neurons, respectively, e.g., the LSTM
for three-steps ahead, forecast for one, two, and three days are provided, one day by each
neuron. Further, in all experiments (LSTM and VMD-LSTM with one, three, and five steps
ahead), all indicators are determined separately, per step. However, in cases with three
and five steps ahead predictions, overall metrics (oR2, oMAE, oMSE, and oRMSE) are
also calculated. Such calculated overall values are not simple arithmetic means of the
previous steps forecasts, e.g., overall R2 for a three-steps ahead experiment is not simple
arithmetic mean derived from R2 results for one-step, two-steps and three-steps ahead,
because there are some data points for which all, one, two and three-steps ahead prediction
are not available. In one-step-ahead forecasting, overall and one-step-ahead metrics are
the same.

To demonstrate this, let’s suppose that the first data point in the test set is 1 January
2020, the number of lags is adjusted to 3 and that three-steps ahead prediction is simulated.
In this particular scenario, for the date 4 January 2022, only one result will be generated
by the first neuron, which performs one-step ahead forecasting, for 5 January there will be
two results, one by the first neuron and one by the second, that performs two-steps ahead
forecasting. Following this pattern, the first data point for which three forecast values will
be determined is 6 January 2022. The error for a particular day is the mean error of all
forecasts for that day and for that reason overall metrics are not the same as the simple
arithmetic mean of previous steps indicators.

The forecasting challenge is tackled as a minimization problem and the objective
function is formulated with respect to the overall MSE (oMSE), as specified in the follow-
ing equation:

Obj = min (oMSE) (25)

For both experimental simulations, the tested metaheuristics were assigned a popula-
tion of 6 individuals (N = 6), that were improved over 5 iterations (T = 5), and assessed
through 6 independent runs (R = 6). However, since the proposed SSA-DO evaluates one
more candidate solution in each iteration, it was tested with only 5 individuals, and in this
way, a slight advantage is given to opponent algorithms. The relatively modest population
sizes, iteration, and runtime numbers are mainly due to the demanding computational
nature of the experiments. Furthermore, early stopping conditions have been implemented
for both experiments with patience = epochs

3 , and recurrent dropout rates for the LSTM
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networks were kept at the default 0.01 value along with the relu activation function, adam
optimizer, mse loss function and batch size of 16.

The comparative analysis encompasses 6 state-of-the-art metaheuristics including the
novel proposed SSA-DO, original SSA [4], ABC [42], FA [25], SCA [26], TLB [43], tested
with default control parameters values proposed in the original works that introduced
them. All algorithms were also implemented in this study and tested under the same
conditions as the proposed SSA-DO.

5. Empirical Results and Analysis

This section gives an overview of experimental findings and comparative analysis with
other LSTM structures generated by opponent metaheuristics and some other well-known
ML models. First, findings from simulations with LSTM are given, where input is the
original time-series, followed by results for generated LSTMs by using VMD decomposed
inputs, afterwards comparison with other ML models for the same problem is provided
and finally, to validate obtained improvements of proposed SSA-DO, rigid analysis based
on conducted statistical tests is shown.

To make results more clear for presentation, metaheuristics employed in the LSTM
simulations are prefixed with ‘LSTM’, while those utilized in experiments with VMD are
prefixed with ‘VMD-LSTM’, e.g., LSTM-SSA-DO and VMD-LSTM-SSA-DO, respectively. It
is also noted that the best results in all experimental findings tables are marked with bold
style and that to fit results’ tables within the width of the page, in table headers ‘V-LSTM’
instead of ‘VMD-LSTM’ is used for denoting VMD-LSTM structures.

It is very important to note that all performance metrics provided in results tables
(R2, MAE, MSE and RMSE) are shown against the normalized data points because as it
was already showed in Section 4.1, to improve LSTM network training, before splitting the
dataset into training, testing, and validation, and the normalization of all data points to
the range [0, 1] was performed. Subsequently, results for MAE, MSE, and RMSE may differ
from those presented in some of the other studies [6,41], because they are represented on
different scales.

5.1. Simulations with Lstm

Experimental findings and comparative analysis from experiments with LSTM without
VMD are summarized in two types of tables (Tables 3–8). First, best, worst, mean, median,
standard deviation, and variance of the objective function (oMSE) over 10 independent
runs are shown in Tables 3, 5 and 7 for one, three, and five steps ahead, respectively.

In the second types of tables, R2, MAE, MSE and RMSE performance indicators for
the objective obtained in the best run, are shown for each step separately along with its
overall values. These results are presented in Tables 4, 6 and 8 for one, three, and five steps
ahead simulations, respectively. The best result in each category is noted in bold style.

Table 3. Objective function metrics over 6 runs for designed LSTM with 1 step ahead.

Method LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

Best 1.45× 10−04 1.72× 10−04 1.61× 10−04 1.48× 10−04 1.58× 10−04 1.48× 10−04

Worst 1.78× 10−04 1.86× 10−04 1.66× 10−04 1.99× 10−04 1.73× 10−04 2.01× 10−04

Mean 1.58× 10−04 1.77× 10−04 1.63× 10−04 1.69× 10−04 1.61× 10−04 1.64× 10−04

Median 1.54× 10−04 1.76× 10−04 1.62× 10−04 1.66× 10−04 1.58× 10−04 1.54× 10−04

Std 1.41× 10−05 6.13× 10−06 2.19× 10−06 2.23× 10−05 6.46× 10−06 2.12× 10−05

Var 1.97× 10−10 3.76× 10−11 4.78× 10−12 4.98× 10−10 4.18× 10−11 4.49× 10−10



Sustainability 2022, 14, 14616 16 of 29

Table 4. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with one step ahead.

Indicator LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

One-step ahead R2 0.991122 0.989395 0.989919 0.990655 0.990050 0.990848
MAE 0.008316 0.009039 0.008800 0.008401 0.008679 0.008510
MSE 0.000145 0.000172 0.000161 0.000148 0.000158 0.000148
RMSE 0.012038 0.013097 0.012694 0.012158 0.012557 0.012152

Overall Results oR2 0.991122 0.989395 0.989919 0.990655 0.990050 0.990848
oMAE 0.008316 0.009039 0.008800 0.008401 0.008679 0.008510
oMSE 0.000145 0.000172 0.000161 0.000148 0.000158 0.000148
oRMSE 0.012038 0.013097 0.012694 0.012158 0.012557 0.012152

All experimental findings clearly indicate that on average, SSA-DO generates the
best results. In the one-step-ahead simulation, LSTM-SSA-DO managed to obtain the best
result, but also the best stability, which can be perceived from the mean objective value
over 6 runs. However, in this type of simulation, the LSTM-ABC achieves the best standard
deviation and variance. Additionally, from Table 4 can be undoubtedly concluded that the
LSTM-SSA-DO established the best performance when all metrics are considered.

Table 5. Objective function metrics over 6 runs for designed LSTM with 3 steps ahead.

Method LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

Best 1.50× 10−04 1.51× 10−04 1.57× 10−04 1.57× 10−04 1.52× 10−04 1.57× 10−04

Worst 1.50× 10−04 1.84× 10−04 1.76× 10−04 1.71× 10−04 1.68× 10−04 1.74× 10−04

Mean 1.50× 10−04 1.69× 10−04 1.66× 10−04 1.62× 10−04 1.56× 10−04 1.62× 10−04

Median 1.50× 10−04 1.70× 10−04 1.66× 10−04 1.59× 10−04 1.52× 10−04 1.57× 10−04

Std 0.00× 10+00 1.39× 10−05 7.39× 10−06 5.70× 10−06 7.30× 10−06 7.07× 10−06

Var 0.00× 10+00 1.93× 10−10 5.46× 10−11 3.25× 10−11 5.34× 10−11 5.00× 10−11

Table 6. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with three steps ahead.

Indicator LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

One-step ahead R2 0.990881 0.991324 0.990710 0.990619 0.989925 0.990662
MAE 0.008325 0.008164 0.008391 0.008493 0.008783 0.008455
MSE 0.000145 0.000137 0.000145 0.000149 0.000156 0.000148
RMSE 0.012062 0.011720 0.012059 0.012218 0.012494 0.012159

Two-step ahead R2 0.990158 0.989644 0.989138 0.988947 0.990454 0.989714
MAE 0.008578 0.008989 0.009008 0.009072 0.008620 0.008746
MSE 0.000157 0.000161 0.000174 0.000170 0.000148 0.000164
RMSE 0.012526 0.012672 0.013198 0.013022 0.012152 0.012799

Three-step ahead R2 0.990903 0.989947 0.990121 0.990429 0.990583 0.989611
MAE 0.008521 0.008925 0.008911 0.008471 0.008486 0.008961
MSE 0.000148 0.000156 0.000151 0.000151 0.000151 0.000161
RMSE 0.012163 0.012500 0.012308 0.012303 0.012284 0.012680

Overall Results oR2 0.990651 0.990312 0.989983 0.990013 0.990326 0.989999
oMAE 0.008475 0.008693 0.008770 0.008679 0.008630 0.008721
oMSE 0.000150 0.000151 0.000157 0.000157 0.000152 0.000157
oRMSE 0.012252 0.012304 0.012531 0.012520 0.012311 0.012549

In three-steps ahead experiments, LSTM-SSA-DO manifests the best stability, as well as
performance, which can be seen from Table 5. Surprisingly, in all 6 runs, the LSTM-SSA-DO
managed to establish the same value for the objective with zero std and variance, which at
the same time achieved the best result among all metaheuristics. In this type of experiment,
the second best LSTM-SSA, therefore it can be concluded that the SSA also performed well
in this test.
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Table 7. Objective function metrics over 6 runs for designed LSTM with 5 steps ahead.

Method LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

Best 1.58× 10−04 1.47× 10−04 1.56× 10−04 1.58× 10−04 1.56× 10−04 1.67× 10−04

Worst 1.61× 10−04 1.72× 10−04 1.70× 10−04 1.64× 10−04 1.84× 10−04 1.71× 10−04

Mean 1.58× 10−04 1.53× 10−04 1.65× 10−04 1.63× 10−04 1.71× 10−04 1.69× 10−04

Median 1.58× 10−04 1.47× 10−04 1.66× 10−04 1.64× 10−04 1.73× 10−04 1.68× 10−04

Std 1.35× 10−06 1.11× 10−05 5.95× 10−06 2.82× 10−06 9.97× 10−06 1.47× 10−06

Var 1.83× 10−12 1.23× 10−10 3.54× 10−11 7.95× 10−12 9.95× 10−11 2.17× 10−12

Table 8. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with five steps ahead.

Indicator LSTM-SSA-DO LSTM-SSA LSTM-ABC LSTM-FA LSTM-SCA LSTM-TLB

One-step ahead R2 0.991234 0.988886 0.988907 0.990731 0.990851 0.989556
MAE 0.008247 0.009384 0.009398 0.008434 0.008366 0.008730
oMSE 0.000138 0.000173 0.000170 0.000143 0.000144 0.000164
RMSE 0.011742 0.013146 0.013036 0.011957 0.012006 0.012805

Two-step ahead R2 0.989951 0.989009 0.990213 0.989825 0.990641 0.990652
MAE 0.008755 0.009253 0.008787 0.008802 0.008733 0.008269
MSE 0.000156 0.000171 0.000151 0.000157 0.000143 0.000146
RMSE 0.012506 0.013065 0.012276 0.012523 0.011956 0.012096

Three-step ahead R2 0.990582 0.993458 0.989895 0.989672 0.988061 0.988564
MAE 0.008447 0.007005 0.008764 0.008770 0.010019 0.009146
MSE 0.000149 0.000103 0.000155 0.000161 0.000184 0.000177
RMSE 0.012206 0.010135 0.012466 0.012689 0.013568 0.013306

Four-step ahead R2 0.988928 0.990105 0.990078 0.990676 0.990390 0.988959
MAE 0.009338 0.008923 0.008712 0.008357 0.008551 0.009067
MSE 0.000173 0.000153 0.000153 0.000144 0.000150 0.000171
RMSE 0.013153 0.012375 0.012352 0.012002 0.012238 0.013082

Five-step ahead R2 0.988980 0.991353 0.989974 0.987868 0.989727 0.988580
MAE 0.009278 0.008239 0.008957 0.009910 0.009086 0.009205
MSE 0.000171 0.000133 0.000153 0.000184 0.000160 0.000177
RMSE 0.013086 0.011546 0.012379 0.013580 0.012636 0.013297

Overall Results oR2 0.989940 0.990568 0.989814 0.989761 0.989938 0.989266
oMAE 0.008813 0.008561 0.008924 0.008855 0.008951 0.008883
oMSE 0.000158 0.000147 0.000156 0.000158 0.000156 0.000167
oRMSE 0.012550 0.012105 0.012505 0.012564 0.012495 0.012925

Finally, in the five-steps-ahead experiment (Tables 7 and 8), proposed LSTM-SSA-DO
established the best stability with the lowest std and variance values, however, the best
performing metaheuristics is LSTM-SSA. Therefore, the no free lunch (NFL) theorem, which
states that the universally best method for all types of challenges does not exist, proved
right in LSTM simulations.

Comparative analysis visualization for LSTM experiments is provided in Figures 5–7
with one, three, and five steps ahead, respectively. All provided figures include the follow-
ing diagrams: box and whiskers for the objective function and violin plots for R2 indicator
over 6 runs, convergence speed graphs for the objective function, and R2 metrics in the best
run over 5 iterations.

From the presented diagrams it is interesting to visually compare the LSTM-SSA-
DO convergence speed with other metaheuristics convergence, where can be seen that
the LSTM-SSA-DO rapidly converges after T/3 iterations when the group search mode
is triggered. Unfortunately, due to the computing resources requirements, all testing
was performed with only 5 iterations, however from the statistical point of view, if more
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iterations were utilized the LSTM-SSA-DO would also probably be in the five-steps ahead
simulation to achieve the best results.
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Figure 5. Comparative analysis visualization for LSTM experiments with 1 step ahead.
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Figure 7. Comparative analysis visualization for LSTM experiments with 5 steps ahead.

Finally, the forecast and actual results for LSTM-SSA-DO and LSTM-SSA for all LSTM
simulations of the best run are depicted in Figure 8.

Figure 8. Actual vs. predicted results for LSTM-SSA-DO and LSTM-SSA in one-step, three-steps, and
five-steps ahead simulations.

5.2. Simulations with VMD-LSTM

Similarly as in experiments without VMD (Section 5.1), generated results by LSTM
structures that use VMD decomposed series as input, are grouped into two types of
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tables (Tables 9–14). Comparative analysis between proposed VMD-LSTM-SSA-DO and
other methods of best, worst, mean, median, standard deviation, and variance of the
objective function (oMSE) over six runs is presented for one, three, and five steps ahead in
Tables 9, 11 and 13, respectively. On the other side, R2, MAE, MSE and RMSE indicators for
the best objective per each step, as well its overall values, are shown in Tables 10, 12 and 14
for one, three, and five steps ahead simulations, respectively.

Table 9. Objective function metrics over 6 runs for designed LSTM with VMD decomposition and
1 step ahead.

Method V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

Best 1.20× 10−04 1.36× 10−04 1.62× 10−04 1.28× 10−04 1.24× 10−04 1.23× 10−04

Worst 1.31× 10−04 1.79× 10−04 1.92× 10−04 1.40× 10−04 1.33× 10−04 1.81× 10−04

Mean 1.24× 10−04 1.53× 10−04 1.70× 10−04 1.36× 10−04 1.26× 10−04 1.44× 10−04

Median 1.23× 10−04 1.49× 10−04 1.62× 10−04 1.37× 10−04 1.24× 10−04 1.35× 10−04

Std 4.91× 10−06 1.86× 10−05 1.27× 10−05 4.43× 10−06 3.93× 10−06 2.37× 10−05

Var 1.76× 10−11 3.46× 10−10 1.62× 10−10 1.96× 10−11 1.55× 10−11 5.63× 10−10

Table 10. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with VMD decomposition
and 1 step ahead.

Indicator V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

One-step ahead R2 0.992600 0.991702 0.989792 0.992217 0.992354 0.992422
MAE 0.007519 0.008144 0.009036 0.007870 0.007608 0.007766
MSE 0.000120 0.000136 0.000162 0.000128 0.000124 0.000123
RMSE 0.010962 0.011648 0.012724 0.011334 0.011136 0.011103

Overall Results oR2 0.992600 0.991702 0.989792 0.992217 0.992354 0.992422
oMAE 0.007519 0.008144 0.009036 0.007870 0.007608 0.007766
oMSE 0.000120 0.000136 0.000162 0.000128 0.000124 0.000123
oRMSE 0.010962 0.011648 0.012724 0.011334 0.011136 0.011103

Again, as in the previous experiment, the VMD-LSTM-SSA-DO on average showed
the best performance among all competitor algorithms. However, the NFL theorem has also
been validated in this experiment, and the VMD-LSTM-SSA-DO was outscored by other
approaches in some cases. It also should be noted that in all cases, VMD-LSTM-SSA-DO
proved to be more robust than its baseline method, VMD-LSTM-SSA.

From results tables with one-step ahead (Tables 9 and 10), can be observed that the
introduced VMD-LSTM-SSA-DO managed to obtain the best value for oMSE, outscoring
the second best approach, VMD-LSTM-SCA, by 4.00× 10−05. Moreover, the VMD-LSTM-
SSA-DO proved to be the most stable approach among all metaheuristics, obtaining the best
values also for worst, mean and median metrics. The VMD-LSTM-SCA outscored VMD-
LSTM-SSA-DO only in standard deviation and variance comparisons. Detailed metrics of
the best run, presented in Table 10 clearly indicate the superiority of VMD-LSTM-SSA-DO
over others.

Table 11. Objective function metrics over 6 runs for designed LSTM with VMD decomposition and
3 steps ahead.

Method V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

Best 1.18× 10−04 1.43× 10−04 1.29× 10−04 1.26× 10−04 1.30× 10−04 1.29× 10−04

Worst 1.18× 10−04 1.61× 10−04 1.35× 10−04 1.61× 10−04 1.30× 10−04 1.61× 10−04

Mean 1.18× 10−04 1.49× 10−04 1.31× 10−04 1.46× 10−04 1.30× 10−04 1.37× 10−04

Median 1.18× 10−04 1.46× 10−04 1.30× 10−04 1.48× 10−04 1.30× 10−04 1.29× 10−04

Std 0.00× 10+00 7.09× 10−06 2.29× 10−06 1.27× 10−05 0.00× 10+00 1.41× 10−05

Var 0.00× 10+00 5.02× 10−11 5.26× 10−12 1.63× 10−10 0.00× 10+00 2.00× 10−10
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Table 12. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with VMD decomposition
and 3 steps ahead.

Indicator V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

One-step ahead R2 0.992316 0.990960 0.991950 0.992286 0.991962 0.990795
MAE 0.007965 0.008323 0.007904 0.007755 0.008046 0.008582
MSE 0.000122 0.000143 0.000126 0.000124 0.000126 0.000141
RMSE 0.011052 0.011946 0.011230 0.011151 0.011224 0.011892

Two-step ahead R2 0.992632 0.990838 0.991967 0.992407 0.991823 0.992146
MAE 0.007640 0.008418 0.008066 0.007694 0.008478 0.007654
MSE 0.000118 0.000145 0.000126 0.000121 0.000126 0.000124
RMSE 0.010881 0.012042 0.011215 0.011012 0.011235 0.011125

Three-step ahead R2 0.993055 0.991025 0.991179 0.991624 0.991165 0.992224
MAE 0.007329 0.008316 0.008829 0.008335 0.008425 0.007727
MSE 0.000113 0.000143 0.000136 0.000132 0.000139 0.000121
RMSE 0.010610 0.011943 0.011657 0.011480 0.011780 0.010998

Overall Results oR2 0.992671 0.990941 0.991702 0.992110 0.991649 0.991728
oMAE 0.007645 0.008353 0.008266 0.007928 0.008316 0.007988
oMSE 0.000118 0.000143 0.000129 0.000126 0.000130 0.000129
oRMSE 0.010849 0.011977 0.011369 0.011216 0.011416 0.011345

Interestingly, in three-steps ahead simulation (Tables 11 and 12), like in the previous
experiment for the same number of steps ahead, VMD-LSTM-SSA-DO showed the best
stability along with the VMD-LSTM-SCA. Both methods in each run generated LSTM
structures with the same performance. However, the accuracy of LSTMs obtained by VMD-
LSTM-SSA-DO is substantially better than the ones generated by the VMD-LSTM-SCA.
Additionally, in this simulation, VMD-LSTM-SSA-DO solutions’ quality is much better
than all other metaheuristics.

Table 13. Objective function metrics over 6 runs for designed LSTM with VMD decomposition and
5 steps ahead.

Method V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

Best 1.23× 10−04 1.24× 10−04 1.35× 10−04 1.45× 10−04 1.30× 10−04 1.44× 10−04

Worst 1.53× 10−04 1.52× 10−04 1.53× 10−04 1.72× 10−04 1.32× 10−04 1.53× 10−04

Mean 1.31× 10−04 1.31× 10−04 1.44× 10−04 1.52× 10−04 1.31× 10−04 1.48× 10−04

Median 1.37× 10−04 1.24× 10−04 1.44× 10−04 1.47× 10−04 1.31× 10−04 1.48× 10−04

Std 1.20× 10−05 1.21× 10−05 9.12× 10−06 1.11× 10−05 1.07× 10−06 3.28× 10−06

Var 1.44× 10−10 1.46× 10−10 8.31× 10−11 1.23× 10−10 1.14× 10−12 1.08× 10−11

Table 14. The R2, MAE, MSE, and RMSE metrics of best-generated LSTM with VMD decomposition
and 5 steps ahead.

Indicator V-LSTM-SSA-DO V-LSTM-SSA V-LSTM-ABC V-LSTM-FA V-LSTM-SCA V-LSTM-TLB

One-step ahead R2 0.992395 0.992102 0.991933 0.991107 0.990937 0.990601
MAE 0.007887 0.008103 0.007852 0.008185 0.008494 0.008341
MSE 0.000120 0.000124 0.000126 0.000138 0.000139 0.000147
RMSE 0.010951 0.011136 0.011240 0.011767 0.011787 0.012106

Two-step ahead R2 0.991830 0.992238 0.991093 0.990885 0.990924 0.991174
MAE 0.007919 0.007780 0.008225 0.008211 0.008366 0.008093
MSE 0.000128 0.000122 0.000140 0.000146 0.000140 0.000139
RMSE 0.011310 0.011031 0.011825 0.012091 0.011824 0.011773

Three-step ahead R2 0.992849 0.991362 0.990792 0.991338 0.991388 0.990492
MAE 0.007451 0.008431 0.008517 0.007958 0.008170 0.008413
MSE 0.000112 0.000135 0.000142 0.000134 0.000133 0.000151
RMSE 0.010592 0.011631 0.011925 0.011574 0.011513 0.012296

Four-step ahead R2 0.991402 0.992149 0.992103 0.991214 0.992857 0.991043
MAE 0.008111 0.008038 0.007781 0.008107 0.007357 0.008219
MSE 0.000141 0.000122 0.000123 0.000135 0.000111 0.000140
RMSE 0.011866 0.011030 0.011080 0.011626 0.010529 0.011815

Five-step ahead R2 0.992801 0.992615 0.990827 0.988709 0.991850 0.990621
MAE 0.007478 0.007596 0.008513 0.009749 0.007999 0.008355
MSE 0.000113 0.000116 0.000142 0.000170 0.000125 0.000145
RMSE 0.010644 0.010757 0.011913 0.013025 0.011202 0.012033

Overall Results oR2 0.992250 0.992093 0.991352 0.990666 0.991594 0.990786
oMAE 0.007769 0.007989 0.008178 0.008442 0.008077 0.008284
oMSE 0.000123 0.000124 0.000135 0.000145 0.000130 0.000144
oRMSE 0.011082 0.011121 0.011602 0.012028 0.011381 0.012006

Finally, in five-steps ahead simulation (Tables 13 and 14), VMD-LSTM-SSA-DO
showed the best ability to find the best performing LSTM structures, outscoring the
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second-best approach, VMD-LSTM-SSA, as well as all other methods included in anal-
ysis. Additionally, the VMD-LSTM-SSA-DO obtained the best mean values along with
the VMD-LSTM-SSA and VMD-LSTM-SCA. It is interesting to notice that in this exper-
iment, the original SSA showed better accomplishments than other opponent methods
excluding SSA-DO.

Figures 9–11 show a visual representation of three conducted VMD-LSTM simulations,
where violin plots for objective and box plots for R2 indicator over 6 runs along with
convergence speed graphs for objective and R2 in the best run, are presented.
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Figure 9. Comparative analysis visualization for VMD-LSTM simulations with 1 step ahead.
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Figure 10. Comparative analysis visualization for VMD-LSTM simulations with 3 steps ahead.
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Figure 11. Comparative analysis visualization for VMD-LSTM simulations with 5 steps ahead.

Visual comparison between predicted and actual time-series values for VMD-LSTM-
SSA-DO and some of the chosen other methods for one-step, three-steps, and five-steps
ahead simulations is provided in Figure 12.

Figure 12. Actual vs. predicted results for VMD-LSTM-SSA-DO and some other methods in one-step,
three-steps, and five-steps ahead simulations.
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5.3. Comparison with Other Well-Known Methods

With the goal of wider comparative analysis, developed LSTM-SSA-DO and VMD-
LSTM-SSA-DO models are compared with some approaches presented in [6,41]. In addi-
tional experiments, extreme learning machine (ELM), kernel ELM (KELM), and simple
ANN with one hidden layer with and without VMD were also implemented and tested for
one, three and five-steps prediction under the same experimental conditions, described in
Section 4.

Supplementary models were not tuned by metaheuristics, instead, a simple manual
grid search was performed and the results of best performing models were reported. The
following hyper-parameters were investigated: for all three models the number of neurons
in the hidden layer within the boundaries [20, 200] with a step of 10, for ANN the number
of training epochs and dropout rate within the boundaries [100, 300] with step 20 and
[0.001, 0.01] with step 0.02, respectively, and for the KELM, the regularization parameter C
withing the range [10, 100] with step 10 and kernel bandwidth σ within the interval [0, 1]
with step 0.1. The ANN was validated against the validation data, and the epochs/3 was
set as an early stopping condition, the same as in the LSTM simulations.

Comparative analysis of obtained oMSE and oR2 indicators is provided in Table 15,
while the visual representation is depicted in Figure 13.

Table 15. Comparison with standard ML models.

Model oMSE 1-Step oMSE 3-Steps oMSE 5-Steps oR2 1-Step oR2 3-Steps oR2 5-Steps

LSTM-SSA-DO 0.000145 0.000150 0.000158 0.991122 0.990651 0.989940
VMD-LSTM-SSA-DO 0.000120 0.000118 0.000123 0.992600 0.992671 0.992250
ELM 0.000169 0.000177 0.000188 0.852324 0.837289 0.831542
VMD-ELM 0.000167 0.000177 0.000187 0.860093 0.839029 0.834923
KELM 0.000158 0.000164 0.000174 0.912452 0.904922 0.901284
VMD-KELM 0.000157 0.000163 0.000172 0.915682 0.914056 0.909552
ANN 0.000193 0.000200 0.000222 0.743005 0.741749 0.705784
VMD-ANN 0.000193 0.000200 0.000216 0.746482 0.742851 0.725320

Figure 13. Visual comparison of oMSE and oR2 - proposed vs. other models.

From additional experimental findings can be observed that VMD-LSTM-SSA-DO
significantly outperforms all other considered models for all steps and both indicators,
while the second best model is LSTM-SSA-DO. It is also worthwhile mentioning that the
simple ANN did not perform well in this challenge. By taking into account that previous
studies showed that the KELM and ELM models show good performance in time-series
forecasting [41,44], it can be stated that the LSTM proved as a more promising method,
despite the fact that in this experimentation KELM and ELM models were tuned manually.

5.4. Validation (Statistical Tests)

The proposed SSA-DO metaheuristics were validated against 6 problem instances
(LSTM and VMD-LSTM with one, three, and six steps ahead) and compared with 5 other
metaheuristics approaches, including the original SSA, and on average established the
best performance. Additionally, due to the stochastic nature of the methods at hand,
each simulation is executed in 6 independent runs. However, the latest computer science
literature suggests that the comparisons in terms of obtained empirical results are not
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enough and that it should be determined whether or not produced improvements of one
method versus other methods are statistically significant. Therefore, further results analysis
by conducting statistical tests is suggested [45].

Comparisons between 6 methods against 6 problem instances fall into the area of
multi-problem multiple-methods analysis [46]. One recommendation when applying such
comparisons is to take an average objective function value for each problem as the base
for comparison, however, this approach has drawbacks if results generated from different
runs for the same problem do not originate from a normal distribution [45–47]. Therefore,
in this research, to compare proposed SSA-DO against opponents, the objective function
(oMSE) from the best run for each problem is taken as a comparison metric.

After the decision of metric that will be used for comparison is rendered, the re-
quirements for safe use of parametric tests are checked and they include independence,
homoscedasticity of data variances and normality [48]. The condition of independence is
fully satisfied because every run starts from its own pseudo-random number seed. Levene’s
test [49] is used to check homoscedasticity and generated p-value of 0.52 is higher than the
threshold of α = 0.05, therefore this condition was also satisfied.

Finally, normality is checked for each method separately by taking the best objective
for each problem instance and every method and by performing the Shapiro-Wilk test for
multi-problem multiple-methods analysis [50]. From the Shapiro-Wilk test results, which
are presented in Table 16, it can be seen that the obtained p-values in all cases are smaller
than the threshold at a significance level of 0.05, therefore the hypothesis that the data
comes from the normal distribution is rejected, yielding a conclusion that the normality
condition for safe usage of parametric tests is not fulfilled and consequently it proceeded
with non-parametric tests.

Table 16. Shapiro-Wilk test for multi-problem analysis.

SSA-DO SSA ABC FA SCA TLB

0.012689 0.016215 0.032532 0.029305 0.041762 0.013568

Therefore, the Friedman aligned test [51,52] along with the two-way variance analysis
by ranks in conjunction with accompanied Holm post-hoc procedure is conducted, which
was recommended as good practice for multi-problem multiple-methods comparison
scenarios in [45]. Friedman-aligned test results are summarized in Table 17.

Table 17. Friedman aligned test findings.

Functions SSA-DO SSA ABC FA SCA TLB

LSTM 1 step 5 35 30 10 25 9
LSTM 3 steps 11 15 27 26 16 28
LSTM 5 steps 21 4 18 22 17 31
VMD-LSTM 1 step 1 29 36 12 8 7
VMD-LSTM 3 steps 2 34 20 14 23 19
VMD-LSTM 5 steps 3 6 24 33 13 32
Average Ranking 7.17 20.5 25.83 19.5 17 21
Rank 1 4 6 3 2 5

From the Friedman-aligned test results can be seen that the introduced SSA-DO meta-
heuristics achieved an average rank of 7.17, outperforming all other methods. According to
the same test, the second best method is SCA with an average rank of 17, followed by the
FA for which an average rank of 19.5 was determined. Moreover, the Friedman statistics
χ2

r is 11.52 and it is greater than the χ2 = 11.07 with 5 degrees of freedom critical value at
α = 0.05 and the calculated Friedman p− vlaue is 3.51× 10−05 . From all these statistical
indicators can be inferred that a significant difference from the statistical point of view
exists between the proposed SSA-DO and other methods and that the H0, which claims that
there is no important difference in performance between methods, can be safely rejected.
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Following guidelines from [53], the Iman and Davenport’s test [54] was also exe-
cuted, because it may render more reliable results than the χ2. The result from this test is
3.05× 10+00 and as such is larger than the F-distribution critical value (2.60× 10+00). Also,
the Iman and Devenport p− value is 3.55× 10−2, which is smaller than α = 0.05. Therefore,
it was concluded that Iman and Davenport’s analysis also rejects a null hypothesis.

Finally, after proving that both above-described tests reject the H0, the non-parametric
post-hoc Holm’s step-down procedure with significant values α set to 0.05 and 0.1, was
applied and its findings are shown in Table 18. These results as well undoubtedly indicate
that the SSA-DO outscored all other metaheuristics at both critical levels.

Table 18. The Holm’s step-down procedure findings.

Comparison p-Values Ranking α = 0.05 α = 0.1 H1 H2

SSA-DO vs. ABC 0.002739 0 0.01 0.02 TRUE TRUE
SSA-DO vs. FA 0.010319 1 0.0125 0.025 TRUE TRUE

SSA-DO vs. TLB 0.010319 2 0.0167 0.0333 TRUE TRUE
SSA-DO vs. SSA 0.022431 3 0.025 0.05 1TRUE TRUE
SSA-DO vs. SCA 0.044816 4 0.05 0.1 TRUE TRUE

Despite the generally good performance of the proposed approach for predicting
crude oil it is important to note that energy policy has policies that have an impact on price.
Policymakers need to account for changes in crude oil trade prices and introduce adequate
measures to mitigate the effects on economic stability and sustainability. Additionally,
countries should strive to develop more robust economic systems less reliant on fossil
fuels as a primary source of energy to ensure a sustainable economic system and reduce
environmental impact.

6. Conclusions

The research proposed in this manuscript tackles crude oil price forecasting, which
is one of the most important topics in the year 2022 due to the armed conflicts, the influ-
ence of the COVID-19 pandemic, and other global factors that have a widespread effect.
Notwithstanding that many approaches for time-series forecasting exist in the modern
literature, the fact that there is always more space for improvements of devised models’
prediction accuracy, motivated this study.

In this research, a salp swarm algorithm with a disputation operator (SSA-DO) was
employed for tuning the long-short term memory (LSTM) hyper-parameters for time-series
prediction. Additionally, to account for a complex and volatile crude oil price time-series,
the variational mode decomposition (VMD) for decomposing a complex signal into multiple
sub-signals was also applied and used as the input for the LSTM model.

The proposed method was validated by conducting two types of experiments. In the
first simulation, the original time-series was used as input, while in the second experiment
five sub-signals generated by VMD are used for LSTM prediction. Moreover, both simu-
lations are performed by forecasting one, three, and five steps ahead. Some of the most
widely used regression metrics R2, MAE, MSE, and RMSE, are captured to validate the
performance of developed models.

Proposed models, LSTM-SSA-DO and VMD-LSTM-SSA-DO, were compared with
LSTM structures generated by other well-known metaheuristics and with other machine
learning models that proved efficient when dealing with time-series forecasting. For
comparison purposes, the West Texas Intermediate (WTI) dataset was used. Based on
experimental findings, the VMD-LSTM-SSA-DO showed on average the best performance,
outscoring all other opponents, and the performance improvements over other methods
were also validated by conducted rigid statistical tests. The VMD-LSTM-SSA-DO archived
a MSE of 0.000120, 0.000118, 0.000123 for one, three and five steps-ahead respectively.
Likewise an R2 score of 0.992600, 0.992671, and 0.992250 for one, three, and five-steps ahead

Grounded on the previous conclusions this research also has policy implications. Poli-
cymakers should monitor the movements of oil prices and determine adequate economic
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policy to reduce the impact on the economy that can be caused by fluctuations in crude oil
prices. Both monetary and fiscal policy could be timely adjusted to mitigate the effect of
oil price rises on inflation and the pass-through effect on prices and interest rates. Having
in mind a particularly important fast reaction of the monetary authorities to prevent a
secondary impact of oil price shocks the presented forecasting model can have a significant
contribution. Furthermore, to reduce the risk of greater economic instabilities caused by
shocks and uncertain events governments should adjust development strategies and create
the economic policy with mechanisms that will ensure a higher level of resilience. Also, pol-
icymakers can intensify their efforts to reduce the dependency on oil energy in furtherance
of sustainable economic development and a higher level of environmental protection.

Finally, as with any other study, this research has some limitations, e.g., other signal
decomposition algorithms can also be applied, more crude oil price datasets and more
state-of-the-art metaheuristics can be used for validation purposes, stacked LSTM models
and LSTM in combination with convolutional neural network (CNN) layers can be applied,
etc. However, applying all this would be way too much for one study and all mentioned
domains will be probable paths in future research from this challenging area.
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