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ABSTRACT The increase of network size and sensory data leads to many serious problems to the wireless

sensor networks due to the limited energy. Data prediction method is helpful to reduce network traffic

and increase the network lifetime accordingly, especially by exploring data correlation among the sensory

data. Data prediction can also be used to recover abnormal/lost data in case these sensor nodes fail to

work. The current prediction methods in wireless sensor networks do not make full usage of the spatial-

temporal correlation between wireless sensor nodes, and thus leads to higher prediction error relatively. This

paper proposes a novel model for multi-step sensory data prediction in wireless sensor network. Firstly,

we introduce the artificial neural networks based on 1-D CNN (One-Dimensional Convolutional Neural

Network) andBi-LSTM (Bidirectional Long and Short-TermMemory) to get the abstract features of different

attributes via the pre-processed sensory data. Then, these abstract features are used to obtain one-step

prediction. Finally, the multi-step prediction is introduced by using historical data and the prediction results

of the previous step iteratively. Experiment results show that after selecting suitable node combinations in

which the spatial-temporal correlation is highlighted, the proposed multi-step predictive model can predict

multi-step (short and medium term) sensory data, and its performance is better compared with other related

methods.

INDEX TERMS Neural networks, predictive models, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks are widely used to collect envi-

ronmental data due to its low energy consumption, low cost

and large-scale deployment [1]–[3]. With the increase of

sensor nodes in wireless sensor networks, many problems

are revealed including increased energy consumption, high

network transmission delay, bad transmission quality due to

data transmission congestion, data transmission is blocked

due to partial node failure, etc. The cheap requirement of

sensor nodes also results in node/link failure, and thus data

lost/abnormal is a common phenomenon in the wireless

sensor networks. Data predictive is helpful to solve these

problems in wireless sensor networks. Some methods use

The associate editor coordinating the review of this article and approving
it for publication was Zhongming Zheng.

prediction to reduce data transmission, while some methods

use it to correct or recover abnormal data [4]–[8]. The former

tries to optimize the data collection process, and the latter

focuses on mining relevant information in the collected data

to improve data quality. First, in wireless sensor networks,

redundant data transmission can be avoided by prediction,

which makes wireless sensor networks improve in energy

efficiency and data transmission quality [9]–[12]. Second,

predicting the state of equipment or area that monitored by

wireless sensor networks can increase the lifetime of the

equipment or avoid unnecessary accidents [13]–[17]. Even-

tually, multi-step data prediction is very important to the

wireless sensor network due to its ability to predict multi-step

(short and medium term) sensory data.

In this paper, various factors are considered for data predic-

tion based on sensory data correlation. These factors can be
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described as following: 1) Quality of sensory data: the outliers

in sensory data that affect the data quality, some of these

outliers are not in the range of normal data, the others are very

abnormal compared with their neighborhoods. 2) Correlation

between sensory data: Wireless sensor networks often collect

redundant sensory data, and each sensory data has a different

trend in time and space dimensions. 3) Correlation utilization:

After analyzing the correlation between the sensory data, this

paper uses the higher correlation to implementmulti-step data

prediction, but it is necessary to select a model that can learn

and utilize the sensory data correlation well.

Some correlations between sensory data are shown in the

periodic change of the sensory data gathered by single sen-

sor node, while others are shown in the trend of different

sensor nodes. Classical data analysis methods have limited

ability to extract such abstract features especially for the data

prediction problem. It is difficult for classical methods to

extract effective features from original data. However, with

the development of deep learning, it is possible to automat-

ically extract relevant features for prediction, which greatly

reduces the difficulty of extracting data correlation features

for prediction.

Deep learning has developed rapidly in recent years. CNN

(Convolutional Neural Networks) and RNN (Recurrent Neu-

ral Networks) have been widely used in image recognition,

natural language processing, climate and traffic flow pre-

diction [18]–[21]. CNN is a feedforward neural network

containing convolution calculations, which is suitable for

processing various types of data with translation invariance,

such as audio data or image data. RNN is a time recurrent

neural network whose internal state can show the dynamic

behavior of data in the time dimension and it is suitable for

processing time series data. The LSTM (Long and Short-

Term Memory) is an RNN with a structure called cell, and

the network relies on three gates in cell to choose useful infor-

mation and discard unwanted information. The cell structure

makes the network more accurate than RNN in processing

and predicting medium and long-term dependencies in time

series. The neural network model based on CNN and LSTM

can be used to extract the correlation in data, which is suitable

for the prediction problem of sensing data in wireless sensor

networks.

After considering the above three factors, this paper builds

a multi-step predictive model based on 1-D CNN and LSTM.

This model uses CNN to extract translation invariance within

data and uses LSTM to deal with medium-term dependence.

Thus, the accuracy of short and medium-term predictions are

improved.

The remainder of this paper is as follows: Section 2

introduces related works. Section 3 introduces the problem

formulation and basic idea behind this paper. Section 4 dis-

cusses the data correlation formulation between sensory data.

Section 5 introduces the structure of the predictive model

proposed in this paper. Section 6 shows the experimental

results in this paper. Finally, Section 7 shows the conclusions.

II. RELATED WORK

There are many researches on various prediction problems on

wireless sensor networks [13]–[21]. Themain problems in the

related work can be divided into two different types. One is

to improve energy consumption, data transmission, or fault

detection in the sensor network through prediction, while

another is to predict the state of device or environment mon-

itored by wireless sensor network, including predicting the

battery health, energy harvested, or the status of industrial

devices. For the first type mentioned above, most of the

existing solutions use non-deep learning methods because

devices in wireless sensor networks lack sufficient computing

resources to support the computation of artificial neural net-

works. For the second type, there are both non-deep learning

methods and deep learning methods to extract data features

for prediction. This paper investigates these two types of

prediction problems and the according solutions.

Pramod Ganjewar proposed a hierarchical minimum mean

square prediction algorithm for reducing data transmission in

wireless sensor networks [9]. In this paper, a predictive model

based on hierarchical fractional least mean squares (HFLMS)

was proposed, which attempts to predict the sensory data

by error estimation and only sends the required data to the

receiving node by using the proposed adaptive filter to reduce

the energy consumption in the wireless sensor networks.

R AAvinash proposed a data prediction method in wireless

sensor networks using Kalman filter [10]. This method used

predicted data replace the loss data, which makes the sensory

data in the wireless sensor network available. The paper pre-

dicted the temperature data and find that the temperature data

is well predicted and the error range is within an acceptable

range. The author concluded that this predictive model can

be used not only to predict future data, but also to smooth

existing data.

Hamed Nazaktabar used reinforcement learning tech-

niques to establish a dual prediction scheme for reducing the

energy consumption of wireless sensor networks [11]. This

method learned environmental signals and builds predictive

models based on their experience. When the model fails,

it only needed to learn and transmit the environmental data at

the time of failure. The model uses error bounds to discretize

the environmental data, and then used the instantaneous state

of the environmental data signal to train the predictive model.

It is proved by experiments that the proposed method could

significantly reduce the energy consumption of wireless sen-

sor networks through the dual prediction scheme based on

enhanced learning.

Adrien Russo proposed a time series predictive model

based on self-organizing mapping algorithm in wireless sen-

sor networks [12]. This model can be used for anomaly

monitoring or to maintain the integrity of the system. When

a node stops working, its value can be replaced by the value

obtained by the predictive model. The self-organizing map-

ping algorithm is an unsupervised deep learning method that

maps high-dimensional spaces into two-dimensional spaces
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and then forms a grid connected by several adjacent neurons.

This neural grid updates the weights by learning algorithms

and experiments show that it can make stable prediction

results.

Tomoki Kawamura proposed a method for predicting the

power consumption of sensor node in a wireless sensor net-

work for train condition monitoring [13]. The paper intro-

duces some problems in this train monitored networks like

the frequent changes in the train compartment configura-

tion and the environmental changes that often occur dur-

ing train travel. These problems often lead to changes in

the network configuration and communication environment

between wireless sensor, making it difficult to predict their

power consumption. To solve the above problems, the paper

proposes a Monte Carlo method to predict the power con-

sumption in such wireless sensor networks, and proves the

superiority of this method through a series of experiments.

Rafael Lajara proposed a method for predicting battery

health in wireless sensor networks [14]. The related parame-

ters like The number of charge and discharge cycles, internal

resistance of the node, voltage, output current, and temper-

ature are considered to build an analytical model to predict

the battery health. In this paper, the variation trajectory of the

above parameters is collected as a training set during a large

number of discharge cycles, and a battery health predictive

model based on multi-layer perceptron is constructed.

Yinggao Yue proposed a fault predictive model for strip

wireless sensor networks [15]. Based on the theory of kernel

function, this paper proposes a fault prediction method, and

chooses the radial basis function as its kernel function to

predict the fault from two aspects: node hardware fault and

network fault. Experiments show that the prediction accuracy

in this model is higher than GRNN and PNN.

Alves Maicon Melo uses a wireless sensor network to

predict wind turbine damage [16]. The method is based on

a time series predictive model, using ARIMA and fuzzy

systems to consider the effect of temperature on wind turbine

damage prediction. In this paper, the influence of ambient

temperature on the blade is considered and the accuracy of the

prediction is improved. It is proved by experiments that when

the system considers the influence of temperature on the

blade, the prediction performance and energy consumption

performance of the model are excellent.

Alessandro Cammarano proposed a method for energy

harvesting prediction in environmentally powered wireless

sensor networks [17]. This approach uses past energy obser-

vations to predict future energy availability, enabling envi-

ronmentally powered wireless sensor networks to adjust their

energy management strategies as needed. In the article, the

author focuses on solar energy and wind energy, using con-

nected photovoltaic panels, micro wind turbines, and public

solar energy curves to get real energy harvesting curves and

use them to validate the model presented in this paper. The

experiment shows that the proposed method has high predic-

tion accuracy.

III. PROBLEM FORMULATION

The data in the wireless sensor network is collected by sensor

nodes. The set of sensor nodes can be defined as V =

(Vn|n = 1, 2, 3, . . . ,N ), where N is the number of sensor

nodes. Assuming in the wireless sensor network, node Vn
collects M kinds of sensing data. The set of sensory data of

the given mth kind collected by node Vn is defined as Dn,m.

The value of thesemth kind of sensory data collected by node

Vn at the timestamp t is defined as dn,m(t), where 0 < n ≤ N ,

0 < m ≤ M , t > 0.

Sometimes, the sensory data of Vn before T timestamp is

known, and the sensory data of Vn after the T timestamp is

unknown. In this case, the unknown data is defined as D′
n =

{dn,m(t)|T < t , 0 < m ≤ M}. Especially, in case the data

of node Vn after timestamp T is unknown, let V∗ be the set

of sensor nodes which still have available data, and the data

collected by V∗ is D∗ = {Dn,m|Vn ∈ V∗, 0 < m ≤ M}.

Given Vn, the collected data before timestamp T is known

as (Vn–V
′
n). The data prediction problem is to predict the

unknown data of Vn after timestamp T , i.e., D′
n,m, by using

(Dn–D
′
n) and the data set D∗. Note that the set D′

n,m contains

different kinds of sensory data collected by node Vn after the

timestamp T .

In this paper, we introduce a neural network based

predictive model to iteratively predict dn,m(T ), dn,m(T +

1), dn,m(T + 2), . . . , dn,m(T + E), in which E is the times

of iterative predictions. NNet(·) represents a well-trained

predictive model, and H the number of timestamps used in

the predictive model. Let S(·) represent the selected nodes

from V∗ whose correlation with Di,j is not only above a

certain threshold but also closest to node Vi. The process of

predicting dn,m(T ) can be formulated as:

dn,m(T ) = NNet(dn,m(T − 1), dn,m(T − 2), dn,m(T − 3),

. . . , dn,m(T − H ), S(V ∗)).

In this paper, the proposed model NNet(·) predicts the

sensory data dn,m(T ) by utilizing the sets from dn,m(T–1) to

dn,m(T–H ) as well as the subset of V ∗. After getting dn,m(T ),

we can iteratively use the predictive model to get dn,m(T+1),

dn,m(T + 2) and so on, and finally we get dn,m(T + E).

In order to comprehensively evaluate the prediction results,

several evaluation indicators are used in this paper, including

RootMean Square Error (RMSE),MeanAbsolute Percentage

Error (MAPE), Mean Absolute Error (MAE), and R-square.

Details of these parameters can be found in Section 6.2.

In order to get accurate prediction results, data correlation

between neighbor sensors and target sensor is helpful to

improve the multi-step prediction process. A series of meth-

ods including quartile method, wavelet denoising, correlation

analysis, CNN and LSTM are used to improve the quality

of sensory data and extract related features for multi-step

prediction. The methods used in this paper can be divided

into four processes: data preprocessing, correlation analysis,

neural network construction and training, and iterative pre-

diction. Details of these four steps are described as follows.
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Data Preprocessing: Most of the noise in the sensory data

is originated from different factors such as tough environ-

ment, bad sensors, and the network congestion, etc. These

factors may result in abnormal sensory data.

Quartile method and wavelet denoising can be used to

improve the quality of sensory data. The quartile method

removes the abnormal data that deviates from the dataset,

in this way the final data does not have elements that deviates

from the data distribution. To further improve the data quality,

wavelet denoising is used to reduce the noise that quartile

method cannot recognize in the sensory data. This abnormal

data is in the normal distribution, but it might have different

trends compared with their neighborhood.

Correlation analysis: Taking Intel indoor dataset [22] as

an example, this paper quantifies the correlation between

54 sensor nodes in wireless sensor network, including the

correlation between different kinds of sensory data in a single

node and the same kind of sensory data between nodes.

We first adopt the Spearman correlation coefficient to quan-

tify the correlation, then build the predictivemodel by sensory

data with the highest correlation coefficient. In order to verify

that the correlation coefficient of the sensory data has an

impact on the prediction accuracy, multiple sensory data with

different correlation coefficients are introduced to predict the

sensory data of the same node.

Neural Network Construction and Training: To process

time series data, we propose to use the LSTM and CNN

to extract features of sensory data, and all these features

are merged into merge layer of the neural network. After

the structure of the neural network is determined, the MSE

is chosen as the loss function, and we select Adam as the

optimizer in the model.

Iterative prediction: Once the model training process is

finished, the iterative prediction is performed. After getting a

new prediction result from the historical data, the historical

data and the new prediction result are both used to carry out

the next step of data prediction, iteratively. In order to make

multi-step prediction stable in short and medium term, two

sensor nodes which have the strongest relationship with the

target node is chosen in the prediction process.

IV. CORRELATION BETWEEN SENSORY DATA

A. BETWEEN DIFFERENT KINDS OF SENSORY

DATA IN A SINGLE NODE

The Intel Indoor Dataset [22] used in this paper contains

4 kinds of data that are collected by 54 sensors, i.e., temper-

ature, humidity, light, and voltage. These data have different

correlations with each other, and data with strong correlation

can be used to improve the prediction accuracy. In order

to quantify the correlation between sensory data, this paper

picks up node 4 as an example to calculate the correlation

between sensory data. Spearman correlation coefficient is

used to perform the calculation process, the Spearman cor-

relation coefficient is calculated as following:

ρ = 1 −

∑
6d2i

n(n2 − 1)
(1)

In which, di is the i
th element in the ranking difference set,

that is, the difference between the two variables’ rank from

the correlative two datasets. And n is the number of variables

from the correlative two datasets.

The correlation between the sensory data is calculated by

(1), including the correlation coefficient between the sensory

data such as temperature, humidity, light, and voltage. The

Spearman correlation coefficient between each sensory data

is shown in Table 1.

TABLE 1. Correlation coefficient of sensory data.

As we can see, Table 1 is symmetrical because the cor-

relation calculations are commutative. It is also seen that

correlation is different between different sensory data. For

example, the correlation coefficient between temperature and

humidity is -0.4050, while the correlation coefficient between

temperature and illumination is 0.3516. If the correlation

coefficient is smaller than zero, it means there is a negative

correlation between these two groups of variables. For multi-

step prediction, strong correlation is beneficial to strengthen

the learning process of neural network based models, which

can make the prediction more accurate. However, the correla-

tion between various types of sensory data in a single sensor is

low, and its ability to assist prediction is weak. Therefore, it is

necessary to add other data with stronger correlation when

building the data predictive models.

B. BETWEEN THE SAME KINDS OF SENSORY

DATA AMONG MULTIPLE NODES

The Intel indoor dataset used in this paper contains a variety

of sensory data collected by 54 sensor nodes. These sensor

nodes are deployed in various corners of the room, and there

are obstacles between some nodes. In order to quantify the

correlation between different nodes, this paper calculates

the Spearman correlation coefficient between node 4 and

other sensor nodes, including temperature, humidity, and

light.

The structure of the Intel lab is shown in Fig. 1, in which

furniture in the lab, i.e., chairs and tables, is drawn as circles

and rectangles. The sensor node is marked by a black hexagon

in which the node number is shown. There are two decimals

nearby the sensor node, and the above one is the correlation

coefficient with node 4 calculated by the denoised temper-

ature data, and the one below is the correlation coefficient

calculated by the sensory data without Wavelet denoising

method. It can be seen from Fig. 1 that the correlation

between nodes’ temperature data has a relationship with the
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FIGURE 1. Correlation in temperature between node 4 and other nodes.

distance between nodes. But, by observing the correlation

between node 4 and 42, 41, this kind of relationship is not

so obvious in this dataset. There may be several reasons for

this kind of phenomena.

1) Data noise in some nodes, whichmay affect the accuracy

of correlation coefficient. For example, the correlation coef-

ficients between nodes 45, 43 calculated from original data in

the above figure are 0.7869 and 0.6223, while the correlation

coefficients calculated from denoised data are 0.8437 and

0.8418. It can be seen that the denoising method makes the

correlation coefficients between these nodes at the same level.

Because data denoising can only remove part of the noise,

there is still a lot of noise in the denoised data, which will

have effect on the correlation coefficient.

2) Possible air conditioning system such as a central air

conditioner in the indoor environment. Air conditioning sys-

tems are often deployed in indoor environments. These air

conditioners can significantly adjust the temperature and

humidity in the room, this may lead to a weak correlation

between nodes close with each other, or a strong correlation

between nodes that far from each other.

3) The indoor environment is divided into several rooms,

and the different usage of the room may cause a large dif-

ference in correlation between nodes that deployed in dif-

ferent rooms. The correlation coefficients between node 8,

53 and 4 in the above figure are very different, which are

0.9380 and 0.8216 respectively.

These above reasons may cause the correlation coefficient

to be higher compared with that with far distance. But in

general, the correlation coefficient is gradually reduced as

the distance increases. Therefore, when selecting nodes to

improve data predicting, we should choose those nodes in the

same room and close with the target.

Fig. 2 shows the Spearman correlation coefficient between

node 4 and other nodes in light data. Similar to Fig. 1,

there are two decimals next to the sensor node in Fig. 2,

which shows the correlation between the current node and

node 4 via light data. It is known from the figure that the

correlation between light data is not directly related to the

distance, and the nodes in the edge of the building have a

higher correlation with node 4, such as node 42, 38, 54, 16,

24 and so on. The correlation coefficient of node 2 is 0.8923,

but the correlation of node 35 is 0.9250, higher than node 2,

which have a longer distance with node 4. In Fig. 2, node 2 is

deployed around some obstacles, so the collected light data

may be affected by obstacles. This scenario might be helpful

to explain why the correlation coefficient with node 4 is

lower. Light data is highly susceptible to indoor or outdoor

lighting and obscuration, which leads to lower correlation

compared to temperature data. In this way, we can see that

the light data of neighborhood nodes is not suitable for

prediction.

Fig. 3 shows the Spearman correlation coefficient between

node 4 node and other nodes in humidity data, which is sim-

ilar to Fig. 1 and 2. It decreases with the distance increasing,

but the decreasing speed of humidity is different in different

directions. For example, the speed is slow in the upper right

direction, but it is very fast in the lower right and upper
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FIGURE 2. Correlation in light between node 4 and other nodes.

FIGURE 3. Correlation in humidity between node 4 and other nodes.

left direction. In general, as we can see from Fig. 3, humidity

data and temperature data have a strong correlation and they

are suitable for multi-step predictive models based on spatial

correlation.

V. DATA PREDICTION MODEL

A. 1-D CONVOLUTIONAL NETWORK

With the help of data preprocessing, the quality of the sen-

sory data can be greatly improved. In order to extract data
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features quickly and accurately for data prediction, in this

paper, we introduce to use the one-dimensional convolutional

layer and the one-dimensional pooling layer as the first two

hidden layers of the neural network model. The convolutional

neural network mainly includes three characteristics, local

perception, spatial arrangement, parameter sharing. Details

of these three characteristics can be seen as below.

FIGURE 4. Example for the process of 1-D convolution.

Local perception: The convolutional layer is different from

the fully connected layer, since its hidden unit only connects

with part of the input layer. Fig. 4 shows an example for the

process of 1-D convolution, in which c1 to c4 are feature maps

and x1 to x6 are inputs. The single hidden unit of the one-

dimensional convolution is only connected to three inputs of

the input layer. This kind of connection greatly reduces the

number of parameters and accelerates the training process of

the neural network. The size of the input area that connected

to the hidden unit is called receptive field.

In the above figure, c1 to c4 are calculated by convolution,

where c1 is calculated by convolution with x1, x2, and x3, and

the connections between c1 and x1, x2, x3 all have different

weights. When calculating c2, these three weights are corre-

sponding to x2, x3, and x4, respectively. The connections with

the same line style have the same weight.

Spatial Arrangement: The parameter of convolutional

layer consists of three variables, including size of convolution

kernel, stride, and padding. They determine the size of output

feature map. The size of convolution kernel is the number

of variables used for convolution calculation. In Fig. 4, c1
is calculated by convolution by x1, x2 and x3, so the size of

convolution kernel in the above one-dimensional convolution

is 3. The stride is the distance that the convolution kernel

needs to move when the convolution calculation goes on. c1 is

calculated by x1, x2 and x3. When the convolution kernel

moves by one step, c2 is to be calculated by x2, x3, and x4.

The padding is used to offset the reduction of feature map size

caused by the convolution calculation. As is shown in Fig. 4,

there are 6 variables in the input layer, so the size of calculated

feature map is 4. If an input is added to each side of the input

layer, the feature map size will be 6. The size of the output

feature map is calculated by (2):

wout =
win + 2 ∗ padding− F

stride
+ 1 (2)

In which, wout is the size of input feature map, win is the size

of input feature map, padding is the number of elements filled

at the both ends of the input, F is the size of convolution

kernel, and stride is the stride mentioned above. According

to (2), the size of output feature map is 4.

Parameter sharing: Parameter sharing can greatly reduce

the number of parameters. In the same filter, the calculation

of all feature maps shares the same set of weights, n filters

have n sets of weights. Parameter sharing and sparse connec-

tions greatly reduce the number of free variables, enabling

convolutional neural networks to extract features with fewer

computational resources.

The feature map calculated by the 1-D convolution layer

is down-sampled in the 1-D pooling layer. The pooling layer

selects and filters the feature map output from the convolution

layer. The widely used pooling methods are Max Pooling

and Mean Pooling, and the parameters of pooling methods

are the pool size, the stride and the padding. The pool size

is the number of data used for the pooling calculation, and

the stride and the padding in pooling layer are the same

as convolutional layers. Fig. 5 shows an example for the

process of 1-D pooling. In this example, the feature map is

composed of 6 elements including c1 to c4 and two pd, and

the elements of 1-D pooling p1, p2, and p3 are calculated by

these 6 elements.

In the above figure, c1, c2, c3 and c4 are the feature maps

calculated by the upper layer, pd is the elements of padding,

p1, p2, and p3 are the outputs of pooling layer, wherein the

stride is 2 and the pooling size is 2.

FIGURE 5. Example for the process of 1-D pooling.

In Fig. 5, p1 is calculated from pooling pd and c1. Max

Pooling or Mean Pooling can be used as the pooling method.

The Max Pooling method is to select the biggest one from pd

and c1 as the value of p1. The Mean Pooling method takes

the average of pd and c1 as the value of p1, and the values

of p2 and p3 is calculated the same way. Through these two

kinds of pooling method, the pooling layer gets its output p1,

p2, an p3.

After passing through the 1-D convolutional layer and the

1-D pooling layer, features are input into the bidirectional

LSTM neural network for further extraction.

B. BIDIRECTIONAL LSTM

LSTMhas great advantages in processing and predicting time

series data. It is a special form of RNN. Both LSTM and

RNN have a network module with chain structure. In RNN,

themodule consists of a single neuron structure, but in LSTM,

this module consists of cells with three gates. The cell relies

on three gates for feature selection, including the input gate,

output gate, and forget gate. The loop body of LSTM is shown
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FIGURE 6. Structure of cell.

in Fig. 6. These symbols in the figure are to be introduced in

the following (3)-(8).

Fig. 6 shows the structure of the cell, which mainly

includes the input gate, the output gate and the forget gate.

The calculation methods for these three types of gates are

illustrated by the following:

i(t) = σ (Wix(t) + Uih(t − 1) + bi) (3)

Equation (3) describes the calculation process of the input

gate in the cell, where h(t − 1) is the output of the previous

cell, x(t) is the current cell input, σ is the sigmoid function,

and Wi and Ui are the weights of the input gate.

f (t) = σ (Wf x(t) + Uf h(t − 1) + bf ) (4)

Equation (4) describes the calculation process of forget

gate in the cell. This gate determines which information in

the cell needs to be discarded, andWf and Uf in the equation

are forgot gate weights.

C̃(t) = tanh(Wcx(t) + Uch(t − 1) + bc) (5)

C(t) = f (t) ∗ C(t − 1) + i(t) ∗ C̃(t) (6)

Equation (5) and (6) describe the update processes, where

(5) is the candidate memory unit which generates alternative

update information, and (6) is the process of updating the state

of the cell. The information from forgot gate is combined

with the update information to calculate a new state, where

Wc and Uc are the weights of the alternative new state, and ∗

is the Hadamard product.

o(t) = σ (Wox(t) + Uoh(t − 1) + bo) (7)

h(t) = o(t) ∗ tanh(C(t)) (8)

Equation (7) and (8) describe the calculation process of

output gate. First, the sigmoid layer is used to get the state of

the cell to be output, then the updated cell state is processed

by tanh function, and updated cell state is multiplied by o(t)

to get h(t). Uo is the output gate weight.

The cell mentioned above is the core of LSTM neural net-

work. Based on this structure, a bidirectional LSTM network

is created to extract features of sensory data.

FIGURE 7. Example for the structure of bidirectional LSTM.

Fig. 7 shows an example for the bidirectional LSTM. The

input data xt−1, xt , xt+1 is processed by both the forward and

backward layer and finally the hidden state ht−1, ht , ht+1 and

h′
t−1, h

′
t , h

′
t+1 are obtained respectively. Then these hidden

states are fused to obtain the output, i.e., ht , h
′
t are fused to

get yt in the output layer. The case is similar to yt+1 and yt−1.

The bidirectional LSTM can extract more context infor-

mation than normal LSTM. The forward and backward time

series are used to get the information of the current times-

tamp in the past and the future, so that the network can

make better time series prediction [23]. There is no direct

connection between the backward and forward layer, which

ensures that the structure is acyclic. In case the input layer

data xt , the results of the forward and backward layers are
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combined at the output layer to make output yt . After each

sensory feature is processed by the bidirectional LSTM and

passes through the fully connected layer, all sensory features

are merged through merge layer.

C. PROPOSED NEURAL NETWORK FOR PREDICTION

The same type of sensory data from several sensor nodes is

used for multi-step prediction in the proposed model. In order

to extract the abstract features of sensory data from multi-

node, parallel multiple networks are used to learn the fea-

tures of each input data. The proposed model uses sensory

data from three nodes for multi-step prediction. Regarding

node 4 as an example, the temperature data of node 4 and

its two neighbors are used for prediction. The selection of

neighbor nodes mainly considers the Spearman correlation

coefficient between the neighboring node and the target node.

In Section 5.2, the correlation coefficient of each type of

sensory data is studied, and the correlation between temper-

ature and humidity is relatively stable, which is suitable for

the proposed prediction method. Fig. 8 shows the network

structure used in this paper, where node 2 and 3 are selected

to assist the prediction for temperature of node 4:

FIGURE 8. Structure of multi-step predictive model.

In Fig. 8, T(4), T(2), and T(3) are the temperature

sequences of nodes 4, 2, and 3, respectively. Each sequence

has an independent length, and the length is the time step

of each sequence. The Conv layer in the above figure is a

one-dimensional convolution layer. The Pool layer is a one-

dimensional pooling layer that down-samples the abstract

features to prevent overfitting. The LSTM layer is a bidirec-

tional LSTM that uses cells to extract long-term dependencies

in abstract features, which helps extract temporally related

features in the sensory data. FC1 layer is a fully connected

layer for unifying abstract features of different shapes into

one shape. Merge layer incorporates multiple sensory fea-

tures for data prediction. In this paper, three kinds of pre-

diction features are chosen by using three parallel network

structures. The purpose of this parallel structure is to adjust

the time step of each sensory data separately.

Experiments in Section 6.1 have shown that a reason-

able combination of time steps can achieve better prediction

results. The output dimensions of each layer in the predictive

model are shown in Table 2:

TABLE 2. Output dimensions of layers in the proposed model.

In Table 2, the output dimensions of each sensory data in

Input layer are (Ts(4), 1), (Ts(2), 1), (Ts(3), 1), respectively,

where Ts(4), Ts(2), Ts(3) is the timestamp used for each

sensory data, and the second dimension is 1, indicating that

only one type of sensory data is used. In the Conv layer, C1,

C2, and C3 are the feature map shapes of sensory data, and

the size of output feature map can be calculated by (2) from

the size of convolution kernel, padding, stride and the input

feature shape. F1 is the number of filters. P1, P2, and P3 in

the Pool layer are the shapes of the feature maps after the

pooling operation. N1 is the number of neurons in the LSTM

layer. Since the bidirectional LSTM neural network is used in

this paper, it has both forward and backward directions, so the

output shape is twice the N1. The output shapes of remaining

layer FC1, FC2, and M1 is the number of neurons.

Since the loss function used in this paper is the error of

single-step prediction, it is necessary to adjust the param-

eters to reduce the average error of multiple iterative pre-

diction. In order to get better multi-step prediction results,

several parameters and node selection experiments are

carried out.

VI. SIMULATION RESULT

A. PARAMETERS SELECTION

The parameters that need to be adjusted in this paper

include the time step in the Input layer, the size of convolution

kernel, the number of filters in the Conv layer, the pooling size

in the Pool layer, and the number of neurons in the LSTM

layer. Taking the examples of using historical temperature

data of node 4, 7 and 10 to predict unknown temperature
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TABLE 3. Output dimensions of layers in the proposed model.

data of node 4, a variety of parameter combinations can be

used to verify the prediction performance. Table 3 shows

the experiment results under various parameter combinations.

The error in the table is the average error of 1000 predic-

tion processes, in which the batch size is set to 200, and

epoch is 15.

The first and second rows in the table are the layers and

their adjustable parameters. When time step = (40, 10, 10),

convolution kernel = 5, filter = 4, pooling size = 5,

stride = 1 and the number of neurons in LSTM layer is 32,

the most accurate prediction is with RMSE = 0.627. The

size of convolution kernel in convolutional layer has a great

influence on the prediction, as can be seen from Table 3.

B. NODE SELECTION

The proposed multi-step predictive model needs to use the

sensory data of neighboring nodes. Multiple groups of nodes

are selected to iteratively predict the trend of sensory data

of node 4. The experiment results show that the multi-step

predictive model based on the correlation between nodes can

make a good prediction when good neighboring nodes are

selected.

Fig. 8 describes the data predict result for the temperature

of node 4, which uses the temperature data of node 3 and 6 as

assistance. The position of node 4, 3 and 6 is shown in Fig. 1,

and it is clear that the distance between node 4 and 3, 6 is

very close. The Spearman correlation coefficient of temper-

ature data between node 4 and 3 is 0.9405, the correlation

coefficient between node 4 and 6 is 0.9484.

FIGURE 9. Using node 3 and 6 to predict temperature of node 4.

In Fig. 9, the blue dotted line is the prediction result, and the

red solid line is the original data.With the help of temperature

data of nodes 3 and 6, the temperature data of node 4 is used

to iteratively predict 1000 temperature data.

Fig. 10 shows the prediction for humidity of node 4, which

chooses the humidity data of node 3, 6 as assistance. In Fig. 3,

there is a strong correlation between the humidity data of

node 4 and 3, 6, which are 0.9522 and 0.9778, respectively.

With the strong correlation of humidity data between node

3, 6 and 4, the proposed model has made a good prediction.

In order to further study the relationship between error of
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FIGURE 10. Using node 3 and 6 to predict humidity of node 4.

FIGURE 11. Using node 7 and 10 to predict temperature of node 4.

prediction and correlation coefficient, node 7 and 10 are used

for prediction. The results of predicting the temperature of

node 4 with node 7 and 10 are shown in Fig. 11.

In Fig. 11, the red solid line is the original data, the blue

dotted line is the predicted data, abscissa of Fig. 11 is the

number of iterations, and the ordinate is the temperature in

degrees Celsius. the prediction error is small at the beginning

of the iteration, but the error increases significantly in the

last 200 iterations. There are two main reasons for this phe-

nomenon. First, there is continuous accumulation of errors in

the iteration. Second, some nodes may meet unusual situa-

tions. Fig. 12 below shows the prediction for humidity data

in node 4, which uses node 7 and 10 to assist the predicting

process.

In this paper, several node combinations are used to

test the predictive model. The prediction error is quantified

by 4 evaluation indicators including RMSE (Root Mean

Square Error), MAPE (Mean Absolute Percentage Error),

FIGURE 12. Using node 7 and 10 to predict humidity of node 4.

MAE (Mean Absolute Error), and R-square. RMSE is sensi-

tive to few outliers and it is suitable for measuring the stability

of prediction. MAPE calculates the ratio of the prediction

error to the true value and it is suitable for measuring the

relative error of prediction. MAE calculates the average pre-

diction errors, which is insensitive to few outliers compared to

RMSE. R-square measures the fitness of the predicted value

to the original value.

TABLE 4. Prediction error with temperature.

TABLE 5. Prediction error with humidity.

Table 4 shows the prediction error for the temperature data,

and Table 5 shows the errors of predicting humidity, the above

four evaluation indicators are used to quantify the error in

different aspects.

According to the prediction errors in the above two tables

and the correlation between these nodes, it is known that

when the correlation of chosen nodes are high, the prediction
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TABLE 6. Prediction error with low correlation.

errors becomes low. In order to further study the relation-

ship between prediction error and correlation coefficient,

we choose temperature as the example to carry out the pre-

diction experiment under low correlation. The experimental

results are shown in Table 6.

We study two factors that affect the prediction result, i.e.,

distance and correlation. From the above prediction exper-

iment of various node combinations, Fig. 13 is shown to

explain the relationship between prediction error and the

correlation. The two connected points are the nodes of a

combination, the node with low correlation is drawn left with

red, and the node with high correlation is drawn right with

blue, as we can see in Fig. 13.

FIGURE 13. Relationship between correlation coefficient and error.

The above experiments show that there is a relationship

between node correlation and prediction error, and the predic-

tion is more sensitive to the node with lower correlation. The

distance between nodes is another factor that may affect the

prediction. Based on the combinations in Table 4. The rela-

tion between the distance and the prediction error is shown

in Fig. 14.

As we can see, the two nodes connected by dashed line

have the highest and lowest correlation coefficients among

all the selected nodes separately. The correlation coefficients

between node correlations and prediction error are calcu-

lated to quantify their relationship. The correlation coefficient

between node with lower correlation and the prediction error

FIGURE 14. Relationship between correlation distance and error.

is−0.8198, and the correlation coefficient between node with

higher correlation and the prediction error is −0.7291, so the

node with lower correlation has a stronger impact on the

prediction error.When selecting nodes to predict the lost data,

we shall try to avoid the cask effect.

C. PERFORMANCE COMPARISION

In this section, Convolutional Neural Networks, Bidirectional

LSTM, and Gated Recurrent Unit Network are used to com-

pare the performance.

1) Convolutional neural network (CNN): A feedforward

neural network that uses convolution calculations. Its one-

dimensional form has a lot of applications in natural language

processing or regression of time series data.

2) Bidirectional LSTM (Bi-LSTM): A neural network

that has many applications in natural language processing

and temporal data prediction, including sentiment analysis,

speech recognition, traffic flow prediction, and so on.

3) Gated Recurrent Unit Network (GRU): A neural net-

work based on RNN, which is similar to the LSTM and has

some great applications in processing time series data.

In order to make a comprehensive evaluation on the

prediction, multiple evaluation indicators are used, which

are RMSE, MAPE, MAE, R-square. The calculated eval-

uation indicators of comparative experiment are shown

in Table 7:

TABLE 7. Prediction evaluation of compared models.

Table 7 shows the prediction of the proposed model, CNN,

Bi-LSTM, and GRU under the same data set. Taking an

iterative prediction of 1000 time steps as an example, the
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FIGURE 15. Prediction results of compared models.

prediction of proposed model, CNN, Bi-LSTM, and GRU are

shown in Fig. 15.

VII. CONCLUSION

In wireless sensor networks, sensor nodes collect a large

number of sensory data, some of these data have similar

variations that can be used to build a multi-step predic-

tive model. Three parallel structures base on 1-D CNN and

Bi-LSTM are used to extract abstract features in sensory data,

and they are combined into the merge layer for data predic-

tion. Once the model is well trained, we use the predictive

model iteratively to get the result ofmulti-step prediction. The

experiments show that the relationships between prediction

error and correlation coefficient, distance are exist, and the

proposed model can make a stable and accurate prediction on

temperature and humidity data in short and medium-term.
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