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Abstract. Multi step prediction is a dif¢cult task that has attracted increasing interest in recent
years. It tries to achieve predictions several steps ahead into the future starting from current
information. The interest in this work is the development of nonlinear neural models for the
purpose of building multi step time series prediction schemes. In that context, the most popular
neural models are based on the traditional feedforward neural networks. However, this kind
of model may present some disadvantages when a long term prediction problem is formulated
because they are trained to predict only the next sampling time. In this paper, a neural model
based on apartially recurrent neural network is proposed as abetter alternative. For the recurrent
model, a learning phase with the purpose of long term prediction is imposed, which allows to
obtain better predictions of time series in the future. In order to validate the performance of
the recurrent neural model to predict the dynamic behaviour of the series in the future, three
different data time series have been used as study cases. An arti¢cial data time series, the logistic
map, and two real time series, sunspots and laser data. Models based on feedforward neural
networks have also been used and compared against the proposed model. The results suggest
than the recurrent model can help in improving the prediction accuracy.
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1. Introduction

Time series prediction is a major goal in many areas of research, e.g. biology,
physics, business and engineering. The ability to forecast the behaviour of a system
hinges, generally, on the knowledge of the laws underlying a given phenomenon.
When this knowledge is expressed as a solvable equation, one can predict the behav
iour along the future once the initial condition is given. However phenomenological
models are often unknown or extremely time consuming. Nevertheless, it is also
possible to predict the dynamic behaviour of the system along the future by
extracting knowledge from the past. We are interested in time series processes, which
can be viewed as generalized nonlinear autoregressive models, also named NAR
models. In this case, the time series behaviour can be captured by expressing the
value x�k� 1� as a function of the d previous values of the time series,
x�k�; . . . ; x�k d�; that is:

x�k� 1� F �x�k�; . . . ; x�k d��; �1�
1
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where k is the time variable and F is some function de¢ning a very large and general
class of time series.

In many time series applications, one-step prediction schemes are used to predict
the next sample of data, x�k� 1�, based on previous samples. However, one-step
prediction may not provide enough information, especially in situations where a
broader knowledge of the time series behaviour can be very useful or in situations
where it is desirable to anticipate the behaviour of the time series process.

The present study deals with long-term or multi-step prediction, i.e. to obtain
predictions several steps ahead into the future x�k� 1�; x�k� 2�; x�k� 3�; . . .

starting from information at instant k. Hence, the goal is to approximate the func-
tion F such that the model given by Equation (1) can be used as a multi-step
prediction scheme.

Many different methods have been developed to deal with nonlinear time series
prediction. Among them neural networks occupy an important place being able
to adequately model the nonlinearity and nonstationarity while being simple to train
and to implement. Since the initial works, neural networks have been proved to be a
powerful method in accuracy for time prediction, exceeding conventional methods
by orders of magnitude [1]. The power of neural networks in time series prediction
is based in some special features:

. Neural networks make no assumptions about the nature of the distribution of
the data and are not therefore, biased in their analysis. Neural networks
develop an internal representation of the relationship between the variables [2].

. Neural networks are the best method at discovering non-linear relationships
[3, 4].

. Neural networks perform well with missing or incomplete data [5].

. The forecasting period is shorter than traditional models [5].

The neural models most widely used in time series applications are built up using
the standard multilayer feedforward neural networks [6 8]. Models based on
feedforward neural networks, also called in this work classical neural models,
can be used for the purpose of multi-step prediction. They consist of approximating
the function F by a multilayer feedforward network. When the training is ¢nished,
the output of the network is fed back into the input and the model is used to predict
the behaviour of the time series along the interval �k� 1; k� h� 1�; where h is a
natural number named prediction horizon. However, the static mapping realised
by this kind of networks may provide poor predictions of the time series along
the future because they are trained for the purpose of one-step prediction.

It has been shown that the modelling capacity of feedforward neural networks can
be improved if the iteration of the network is incorporated into the learning process
[9, 10]. It seems to be rather natural to use recurrent neural networks because they
have, in addition to the static mapping between input and output, also the internal
states of the network. These states work as a short-term memory and they are able
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to represent information about the preceding inputs [11]. That information takes an
important place when the goal is long-term prediction.

In this Letter a Multi-Step Recurrent Neural model (MSRN) is used for modelling
the behaviour of the time series, which is based on a partially recurrent neural
network. The use of this network is motivated by two factors: ¢rst, the goal dealt
with in this work, multi-step prediction; and, second, to solve the troubles found
in feedforward neural models in the context of multi-step prediction.

The partially recurrent neural network used to built up the MSRN model consists
of adding feedback connections from the output neurone to the input layer which
allow the neural network to memorise previous prediction values. In this case,
the parameters of the MSRN model are determined to minimise the error along
interval �k� 1; k� h� 1�. Thus, the model is trained for the purpose of long-term
prediction and better predictions than classical feedforward neural models may
be expected.

The Letter is organised as follows. In Section 2, the classical neural models are
reviewed analysing their disadvantages when they are used for multi-step prediction
purpose. In Section 3, the MSRN model proposed in work is presented. The
architecture of the partially recurrent neural network is brie£y described and the
learning procedure is explained. The experimental results are shown in Section
4. Both classical and MSRN models are applied to three different time series.
An arti¢cial series, the logistic map, and two real data time series, sunspots data
and data measured in a physics laboratory representing some behaviour of a laser.
Finally, in Section 5 the conclusions drawn from this work are analysed.

2. Feedforward Neural Model for Multi-step Prediction

As has previously been mentioned, the neural models most widely used in time series
applications are based in feedforward neural networks with backpropagation
learning algorithm. These models consist of approximating the function F appearing
in Equation (1) by a multilayer feedforward neural network. Introducing the vector
�x�k�; . . . ; x�kÿ d�� as the kth network input pattern, the one-step predicted value by
the neural model can be written as follows:

~x�K � 1� ~F �x�k�; . . . ; x�kÿ d�;W1�; �2�
where W1, is the parameter set of the neural model, which is obtained using the
backpropagation algorithm [12]. The update of the parameter set is based on
the local error between the measured and predicted values, i.e.:

e�k� 1� 1
2 �x�k� 1� ÿ ~x�k� 1��2: �3�

When the model given by Equation (2) has to forecast the values of time series at
instants k� 1; k� 2; . . . ; k� h� 1, this is along the interval �k� 1; k� h� 1�, its
structure has to be modi¢ed because the sequence of measured values are not
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available. Therefore, the predicted network output at instant k� 1 must be fed back
as an input for the next step prediction and all the remaining input neurone values are
shifted back one unit. This strategy must be repeated in the next prediction steps until
the instant k� h� 1 is reached. Hence, at each instant k, the predictions on the
interval �k� 1; k� h� 1� must be calculated by the following equations:

~x�k� 1� ~F �x�k�; . . . ; x�kÿ d�;W1� �4�

~x�k� 2� ~F � ~x�k� 1�; x�k�; . . . ; x�kÿ d � 1�;W1�
..
. �5�

~x�k� h� 1� ~F � ~x�k� h�; . . . ; ~x�k� 1�; x�k�; . . . ; x�kÿ d � h�;W1�: �6�
During the prediction, the parameter set W1, remains ¢xed; it has been estimated

in a previous phase by training the neural model given by Equation (2) using
the local difference between the measured and predicted values Equation (3).

The main disadvantage of the model given by Equations (4) (6) in the context of
multi-step prediction is precisely the way of computing the parameter set W1,.
As has just been said, they have been obtained to minimise the local errors given
by Equation (3), this is, for the purpose of one-step prediction. During the training
phase, the parameters capture the relation between the available observations of
the original time series at the current time, x�k�; . . . ; x�kÿ d�, and the next sampling
time, x�k� 1�. However, when the model is acting as a multi-step prediction scheme,
a group of the input neurones gather the previous approximated values (see
Equations (4) (6)), ~x�k� h� 1� ~F � ~x�k� h�; . . . ; ~x�k� 1�; x�k�; . . . ; x�kÿ d � h�;
W1�:

As a consequence, the performance of the classical neural model depends on the
capability of multilayer feedforward neural networks to approximate perturbations
of input patterns. Generally, multilayer feedforward networks ¢lter small
perturbations in their inputs; however, when the perturbations in the inputs increase
the answer of the network may not be appropriate because the input patterns to the
network differ from patterns used during the training procedure.

In addition, an error at some instant k� 1 is propagated into the next
approximations and the network will have to ¢lter more and more high errors.
In this case, it is not possible to expect appropriate predictions because errors
occurred at some instant are propagated and magni¢ed to future sampling times.
Thus, the capability of classical neural models to predict the future of the time series
may decrease.

3. Recurrent Neural Model for Multi-step Prediction

The multi-step recurrent neural model proposed in this paper is presented as an
alternative to classical neural models when the goal is to predict the future behaviour
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of the time series. In the previous section, it has been concluded that the predictive
capability of the neural model given by Equations (4) (6) could be destroyed since
the parameters are determined to solve one-step prediction problem. This implies
that the input vectors to the model, � ~x�k� 1�x�k�; . . . ; x�kÿ d � 1�; . . . ;

� ~x�k� h�; . . . ; ~x�k� 1�; x�k�; . . . ; x�kÿ d � h��, are not used during the training
phase and the network will have to ¢lter perturbations on its inputs. In order to
guarantee an adequate prediction in the future, the parameters of the model should
be estimated using those input patterns and for the purpose of multi-step prediction.
TheMSRNmodel proposed in this work is based on these ideas. Basically, it consists
of imposing a special learning phase for the purpose of long-term prediction using
the predicted outputs as input variables.

In order to build up the MSRN model, a partially recurrent neural network [13] is
used. The recurrent network is constructed by starting from a multilayer
feedforward neural network and by adding feedback connections from the output
neurone to the input layer as it is shown in Figure 1.

The neurones in the recurrent neural network are divided in the input, hidden and
output layer, as usual. The input layer is composed by two groups of neurones. The
¢rst group acts as the external input to the network gathering the original or
measured time series data. The second group is formed by the context neurones,
which memorise previous outputs of the network. Introducing the vector
C�k� �C1�k�; . . . ;Ch�k�� to indicate the activation of context neurones, each
component is calculated as,

Ci�k� Z i� ~x�k� h� 1� ~x�k� h� 1ÿ i� i 1; . . . ; h; �7�

where ~x represents the network answer, and Z i is an operator that delays by i terms
the network output sequence.

The activation of the remaining neurones in the network (hidden and output
neurones) follow the same equations that the neurone activation's in the multilayer

Figure 1. Recurrent network architecture.
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feedforward network, this is, the sigmoidal function applied to the weighted sum of
the neurone activation's in the previous layer.

Due to the presence of the feedback connections, the training of the partially
recurrent neural network is based on a class of learning algorithms, called dynamic
backpropagation algorithms [14]. In [13] a dynamic learning rule is inferred for
the recurrent architecture. However, since the internal structure of the partially
recurrent network is like a feedforward neural network, the training may be also
realised using the traditional backpropagation algorithm, as is discussed in [13].
The computational effort required by the dynamic learning rule may not be
recommendable in practical applications, principally, when the number of context
neurones is high. In these cases, the traditional backpropagation algorithm may
provide a suitable convergence.

3.1. DESCRIPTION OF MULTI STEP RECURRENT NEURAL MODEL

When the partially recurrent neural network previously described is used for the
prediction task, the number of context neurones and the number of input units
receiving the predicted and measured time series values, respectively, depend on
the prediction horizon h. The number of context neurones is changing every
sampling time, instead of being a ¢xed number as in other applications [13].

Assuming that the prediction horizon is ¢xed to h and assuming that at instant k
the goal is to predict the time series values at instants k� 1; k� 2; . . . ; k� h� 1,
the number of input units decrease from d � 1 to d � 1ÿ h and the number of context
neurones increase from 0 to h, respectively. Thus, the sequences received by the
external inputs and the context neurones, at every instant k, are given by the
following sequence:

. The number of context neurones is initialised to zero and the external inputs
receive the sequence: x�k�; . . . ; x�kÿ d�:

. The future instants k� i for i 2; . . . ; h� 1 are not real, but simulated. Now
the input units receive the vector x�k� i�; . . . ; x�kÿ d ÿ i�, and the (i ÿ 1)-th
context neurones memorise the previous i ÿ 1 outputs of the network, i.e.:

C1�k� ~x�k� i ÿ 1�
..
.

Ci 1�k� ~x�k� 1�
. After that, the external inputs and the context neurones are resettled.

As was said before, the number of external input units decreases from d � 1 to
d � 1ÿ h. Hence, it is important to point out that when the prediction horizon,
h, is higher than d � 1, in the last instants of the interval �k� 1; k� h� 1] all
neurones in the inputs are context units and no measured time series value are
fed into the network. In that cases, the network do not receive information from
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the external world and the prediction task becomes more complicate because the
network will only use information from itself. Thus, the performance of the neural
network may decrease when the prediction horizon is higher than d � 1.

3.1.1 Training Procedure
Below the complete training procedure of the MSRN model for the purpose of
multi-step time series prediction is described. At each instant k, starting with k d:

Step 1. The number of context neurones is initialised to zero. d � 1 external
input neurones are set receiving the measured values of the time series,
x�k�; . . . ; x�kÿ d�. The output of the network is given by the following equation:

~x�k� 1� ~Fx�k�; . . . ; x�kÿ d�;W2�: �8�

Step 2. The number of context neurones is increased in one unit and the number of
external units is decreased also in one unit. The context neurone memorises the
output of the network, previously calculated, ~x�k� 1�. Thus, the prediction at
the simulated instant k� 2 is given by:

~x�k� 2� ~F � ~x�k� 1�; x�k�; . . . ; x�kÿ d � 1�;W2�: �9�

Step 3. Step 2 is repeated until h context neurones are achieved. The outputs of the
recurrent model at simulated instants k� 3; . . . ; k� h� 1 are given by the following
equations, respectively:

~x�k� 3� ~F � ~x�k� 1�; x�k�; . . . ; x�kÿ d � 2�;W2� �10�
..
.

~x�k� h� 1� ~F � ~x�k� h�; . . . ; ~x�k� 1�; x�k�; . . . ; x�kÿ d � h�;W2�: �11�

Step 4. At this moment, the parameter set of the model, W2, is updated. In order to
impose a training phase for the purpose of long-term prediction, the learning is based
on the sum of the local errors along the prediction horizon, i.e. along the interval
�k� 1; k� h� 1�. Hence, the parameter set W2 is updated following the negative
gradient direction of the error function given by:

e�k� 1� 1
2S

h
i 1�x�k� i � 1� ÿ ~x�k� i � 1��2: �12�

In order to avoid the long computational effort required by dynamic back-
propagation rules when the prediction horizon is high, the updating of the par-
ameters is realised using the traditional backpropagation learning rule.

Step 5. At this point the time variable k is increased in one unit and the procedure
returns to Step 1.
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The procedure is repeated for the complete training set until to reach the con-
vergence.

Once the training of the MSRNmodel is ¢nalised, it can be used for the purpose of
multi-step prediction. In this case, the Steps 1, 2, 3 and 5 are carried out.

The structure of the MSRN model (Equations (8) (11)) is identical to the struc-
ture of classical neural model when it is used for prediction (Equations (4) (6).
However, there exists an important difference between them: the way to obtain
the parameter sets of the models. That is, the learning procedure of the system.

As was said before, the parameter setW1, of the classical neural model is obtained
training a multilayer feedforward network and remains ¢xed during the prediction
phase. This means that the parameter set W1, is updated using the local error
measured at each instant (Equation (3)). When the MSRN model previously
described is used, the update of the parameters is based on the measured error along
the prediction interval �k� 1; k� h� 1�. Thus, the set of parameters W2 is deter-
mined to minimise the error in the future (Equation (12)). The model is trained
in such a way that it acts as a multi-step prediction scheme as opposed to classical
neural model, which is trained to predict exclusively the next sampling time (one-step
prediction scheme).

In other hand, the predicted network outputs are used as patterns during the
learning procedure of the recurrent model. Thus, the MSRN model can capture
the relationship between the patterns that will be used during the prediction task.

Due to the recurrent structure of the proposed model, errors occurred at the same
instant are propagated into the next sampling time as in the classical neural model.
However, in the MSRNmodel the propagated errors are reduced during the training
phase because the learning is carried out using the predicted output at previous time
steps. Thus, the errors are corrected and better predictions in the future may be
expected.

4. Experimental Veri¢cation

The experimental veri¢cation has been conducted by three different time series: an
arti¢cial time series described by the logistic map and two real data time series.
The ¢rst real series is given by sunspot data and the second one represents the
behaviour of the laser measured in a physics laboratory.

For each dynamic system, ¢rst we have ¢xed the structure of NAR model, this is
the number of input variables of the models. Second, we have used the forecasting
models studied in this paper, the classical feedforward neural model and the MSRN
model. Finally the performance of different models is compared and analysed.

In order to measure the ability of neural models to predict the future, the following
mean square error, also called prediction error, has been used:

E
1
2N

SN h
k 0 �x�k� h� 1� ÿ x�k� h� 1��2; �13�
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where h is the prediction horizon; x�k� h� 1� and ~x�k� h� 1� are the real and
prediction values of the time series at instant k� h� 1; and N is the number of
patterns. In the three cases, logistic, sunspot and laser time series, several prediction
horizons have been considered.

4.1. PREDICTING THE LOGISTIC MAP

The logistic map is given by the following equation:

x�k� 1� lx�k��1ÿ x�k��: �14�

When l 3:97 and x�0� 0:5 the map describes a strongly chaotic time series. That
kind of chaotic time series are good test beds for multi-step prediction because an
error in previous steps of prediction is strongly propagated in further predictions.

In order to train the neural models, data of the logistic time series from t 0 to
t 100 are used. A different data set values from t 100 to t 500 has also been
used as test patterns.

From Equation (14) it follows that the logistic map at instant k� 1 depends on the
series value at instant k. However, as the ultimate goal in this work is to predict the
future in an horizon greater than one, it is suitable to consider NAR models that
own more information about the past behaviour of the time series [15]. Thus, in
this work the logistic map is represented by the following NAR model:

x�k� 1� F �x�k�; x�kÿ 1�; x�kÿ 2��: �15�

The parameters of the previous model have been determined to approximate the
immediate sampling time, x�k� 1�, using a multilayer feedforward neural network
with 3, 10 and 1 input, hidden and output units, respectively; after that, the model
has been used to forecast the logistic map at the prediction horizon k� h� 1,
for h 0; 1; 2; 3. The second experiment has consisted of using the recurrent neural
network with 10 hidden units and h context neurones, from h 0 to h 3. The
MSRN models have been trained up to complete the convergence using the
algorithm described in the Section 3.1.

The prediction errors (Equation (13)) on the training set for both models, classical
and MSRN models, can be seen in Table I. The prediction errors over the test set
have been also evaluated. The results are shown in Table II.

In these tables, it can be observed that the MSRN model has provided a consider-
able accuracy on the training and test sets for each prediction horizon. The improve-
ment of MSRN model over classical one is more relevant when the prediction
horizon is increased (h 2 and h 3). In those cases, the predictions provided
by the classical neural model are very poor, while the MSRN model is able to obtain
convenient long-time predictions. For short prediction horizons (h 1), the
approximations provided by the classical neural model may be adequate; although
even in this case the MSRN obtain the smallest prediction errors.
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The predictions at two, three and four sampling times (h 1; 2; 3) of the logistic
time series provided by the classical neural model and the MSRN model are shown
in Figures 2, 3 and 4 respectively. In these ¢gures is easy to appreciate as the adjust-
ment between the real and predicted data is much higher in the recurrent than
in the classical model.

4.2. PREDICTING THE SUNSPOT TIME SERIES

The sunspot series was the ¢rst time series studied with autoregressive models
[16 18], and thus has served as a benchmark in the forecasting literature. The under-
lying mechanism for sunspot appearances is not exactly known. No ¢rst-principles
theory exists, although it is known that sunspots are related to other solar activities,
such as magnetic ¢eld cycles which in turn in£uence the meteorological conditions on
the earth.

Sunspot were ¢rst observed around 1610, shortly after the invention of the
telescope. The sunspot data have been recorded since 1700. In the most of works
related to forecast the sunspot series, the yearly averages of the sunspot data tab-
ulated from around 1700 to 1979 have been used to estimate the parameters of
the autoregressive models [6, 19]. In these cases, each input to the model represents
the average of the measured values along one year. This may provide to the
forecasting model poor information about the behaviour of the sunspot time series
because data exhibit strong irregularities during the year. In order to build up
forecasting models owing more information about the sunspot series behaviour,
we believed it convenient to consider sunspot data corresponding to monthly data
instead of yearly data, as usual. In addition, if the inputs to the models represent
monthly sunspot values, the models can be used to forecast the behaviour of the
sunspot series through the months providing a more comprehensive description
of the sunspot series performance.

In our case, the monthly mean of daily relative sunspot numbers from January
1749 to March of 1977 have been used to build up and validate the neural models

Table I. Logistic Time Series: Prediction Errors over the Training Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.00089 0.00089
h � 1 0.00790 0.00310
h � 2 0.03925 0.00571
h � 3 0.05510 0.00701

Table II. Logistic Time Series: Prediction Errors over the Test Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.00152 0.00152
h � 1 0.00904 0.00464
h � 2 0.04807 0.00784
h � 3 0.07827 0.01123
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studied in this work.We have used monthly sunspot data from January 1749 through
December 1919 for training, and the data from January 1929 to March 1977 have
been used to evaluate the generalisation capability of predictive neural models.
The data have been normalised in the range [0, 1].

After some simulations, it is concluded that data related with the previous 24

Figure 2. Classical and MSRN models predicting the logistic map at the horizon h � 1:

Figure 3. Classical and MSRN models predicting the logistic map at the horizon h � 2:

Figure 4. Classical and MSRN models predicting the logistic map at the horizon h � 3:
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months are enough to predict sunspot data in the future. Thus, the NAR model is
given by the following equation:

x�k� 1� F �x�k�; x�kÿ 1�; . . . ; x�kÿ 23��: �16�

Simulations varying the number of input variables have also been realised.
However, the results have proven that the inclusion of number of input variables
does not improve the capability of the model to predict the future. Also, if some
input variables are removed, the performance of neural models to predict the future
might decrease.

Once the structure of NAR model has been ¢xed, the parameters of the neural
models are estimated. First, the functional F in Equation (16) is approximated using
a multilayer feedforward neural network with 24 neurones in the input, 30 units in
the hidden layer and one unit in the output layer. After that, the model has been
used to predict the sunspot time series for several prediction horizons,
h 0; h 3; h 7; h 11 and h 17, i.e. one, four, eight, twelve and eighteen
months, respectively. The functional F has also been approximated using the
recurrent neural network presented in Section 3. The MSRNmodel has been trained
to predict the sunspot series at one, four, eight, twelve and eighteen months in the
future; the network had 30 hidden units and the number of context neurones is
varying form 0 to 4, 8, 12 and 18, respectively.

The prediction errors (Equation (13)) over the training data obtained with the
classical neural model and the MSRN model proposed in this work are presented
in Table III. The performance of neural models over the test set is shown in Table IV.

From these results it concludes that the prediction qualities of the MSRN model
are better than those provided by the classical model, and the signi¢cant differences
appears for prediction horizons further than one step in the future.

However, the superiority of the MSRN model is less appreciable over the test set
than over the training set. As it is possible to observe in Table IV, the prediction
errors on the test set do not decrease as much as for the training set when the MSRN
model is used to predict the future. This is mainly due to two factors: ¢rst, the output
of the network is fed back to the context neurones and second, the measured monthly
sunspot data present strong irregularities as it is possible to observe, for example, in
Figure 3. These irregularities joined to the fact that previous outputs are used as
inputs to the model mean that the model ¢nds dif¢culties correctly generalising
the sunspot data. Both factors contribute to reduce the capability of MSRN models
to predict the future on the test set.

In other applications included in this work, logistic and laser time series, it is
possible to observe that the performance of theMSRNmodel on the test set is similar
to the performance on the training set. In the sunspot case, the performance is
reduced to the nature of the data.

The strong irregularities of data make the generalisation much more dif¢cult, as
can be seen in Figures 5 8. However, the MSRN model is able to capture, almost
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perfectly, the sudden variations of the solar activity. Otherwise, the classical model
tends to approximate the peaks by an average. Obviously, the MSRN generalisation
power decreases as higher prediction horizons are considered.

4.3. PREDICTING THE LASER TIME SERIES

The laser time series is an univariate time record of a single observed quantity,
measured in a physics laboratory experiment. These data have been chosen because
they are a good example of the complicated behaviour that can be seen in a clean,
stationary, low-dimensional nontrivial physical system. In addition, the data
representing the behaviour of the laser do not present the irregularities observed
in the sunspot data. Thus, it may be an appropriate real example in order to prove
the ability of the MSRN model as in the training phase as in the test phase.

The laser data were recorded from a Far-Infrared-Laser in a chaotic state. The
measurements were made on an 81.5-micron 14NH3 cw (FIR) laser, pumped
optically by the P (13) line of an N2O laser via the vibrational aQ(8,7) NH3
transition. The basic laser setup can be found in [20]. The intensity data was recorded
by a LeCroy oscilloscope. No further processing happened. The experimental signal
to noise ratio was about 300 which means slightly under the half bit uncertainty of
the analog to digital conversion.

Approximately 11,000 points referred to the laser time series were provided.
However, for the prediction task, not so many points are needed. From the supplied
data, two sets training and test data have been extracted. The ¢rst 1000 points
have been used to train the neural models and the test set is composed by the
following 1000 points. The aim was to consider data representing different behaviour
of the laser time series in order to study the capability of neural models to predict
transition states. The data have been normalised in the range [0, 1].

Table III. Sunspot Time Series: Prediction Errors over the Training Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.003262 0.003262
h � 3 0.005358 0.002858
h � 7 0.007301 0.003382
h � 11 0.009790 0.004713
h � 17 0.015676 0.008205

Table IV. Sunspot Time Series: Prediction Errors over the Test Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.005112 0.005112
h � 3 0.009648 0.008376
h � 7 0.011775 0.007813
h � 11 0.015874 0.010801
h � 17 0.025705 0.014645
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Before the learning of the neural classical and recurrent models, the ¢rst ques-
tion that arises concerns the choice of the structure of NAR model. In [20, 21]
it is shown that pulsation of the laser data more or less follow the theoretical Lorenz
model. Taking this assumption into account, it may be possible to explain the

Figure 5. Classical and MSRN models predicting the sunspots data at the horizon h � 3:

Figure 6. Classical and MSRN models predicting the sunspots data at the horizon h � 7:

Figure 7. Classical and MSRN models predicting the sunspots data at the horizon h � 11:
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behaviour of the laser time series using around previous nine values or probably less.
In this work, the NAR model adopts the following structure:

x�k� 1� F �x�k�; x�kÿ 1�; . . . ; x�kÿ 9��: �17�

As in the sunspot application, other structures of NAR models have been also
tested. From these simulations it has concluded that model given by Equation (16)
might be appropriate when the goal is to predict the laser series values at the future.

As in the previous applications, the functional F has been approximated using a
multilayer feedforward neural network and the recurrent neural network. In this
case, the multilayer feedforward network had 10 input units, 20 hidden units
and one output unit; the learned network has been used to predict the laser value
at instants k� h� 1, for h 0; 4; 9; 14 and 19. In other hand, MSRN models with
20 hidden units have been trained for the purpose of approximating the laser data
at the same prediction horizons (h 0, 4, 9, 14 and 19). The prediction errors
(Equation (13)) on the training and test data are shown in Tables V and VI,
respectively.

As it is possible to observe in these tables, the MSRN model has provided
approximations more accuracy than the classical neural model. That can be appreci-
ated as in the training set as in the test set.

For the laser time series prediction, the best performance of the MSRN model is
obtained for h 4; 9 and 14. When the prediction horizon is ¢xed to h 19, the
MSRN model has also provided the best predictions, although it is noticed that
the performance decreases. This may be due to the fact that NAR model does
not own enough information through the inputs (ten previous sampling times)
to forecast a large and ambitious prediction horizon (h 19) and the network ¢nd
it dif¢cult to capture the relationship. In addition, it is necessary to point out that
in this case, the MSRN has to memorise the 16 previous predicted values, which
makes dif¢cult the learning of the network.

In order to observe the behaviour of the neural models in the prediction task of the
laser series, only a part of the test set has been graphically represented. Figures 9 12

Figure 8. Classical and MSRN models predicting the sunspots data at the horizon h � 17:
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show the predictions provided by the classical andMSRNmodels for each prediction
horizon.

5. Conclusions

In this work, we have shown that the predictive capability of classical neural models
can improve if a special learning phase for the purpose of multi-step prediction is
imposed. The classical neural model is trained to solve one-step prediction problems
which reduce its performance when a long-term prediction task is formulated.

The MSRN model proposed in this paper can help in improving the prediction
accuracy at several sampling times in the future because the parameters of the model
have been determined to minimize the (Equation (12)). During the training phase,
the parameters of the model capture the relationship between the predictions in
the future and the previous predicted values by the network, which seems to be
a better approach and contribute to obtain better neural forecasting models.

It is also interesting to point out that the number of the inputs of the models has an
important signi¢cance on the quality of predictions when a multi-step prediction
problem is formulated. If the goal is to predict several instants in the future, the
structure of NAR model must have information through the inputs such that
the relationship between the patterns can be captured.

We have performed experiments to evaluate the performance of the proposed
MSRN model using three time series, the logistic map, sunspot data and the laser
time series. The results presented in the experimentation section show the superiority
of the MSRNmodel over the classical one for the three time series used as test cases.
The quality of the predictions provided by the MSRNmodel is different in each case,
however, in all of them the improvement of the MSRN model is appreciated

Table V. Laser Time Series: Prediction Errors over the Training Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.000517 0.000517
h � 4 0.003902 0.001509
h � 9 0.006098 0.001832
h � 14 0.008264 0.003041
h � 19 0.011655 0.005560

Table VI. Laser Time Series: Prediction Errors over the Test Data Set

Prediction horizon Classical Neural Model MSRN Model

h � 0 0.000749 0.000749
h � 4 0.006071 0.001891
h � 9 0.009019 0.002834
h � 14 0.012241 0.005007
h � 19 0.016627 0.009762
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Figure 9. Classical and MSRN models predicting the laser data at the horizon h � 4:

Figure 10. Classical and MSRN models predicting the laser data at the horizon h � 4:

Figure 11. Classical and MSRN models predicting the laser data at the horizon h � 4:
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