
Multi-structured redundancy

Eno Thereska, Phil Gosset, Richard Harper

Microsoft Research, Cambridge, UK

Abstract

One-size-fits-all solutions have not worked well in stor-

age systems. This is true in the enterprise where noSQL,

Map-Reduce and column-stores have added value to tra-

ditional database workloads. This is also true outside

the enterprise. A recent paper [7] illustrated that even

the single-desktop store is a rich mixture of file sys-

tems, databases and key-value stores. Yet, in research

one-size-fits-all solutions are always tempting and point-

optimizations emerge, with the current theme du jour be-

ing key-value stores [8].

Workloads naturally change their requirements over

time (e.g., from update-intensive to query-intensive).

This paper proposes research around a multi-structured

storage architecture. Such architecture is composed of

many lightweight data structures such as BTrees, key-

value stores, graph stores and chunk stores. The call for

modular storage and systems is not dissimilar to the Ex-

okernel [4] or Anvil [10] approaches. The key difference

that this paper argues about is that we want these data

structures to co-exist in the same system. The system

should then automatically use the right one at the right

workload phase. To enable this technically, we propose

to leverage the existing N-way redundancy in the data

center and have each of N replicas embody a different

data structure.

1 Introduction and motivation

Personal and enterprise storage workload requirements

usually vary over time. For example, a home user might

first upload 100 photos to her hard drive or to Facebook,

requiring good write throughput. Later in the day that

same person might sort the photos into albums and tag

her friends in them, requiring good read bandwidth and

latency and ability to make associations quickly.

In the enterprise, a small business might receive lots

of transactions during the day (requiring a fast insert rate
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Figure 1: Can you spot the key-value store?

and strong consistency) and it might perform analytics on

the data at a later time (requiring good streaming band-

width). The problem is that, while we recognize that

workloads change, we over-engineer solutions that are

good for only a part of a workload. For example, recent

work on key-value stores emphasizes their ability to in-

sert small data quickly with minimum resource require-

ments [8]. A typical workload, like Facebook’s photo ex-

ample above requires both inserts and complex queries.

Figure 1 illustrates another difficulty with evaluating

point-solutions in the space. Designing a storage sys-

tem requires making conscious decisions at many layers

(a few are shown in the figure). It is through this fig-

ure that sometimes arbitrary point-solutions become ap-

parent. For example, it is somewhat arbitrarily assumed

that the workload using a key-value store will only need

a simple “put/get” API, while a workload using a file

store will need a “create/read/write” API, perhaps im-

plying that one can “write” to arbitrary offsets. A work-

load using the graph store might need “noSQL” queries

that directly manipulate the edges and nodes of a graph

structure, or might use SQL.
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Then, there are the transaction and the caching layers.

It is implicitly assumed that the workload of a key-value

store might not have good locality, and hence value-

caching or prefetching is not needed, while file caching

might be needed. For graph structures, prefetching might

be better directed through edge hints. Furthermore, there

might be strong locality in the way graphs are processed.

And there is the layout layer, with data structures resid-

ing in memory or SSDs and disks. Key-value storage

optimizations often assume that values will be small and

thus a log-structured layout would be optimal in absorb-

ing them. A file storage might have various other layouts

since “files” are assumed larger in size than “values”.

What if these assumptions turn out to be incorrect over

time? How much of your system design will need to

change then? For example, Facebook states that their

photo store is for scenarios where ”data is written once,

read often, [and is] never modified” [2](page 1). Will that

hinder the development of more complex Facebook ap-

plications for which those assumptions are not true (e.g.,

a Photoshop-like application for photo or video editing)?

What if the ”value” in a key-value store is better off be-

ing stored in a filesystem if it is too large? And what if

”values” in the key-value store are related to one another,

making a graph-store a better fit?

1.1 Motivation from database community

Is there “concrete and existing” evidence in industry that

shows the problem is real? We list some evidence we

have found here, mostly from the database community.

FILESTREAM addition to SQL Server:. Very re-

cently, the SQL Server database added support for hav-

ing database entries be files in the NTFS file system. This

is called the FILESTREAM addition [11]. The hybrid

database-like/filesystem-like end solution was appealing

for database entries/values larger than 1 MB. It is impor-

tant to note that the data will either be on the filesystem or

on the database, and the structures do not co-exist (this is

a single-node SQL Server), but that is still evidence that

real users desire a more flexible approach to storing data.

Column-stores: The database community has learned

how to have two data structures, a row-store and a

column-store, co-exist by keeping one replica as a row-

store and one replica as a column-store [1, 13]. Most

database vendors nowadays offer both row- and column-

stores. This choice affects the layout layer (in Figure 1)

only, but it is still an important 2-dimensional choice that

users are now offered.

2 Key idea: multi-structured redundancy

Our key technical idea is to use the existing data redun-

dancy in data center storage systems (e.g., GFS [6]) and

specialize each replica to use a different data structure. In

a system with N replicas, N data structures could be sup-

ported. The data structures must be equivalent and store

the same data, but they might do so in different ways.

There is an analogy here with data structures in program-

ming languages: a sorted list and a hash table could store

the same elements, and yet one is optimized for range

and succession queries, while the other for point-queries.

To complete the analogy, it is important to note that we

are advocating to keep two copies of the data, one on the

list and one on the hash table, and not build a hash ta-

ble with references to items on a list. Another parallel

could be found with N-way programming [3], although

the main argument for N-way programming is increased

system reliability and not performance.

Figure 2(a) illustrates a workload that, over time,

places different demands on the data center infrastruc-

ture. The figure illustrates the case when 3-way repli-

cation is used. One replica could use a combination of

log structured layout, no caching and prefetching, and

be used by a ”key-value-like” workload, while another

replica could use a co-located layout, LRU caching and

deep prefetching, to accommodate a ”file-like” workload

while the third replica could use a fully in-memory lay-

out, to accommodate a ”graph-like” workload.

Thus, each replica is specialized well to a different

phase of the workload, while working well for a gen-

eral workload that might not require specialization. For

example, the first replica would quickly absorb small-

writes in a workload, the second replica is closer to a

traditional file system and responds well to reading and

writing to large files in directories, while the third replica

could do well for analytical workloads. Of course, all

replicas need to eventually contain the same updates and

an open question (see below) is whether they can stay in

sync while still remaining specialized.

Figure 2(b) and (c) show two possible ways to spread

the data structures on the available infrastructure. One

way (dedicated) is to have dedicated servers and racks to

one particular data structure (e.g., one rack could be an

in-memory graph store). The other way (co-located) is to

let the data structures share resources. The latter method

could be better at balancing the load in the system, but

the data structures could suffer from interference effects

among each other, if there is no performance insulation

among them [16].

Comparison with related work: Anvil [10], Sta-

sis [14] and Boxwood [9] share our goal of modular stor-

age and the researchers have already built several build-

ing blocks, such as B-trees and key-value stores. The

unique observation we make is that workloads need these

diverse data structures not in isolation from one-another,

but simultaneously co-existing. Hence, we are investi-

gating how to enable this co-existence by using the in-
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Figure 2: Various ways to assign the data structures on a

traditional rack-based data center.

herent redundancy in the data center to provide up to N

diverse data structures in an N-way replicated system. In

the database community, SwissBox has called for blur-

ring the lines between a database and OS and for deeper

cross-layer optimizations [1]. We hope to identify simi-

lar optimizations for our layers (shown in Figure 1).

2.1 Open research questions

There are several open research questions from the above

architecture. We have only began exploring them and

this section discusses several of them.

Are N data structures sufficient?: We have gone

from a single-point system specialization (e.g., have a

fast key-value store) to an N-point specialization. It is

likely a workload might require more specialized data

structures than N. For example, a typical system in

which N = 3 might be specialized in a key-value struc-

ture for fast inserts, a file structure for complex writes

and a graph structure for complex queries. The work-

load might require another specialized structure, like a

priority queue where some order is imposed on the data

stored. The database community has developed data

structures for two types of workload phases, one for

transaction processing (a typical benchmark being TPC-

C/E) and one for analytics (a typical benchmark being

TPC-H). But, even these types of workload phases might

require further specialization and other sub-structures

like row-stores and column-stores [13]. One could sim-

ply increase N beyond the default redundancy, but that

would require more storage capacity and lead to a de-

crease in update performance, since more replicas need

to be kept consistent.

Could general performance suffer?: One assump-

tion we have made is that replication in the original sys-

tem is used primarily for reliability, and secondarily for

performance. The reason is that data is usually both

striped and replicated and read parallelism benefits pri-

marily from striping. However, that might not be true for

all workloads. It might be the case that the data center

is provisioned for the peak performance of one particu-

lar phase of the workload (e.g., a query phase) and all

servers are needed (using 1 data structure, e.g., the file

one) to support that peak performance. In that case, no

resources would be left over to allow for the other data

structures. There is likely no general answer to this prob-

lem, but at a minimum the capacity provisioning tool will

have to be more sophisticated. It would need to tradeoff

provisioning for one particular phase vs. provisioning for

multiple phases that require different data structures.

Speed-matching of updates among data structures:

All the data structures need to be at least eventually con-

sistent and sometimes strongly consistent. When an up-

date arrives it must be propagated to all data structures.

It is likely some of them are an order of magnitude faster

than the others in absorbing updates. For example, the

key-value store is optimized for quickly absorbing small

writes, whereas a co-located file store will lag behind

with such small writes if implemented naively. We want

update performance to be roughly uniform among the

data structures and query performance to be specialized.

Can this be implemented in practice? Will we have to

sacrifice strong consistency for it?

Can recovery be uniformly fast?: In addition to

speed-matching of updates we want fast recovery. When

a server fails, all the data structures residing there will

need to be recovered from the replica structures. For

example, if a server contains a graph-store with all the

graph edges in memory and that server fails, the graph

structure needs to be reconstructed from other replicas,

e.g., from the key-value store replica and from the file

replica. Those stores might not be optimized for quick

reading of graph edges. On the other hand, if a server

with key-value data structures fails, the in-memory graph

store replicas might be very fast to recover it. Hence, we

might have non-uniform recovery times. Careful layout

of the data structures on resources is thus required.

Could one single (in-memory) structure be always

the best?: For some workloads, like the ones discussed

in RAMCloud [12], it is likely that one replica of the data

could fit in memory and the other N−1 replicas are used

only for recovery and not for servicing the foreground

workload. For such setups, multi-structured replication

might make no sense since one of the structures will al-

ways be the best for all workload phases.

Interestingly, for small-sized systems of a few servers

and for very-large multi-petabyte systems an all-in-

memory replica might be impractical for two different

reasons. For a small system with tens of servers there

aren’t enough servers onto which to parallelize the write

workload (one copy of which must still go to persistent

storage) and as such the SSDs or disks would be a se-

vere write bottleneck. For a very large system the cost of
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Data structure APIs

Key-value put(), get(), delete()

File create(), read(), write(), delete()

Graph addNode(), addEdge()

getNeighbors(), delete([node/edge])

Table 1: The API into CamFS. Internally these calls are

mapped to appropriate caching, prefetching and data lay-

out building blocks.

Petabytes of RAM would be prohibitively large. We take

an approach in-between the all-in-memory or nothing-

in-memory extremes, directed by the requirements of the

data structures. For example, one implementation of our

graph data structure in Section 3 has the graph edges

fully in-memory, while the rest of the graph is on per-

sistent storage.

Single-server vs. data center implementations: Will

the multi-structured approach both scale-up and scale-

out? History suggests that a single-server file system

(e.g., ext4 or NTFS) is also used in a data center as a ba-

sic building block (with a distributed middleware layer

on top). A single-server could still support multiple data

structures at the lowest layer by partitioning the storage

space into N. However, performance could suffer. The

server would have to keep all N data structures consistent

and would have to ensure some degree of performance

insulation among them (e.g., by partitioning the cache

and careful scheduling of requests).

Are workload phases easily and automatically

identifiable?: It would be ideal if the system could au-

tomatically identify changes in workload phases (e.g.,

move from insert-heavy to query-heavy), however a

starting point is to expose the multiple data structures to

developers and let them decide when to use each. This

compromise allows us to explore the systems research

while allowing for automation (perhaps using machine

learning approaches) to happen at a latter stage.

3 CamFS: a vehicle for exploration

To explore the tradeoffs involved, we have started build-

ing a storage system we call CamFS. Table 1 shows the

current APIs implemented, corresponding to a key-value

data structure, a file-based data structure allowing reads

and writes at arbitrary file offsets, and a graph data struc-

ture. We are experimenting with a single-server (scale-

up) version of CamFS where the data structures are on

the same server, and a distributed version (scale-out) ver-

sion where the data structures are distributed.

The building blocks of CamFS are a metadata ser-

vice, a client library with the above APIs and an I/O
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Figure 3: Small 1K update performance varies by two or-

ders of magnitude depending on the layout chosen. The

y-axis is in log scale.

coordinator that serializes requests and sends them to

the appropriate servers (in the distributed case). A start-

ing point for CamFS’ implementation is the Sierra dis-

tributed storage system [15] that implements the file

APIs only. That gave us a good starting point for having

a basic primary-secondary concurrency based protocol, a

lightweight metadata service, a recovery mechanism and

a distributed journaling/logging service to build on.

At the bottom-most layout layer, Sierra exposed fixed-

sizes chunks appropriate mostly for large file behavior.

We have added a log-structured layout appropriate for

absorbing small writes. In the middle layer we are plan-

ning to add caching and prefetching algorithms that im-

plement a variety of mechanisms, including LRU, MRU

and informed prefetching through hints. In this same

layer we are planning to add transactional support not

just within, but across the high-level data structures. This

way, a developer could, for example, be inserting into the

key-value store, adding an edge to the graph store and

writing to a file all as part of one transaction.

There are multiple ways to implement the APIs, by

choosing the appropriate building blocks. For exam-

ple, the key-value structure currently utilizes the log-

structured layout for small values, but can use the chunk-

layout for large values. The graph structure can use the

log-structured layout to store edges (the key would be

the node and the value would be an adjacency list of all

edges out of that node) or it can use an in-memory layout.

So one replica of the edges could be in-memory, another

could be on a persistent log-structured layout, while a

third replica (not yet implemented) could be co-located

with the node itself, perhaps by appending the edges to

the node’s content/file, much like the idea of embedding

inodes with the directory entry in C-FFS [5].

Figure 3 shows three particular ways of implementing

an update (this could be a put request, a small write, or

an update to the graph edge). The updates could be kept

in memory, on a log-structured system or in files (using
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Setup MiB/s in isolation MiB/s combined

Disk(S1, S2) (72,72) (3.5,3.5)

SSD(S1, S2) (103,103) (49,49)

Disk(S1, R2) (72,14) (47,13)

SSD(S1, R2) (103,51) (84,41)

Table 2: The drop in performance when two workloads

run concurrently is more significant for disks. SSDs vir-

tualize better. S refers to a streaming, while R refers to

a random access workload. The performance of each

workload 1 and 2 is shown in a tuple (1, 2). For exam-

ple, two streaming workloads got 72 MiB/s each when

running in isolation, but around 3.5 MiB/s each when

sharing the disk.

NTFS’s data layout). Indeed, all three approaches will

likely co-exist in the final system, one for each of the N

replicas. This figure illustrates just one of the challenges

mentioned in Section 2.1: speed matching across replicas

with different performance characteristics.

An early decision in CamFS is to only consider SSDs

for persistent storage and RAM (and any form of future

non-volatile memory that might emerge). SSDs virtual-

ize better than disks, as seen in Table 21. This matters

to us because without performance isolation we cannot

research and evaluate having multiple data structures on

the same server, as the co-located illustration in Figure 2.

4 Summary

Real workloads are complex and multi-phased (e.g.,

both update and query intensive). As a community we

have developed several good point-solutions (e.g., key-

value stores and file systems), and we continue to (over-

)optimize them, but we do not have good multi-point so-

lutions. This paper makes the case for more research in

a robust co-existence of multiple data structures, such as

key-value stores, file stores and graph stores. This paper

presents a research plan that builds on existing N-way

data center redundancy to provide up to N data structures

and it presents a set of open research questions.
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