
Citation: Bacanin, N.; Stoean C.;

Zivkovic, M.; Jovanovic, D.;

Antonijevic, M.; Mladenovic, D.

Multi-Swarm Algorithm for Extreme

Learning Machine Optimization.

Sensors 2022, 22, 4204. https://

doi.org/10.3390/s22114204

Academic Editor: Anastass Dulamis

Received: 10 April 2022

Accepted: 26 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Swarm Algorithm for Extreme Learning
Machine Optimization
Nebojsa Bacanin 1,* , Catalin Stoean 2 , Miodrag Zivkovic 1 , Dijana Jovanovic 3 , Milos Antonijevic 1

and Djordje Mladenovic 3

1 Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia;
mzivkovic@singidunum.ac.rs (M.Z.); mantonijevic@singidunum.ac.rs (M.A.)

2 Romanian Institute of Science and Technology, 400022 Cluj-Napoca, Romania; catalin.stoean@rist.ro
3 College of Academic Studies “Dositej”, Bulevar Vojvode Putnika 7, 11000 Belgrade, Serbia;

dijana.jovanovic@akademijadositej.edu.rs (D.J.); djordjemladenovic@akademijadositej.edu.rs (D.M.)
* Correspondence: nbacanin@singidunum.ac.rs; Tel.: +381-653093-224

Abstract: There are many machine learning approaches available and commonly used today, however,
the extreme learning machine is appraised as one of the fastest and, additionally, relatively efficient
models. Its main benefit is that it is very fast, which makes it suitable for integration within products
that require models taking rapid decisions. Nevertheless, despite their large potential, they have not
yet been exploited enough, according to the recent literature. Extreme learning machines still face
several challenges that need to be addressed. The most significant downside is that the performance
of the model heavily depends on the allocated weights and biases within the hidden layer. Finding
its appropriate values for practical tasks represents an NP-hard continuous optimization challenge.
Research proposed in this study focuses on determining optimal or near optimal weights and biases in
the hidden layer for specific tasks. To address this task, a multi-swarm hybrid optimization approach
has been proposed, based on three swarm intelligence meta-heuristics, namely the artificial bee colony,
the firefly algorithm and the sine–cosine algorithm. The proposed method has been thoroughly
validated on seven well-known classification benchmark datasets, and obtained results are compared
to other already existing similar cutting-edge approaches from the recent literature. The simulation
results point out that the suggested multi-swarm technique is capable to obtain better generalization
performance than the rest of the approaches included in the comparative analysis in terms of accuracy,
precision, recall, and f1-score indicators. Moreover, to prove that combining two algorithms is not as
effective as joining three approaches, additional hybrids generated by pairing, each, two methods
employed in the proposed multi-swarm approach, were also implemented and validated against four
challenging datasets. The findings from these experiments also prove superior performance of the
proposed multi-swarm algorithm. Sample code from devised ELM tuning framework is available on
the GitHub.

Keywords: machine learning; extreme learning machine; meta-heuristic algorithms; swarm intelli-
gence; multi-swarm algorithm; hybridization

1. Introduction

Extreme machine learning (ELM) represents one of the recent and promising ap-
proaches that can be applied to the single hidden layer feed-forward artificial neural
networks (SLFN). This approach was initially proposed in [1], and it introduced the concept
that the input weight and bias values in the hidden layer are allocated in a random fashion,
while the output weight values are computed by utilizing the Moore–Penrose (MP) pseudo
inverse [2]. ELMs have shown excellent generalization capabilities [3], and they are known
to be very fast and efficient due to the fact that they do not require traditional training,
which is one of the most time-consuming tasks when dealing with other types of neural

Sensors 2022, 22, 4204. https://doi.org/10.3390/s22114204 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114204
https://doi.org/10.3390/s22114204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2062-924X
https://orcid.org/0000-0001-5917-1857
https://orcid.org/0000-0002-4351-068X
https://orcid.org/0000-0002-6797-9140
https://orcid.org/0000-0002-5511-2531
https://orcid.org/0000-0001-9805-643X
https://doi.org/10.3390/s22114204
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114204?type=check_update&version=2

Sensors 2022, 22, 4204 2 of 34

networks. By different training, we mean that ELM models learn without tuning hidden
parameters in several iterations, and the only parameter that needs to be determined is the
weight between the hidden layer and the output layer, using MP, as mentioned above.

ELMs require an adequate number of neurons in the hidden layer in order to obtain
good performance and fast convergence. The difference between ELMs and other tra-
ditional machine learning (ML) models that typically utilize the gradient-descent-based
algorithms is that ELMs use randomly allocated input weight and bias values that do not
alter during the learning process. This approach prevents some of the issues that commonly
accompany the gradient-descent-methods, such as iterative tuning of the weight and bias
values, lingering in the local minimums, and slowing converging speed. Nevertheless, the
appropriate number of neurons that make the hidden layer still remains one of the open
questions that ELMs face.

Several enhanced ELM variants were proposed subsequently, most of which deal
with the appropriate number of hidden neurons. The authors in [4] have introduced the
pruned extreme learning machine (P-ELM) and used it for classifying patterns. P-ELM
starts with a large number of neurons in a hidden layer, and utilizes statistical methods
for determining the relevance of the neurons based on the class labels. The neurons that
have been determined to be irrelevant are removed from the network, thus narrowing
down the total number of neurons. Evolutionary ELM (E-ELM) that was proposed by [5]
optimizes the input weight and bias values by applying the differential evolution method,
and calculates the outputs with MP general inverse. The enhanced variant of the E-ELM
suggested by [6], i.e., the self-adaptive evolutionary ELM (SaE-ELM), uses a self-adaptive
differential evolution algorithm for hidden parameters’ optimization, and determines
the output weight values analytically. The optimally-pruned ELM approach (OP-ELM),
developed by [7], tackles the problem of a large number of hidden neurons by introducing
neuron ranking. OP-ELM also begins with a large number of neurons as standard ELM
approach, and narrows it down by utilizing the multi-response sparse regression algorithm
(MRSR) for calculating ranks of neurons, and leave-one-out (LOO) validating technique for
determining the optimal number of neural cells.

Another approach named incremental ELM (I-ELM) was suggested by [8] and pro-
posed adding neurons one at the time to the hidden layer and calculating the training
rate after every single added cell. The process halts either when the maximal amount of
neurons is met, or when the training rate starts decreasing. More recent research published
by [2] proposed two swarm intelligence meta-heuristics to optimize the ELM, namely
ELM-ABC (using the artificial bee colony meta-heuristics) and ELM-IWO (based on the
invasive weed optimization method). Swarm meta-heuristics are used for tuning the input
weight and bias parameters, while the ELM calculates the output weight values in the
standard, analytical way.

As previously stated, the ELM performance mostly depends on the number of neurons
in the hidden layer and the initialized weights between input features and each neuron in
the hidden layer. The extensive literature survey showed that meta-heuristics-based ap-
proaches to ELM optimization are scarce and insufficiently exploited in this domain, despite
the very promising results obtained in other ML domains. This paper proposes weights
and biases optimization in the ELM model by a multi-swarm algorithm. A straightforward
heuristic is used to determine the promising number of neurons in the hidden layer.

The proposed approach utilizes a novel multi-swarm hybrid algorithm that combines
three well-known swarm intelligence meta-heuristics, namely the artificial bee colony
algorithm (ABC), the firefly algorithm (FA), and the sine–cosine algorithm (SCA). The
algorithm is a high- and low-level combination of hybridized algorithms that exploits their
strengths and overcomes deficiencies of each individual one. The main motivation behind
this research lies in the fact that ELMs are efficient, fast, they do not require training, and,
on the other hand, they have not been exploited sufficiently, especially in combination with
meta-heuristics. The obtained results are comparable with the results of other ML methods
that require training and significantly more time for execution. Inspired by the experiments

Sensors 2022, 22, 4204 3 of 34

given in [2], the proposed method has been tested on seven benchmark datasets in order to
provide a fair comparison of the results.

Moreover, to prove that combining two algorithms is not as effective as joining three
approaches, in an additional set of experiments, hybrids generated by pairing each two
methods employed in the proposed multi-swarm approach, were also implemented and
validated against four imbalanced challenging datasets.

The rest of the manuscript is structured in the following way. Section 2 provides
a literature survey on ELM and swarm intelligence meta-heuristics. The description of
the proposed multi-swarm approach is provided in Section 3. Section 4 describes the
conducted experiments and exhibits the simulation findings on seven datasets together
with the comparative analysis with similar approaches. Lastly, Section 5 delivers final
observations, proposes future directions in this area, and concludes the paper.

2. Background

This section first introduces the ELM as one of the ML models. After that, a brief
survey of swarm intelligence meta-heuristics is provided, together with the most common
applications. Finally, an overview of the ELM models optimized with swarm intelligence
meta-heuristic algorithms is given.

2.1. Extreme Learning Machine

Extreme learning machine (ELM) was proposed by Huang et al. [1] for single-hidden
layer feed-forward neural networks (SLFNs). The algorithm randomly chooses the input
weights and analytically determines the output weights of SLFNs. After the input weights
and the hidden layer biases are chosen arbitrarily, SLFNs can be simply considered as
a linear system and the output weights of SLFNs can he analytically determined through
a simple generalized inverse operation of the hidden layer output matrices. This algorithm
provides a faster learning speed than traditional feed-forward network learning algorithms,
while obtaining better generalization performance. Additionally, ELM tends to reach the
smallest training error and the smallest norm of weights. The output weights are computed
using Moore–Penrose (MP) generalized inverse [9]. As shown in [10], the learning speed
of ELM can be thousands of times faster than conventional learning algorithms with
better generalization performance than the gradient-based learning models. Unlike the
traditional classic gradient-based learning algorithms that only work for differentiable
activation functions, the ELM learning algorithm could be used to train SLFNs with many
non-differentiable activation functions.

For a set of training samples {(xj, tj)}N
j=1 with N samples and m classes, the SLFN with

L hidden nodes and activation function g(x) is expressed as in (1) [1], where
wi = [wi1, . . . , win]

T is the input weight, bi is the bias of the ith hidden node,
βi = [βi1, . . . , βim]

T is the weight vector connecting the ith hidden node and the out-
put nodes, wi · xj is inner product of wi and xj and tj is network output with respect to
input xj.

L

∑
i=1

βig(wj · xj + bi) = tj, j = 1, 2, . . . , N (1)

The Equation (1) can be written as:

Hβ = T (2)

where

H =

 g(w1 · x1 + b1) . . . g(wL · x1 + bL)
... · · ·

...
g(w1 · xN + b1) . . . g(wL · xN + bL)

NxL

, β =

βT
1
...

βT
L

Lxm

, T =

 t1T

...
tNT

Nxm

(3)

Sensors 2022, 22, 4204 4 of 34

In this equation, H is the hidden layer output matrix of the neural network as explained
in [11], while β is the output weight matrix.

The ELM is successfully used in solving many practical problems, such as text cate-
gorization [12], face recognition [13], image classification [14], different medical diagnos-
tics [15,16], and so on. Over time, researchers have presented various improvements for
the original ELM. In [4], authors propose a pruned ELM algorithm as a systematic and
automated approach for designing an ELM classifier network. By considering the relevance
of the hidden nodes to the class labels, the algorithm removes the irrelevant nodes from
the initial large set of hidden nodes. Zhu et al. in their paper [5], presented an improved
ELM, which uses the differential evolutionary algorithm to tune the input weights and MP
generalized inverse. Experimental results show that this approach provides good general-
ization performance with more compact networks. Adopting this idea, in [17], the authors
introduced a new kind of evolutionary algorithm based on PSO which, using the concepts
of ELM, can train the network more suitably for some prediction problems. In order to deal
with data with imbalanced class distribution, in [18], a weighted ELM is proposed which
is able to generalize to balanced data. Recently, Alshamiri et al. presented in [2] a model
for tuning ELM by using two SI based techniques—ABC and Invasive Weed Optimization
(IWO) [19]. In this approach, the input weights and hidden biases are selected using ABC
and IWO and the output weights are computed using the MP generalized inverse.

2.2. Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence approach which is inspired by
the natural behavior to solve optimization problems [20]. Over time, many different SI
algorithms were developed, including ant colony optimization (ACO) [21], particle swarm
optimization (PSO) [22], artificial bee colony (ABC) [23], the firefly algorithm (FA) [24],
cuckoo search (CS) [25], the bat algorithm (BA) [26], the whale optimization algorithm
(WOA) [27], elephant herding optimization (EHO) [28], and many others [29–31]. More
recent, but successful, approaches include monarch butterfly optimization (MBO) [32],
slime mould algorithm (SMA) [33], moth search algorithm (MSA) [34], hunger games
search (HGS) [35], colony predation algorithm (CPA) [36]. Still, we do not claim the list
above is exhaustive.

The algorithms from this group have been used in a wide spectrum of different
challenges with NP-hardness from the computer science field. These applications include
the problem of global numerical optimization [37], scheduling of tasks in the cloud-edge
environments [38–40], health care systems and pollution prediction [41], the problems
of wireless sensors networks including localization and lifetime maximization [42–44],
artificial neural networks optimization [45–57], feature selection in general [58,59], text
document clustering [48], cryptocurrency values prediction [60], computer-aided medical
diagnostics [61–64], and, finally, the ongoing COVID-19 pandemic related applications
[65–67].

2.3. ELM Tuning by Swarm Intelligence Meta-Heuristics

An extensive literature survey indicates that swarm intelligence meta-heuristics have
not been sufficiently exploited for the optimization of the ELM. In addition to the already
mentioned paper [2] that inspired this research, just a few approaches that combine ELM
and meta-heuristics were published in the past several years. Research published in [68]
proposed a hybrid PSO-ELM model, and used it for flash flood prediction. The algorithm
was tested on the geospatial database of a typhoon area, and compared to traditional
ML models. The obtained results have shown that the PSO-ELM model was superior to
other ML models. ELM optimized by PSO was also used in [69], where the authors used
ELM to derive hydropower reservoir operation rules. The proposed method was named
class-based evolutionary extreme learning machine (CEELM), and it combined k-means
clustering that was used to separate the influential factors into clusters with more simple
pattern, followed by the application of the ELM optimized by PSO for identifying the

Sensors 2022, 22, 4204 5 of 34

complex input–output relationships for every cluster. According to the authors, CEELM
showed excellent generalization capabilities.

Faris et al. [70] discussed the application of the salp swarm algorithm (SSA) for
optimizing ELM and improving the accuracy. The proposed approach was tested against ten
benchmark datasets and compared to other popular training techniques. They concluded
that ELM hybridized with SSA outperforms other approaches in achieved accuracy, and
obtained satisfactory prediction stability. Finally, improved bacterial foraging optimization
algorithm (BFO) has been proposed in [71] and applied for the ELM optimizing task. The
obtained results once again indicated that it is possible to achieve similar or even better
performances than other ML methods, in a reduced amount of time.

3. Proposed Hybrid Meta-Heuristics

This section first introduces the basic implementations of the three algorithms used
for the proposed research, namely ABC, FA, and SCA. Since each algorithm has specific
deficiencies, a novel multi-swarm algorithm has been proposed, that combines the strengths
of the individual algorithms and overcomes their individual flaws, by creating synergy and
achieving a complementary effect.

3.1. Original Algorithms
3.1.1. The Original ABC Algorithm

The artificial bee colony (ABC) algorithm was designed for continuous optimization
problems and it was inspired by the foraging behavior of honey bees [23,72]. ABC uses three
control parameters and utilizes three classes of artificial bees: employed bees, onlookers,
and scouts. Employed bees make half of a colony. In this model, food source represents
the possible problem solution. There is only one employed bee per each food source. The
employed bee performs the search process by examining the solution’s neighborhood. The
onlooker chooses a food source for exploitation based on the information which they gain
from employed bees. If a food source does not improve for a predetermined number of
cycles, the scouts replace that food source with a new one which is chosen randomly. The
limit parameter controls this process [73].

The ABC algorithm, as an iterative algorithm, starts by associating each employed
bee with a randomly generated food source. Each bee xi (i = 1, 2, ...N) is a D-dimensional
vector, where N denotes the size of the population. The initial population of candidate
solutions is created using the following expression (4), where xi,j is the j-the parameter of th
ith bee in the population, rand(0, 1) is a random real number between 0 and 1, and ubj and
lbj are upper and lower bounds of the jth parameter, respectively. Naturally, x represents
a different element than the training samples from Equation (1).

xi,j = lbj + rand(0, 1) ∗ (ubj − lbj), (4)

There are many formulations of the fitness function, but in most implementations, for
maximization problems, fitness is simply proportional to the value of objective function.
In case the problem to be solved targets the minimization of a function denoted here by
objFun, the task is converted for maximization using a modification, such as in (5).

f itnessi =

{
1

objFuni
, i f objFuni > 0

1 + |objFuni|, otherwise
(5)

Each employed bee discovers a food source in its neighborhood and evaluates its
fitness. The discovery of a new neighborhood solution is simulated with the expression (6),
where xi,j is jth parameter of the old solution i, xk,j is jth parameter of a neighbor solution

Sensors 2022, 22, 4204 6 of 34

k, φ is a random number between 0 and 1, and MR is modification rate. MR is a control
parameter of ABC algorithm.

vi,j =

{
xi,j + φ ∗ (xi,j − xk,j), Rj < MR
xi,j, otherwise

(6)

If the fitness of the new solution is higher than the fitness of the old one, the employed
bee continues the exploitation process with the new food source, otherwise it retains
the old one. Employed bees share information about the fitness of a food source with
onlookers, and onlookers select a food source i with a probability that is proportional to the
solution’s fitness:

pi =
f itnessi

∑N
i=1 f itnessi

(7)

3.1.2. The Original Firefly Algorithm

The Firefly algorithm was introduced by Yang [24]. The proposed model uses bright-
ness and attractiveness of fireflies. Brightness is determined by the objective function value,
while attractiveness depend on the brightness. This is expressed with Equation (8) [24],
where I(x) represents attractiveness and f (x) denotes the value of objective function at
location x. Again, it is noted that the x in the current subsection should not be mistaken for
the representations in the previous subsections.

I(x) =

1

f (x)
, if f (x) > 0

1+ | f (x) | , otherwise
(8)

The attractiveness of the firefly decreases, as the distance from the light source in-
creases [24]:

I(r) =
I0

1 + γr2 (9)

where I(r) represents light intensity at distance r, and I0 stands for the light intensity at
the source. In order to model a real nature system, where the light is partially absorbed
by its surroundings, the FA uses the γ parameter, which represents the light absorption
coefficient. The combined effect of the inverse square law for distance and the γ coefficient
is approximated with the following Gaussian form [24]:

I(r) = I0 · e−γr2
(10)

Moreover, each firefly individual utilizes attractiveness β, which is directly propor-
tional to the light intensity of a given firefly and also depends on the distance, as shown in
Equation (11).

β(r) = β0 · e−γr2
(11)

where parameter β0 designates attractiveness at distance r = 0. It should be noted that, in
practice, Equation (11) is often replaced by Equation (12) [24]:

β(r) =
β0

1 + γr2 (12)

Based on the above, the basic FA search equation for a random individual i, which
moves in iteration t + 1 to a new location xi towards individual j with greater fitness, is
given as [24]:

xt+1
i = xt

i + β0 · e
−γr2

i,j(xt
j − xt

i) + αt(κ − 0.5) (13)

where α stands for the randomization parameter, the random number drawn from Gaussian
or a uniform distribution is denoted as κ, and ri,j represents the distance between two

Sensors 2022, 22, 4204 7 of 34

observed fireflies i and j. Typical values that establish satisfying results for most problems
for β0 and α are 1 and [0, 1], respectively.

The ri,j is the Cartesian distance, which is calculated by using Equation (14).

ri,j = ||xi − xj|| =

√√√√ D

∑
k=1

(xi,k − xj,k)2 (14)

where D marks the number specific problem parameters.

3.1.3. The Original SCA Method

The sine–cosine algorithm (SCA) proposed in Mirjalili [74] is based on mathematical
model of the sine and cosine trigonometric functions. The solutions’ positions in the
population are updated based on the sine and cosine functions outputs which makes them
oscillate around the best solution. The return values of these functions are between −1 and
+1, which is the mechanism that keeps the solutions fluctuating. An algorithm starts with
generating a set of random candidate solutions within the boundaries of the search space in
the initialization phase. Exploration and exploitation are controlled differently throughout
the execution by random adaptive variables.

The solutions’ position update process is performed in each iteration by using
Equations (15) and (16), where Xt

i and Xt+1
i is the current solution’s position in the i-th

dimension at t-th and i + 1-th iteration, respectively, r1−3 are pseudo-randomly generated
numbers, the P∗i denotes the destination point’s position (current best approximation of an
optimum) in the i-th dimension, while symbol || represents the absolute value. The same
notations as in the original manuscript where the method was initially proposed [74] are
used in this manuscript.

Xt+1
i = Xt

i + r1 · sin(r2) · |r3 · P∗ti − Xt
i | (15)

Xt+1
i = Xt

i + r1 · cos(r2) · |r3 · P∗ti − Xt
i | (16)

These two equations are used in combination by using control parameter r4:

Xt+1
i =

{
Xt+1

i = Xt
i + r1 · sin(r2) · |r3 · P∗ti − Xt

i |, r4 < 0.5
Xt+1

i = Xt
i + r1 · cos(r2) · |r3 · P∗ti − Xt

i |, r4 ≥ 0.5,
(17)

where r4 represents a randomly generated number between 0 and 1.
It is noted that, for every component of each solution in the population, new values

for pseudo-random parameters r1−4 are generated.
The algorithm’s search process is controled by four random parameters and they

influence the current and the best solution’s positions. In order to converge towards the
global optima, the balance between solutions is required. This is achieved by changing the
range of the based functions in an ad-hoc manner. Exploitation is guaranteed by the fact
that sine and cosine functions exhibit cyclic patterns which allow for reposition around
the solution. Changes in ranges of sine and cosine functions allow the algorithm to search
outside of their corresponding destinations. Furthermore, the solution requires its position
not to overlap with the areas of other solutions.

For better quality of randomness, the values for parameter r2 are generated within
the range [0, 2Π] and that guarantees exploration. The controls of the balance between
diversification and exploitation are shown with Equation (18).

r1 = a− t
a
T

, (18)

where t is the current iteration, T represents the maximum number of iterations in a run,
while a is a constant.

Sensors 2022, 22, 4204 8 of 34

3.2. Proposed Multi-Swarm Meta-Heuristics Algorithm
3.2.1. Motivation and Preliminaries

The effectiveness of meta-heuristics in optimization process largely depends on effi-
ciency and balance between exploitation and exploration, that direct the search towards
optimum (sub-optimum) solutions. Additionally, according to the no free lunch theorem
(NFL), optimizer without flaws does not exist, nor there is one which can render satisfying
solutions for all kinds of NP-hard challenges. Therefore, every meta-heuristics suffers from
some deficiencies and also each one has distinctive advantages over others.

One of promising techniques that can be used to combine different meta-heuristics
is hybridization [75,76]. If the right meta-heuristics are chosen as components of hybrid
method, strengths of one approach compensates weaknesses of the other, and vice-versa.
Hybrid meta-heuristics are proven as efficient optimizers and they were validated against
different problems [56,59,77–79].

In the modern literature, many taxonomies of hybrid meta-heuristics can be found,
however on of the most widely adopted is the one provided by Talbi [76]. According to [76],
by using the notion of hierarchical classification, hybrid algorithms can be differentiated
between low-level (LLH) and high-level hybrids (HLH). In the case of LLH, search function
of one method is replaced with one that belongs to other optimization method. Conversely,
HHL approaches are self-contained [76].

Further, both LLH and HLH can be executed in relay or teamwork mode [76]. The
first mode executes in a pipeline manner, where the output of first meta-heuristics is used
as the input for the second, while in the case of teamwork mode, meta-heuristics evolve in
parallel, cooperatively exploring and exploiting search space.

Approach which is developed for the purpose of this research represents combination
of LLH and HLH and encompasses well-known ABC, FA, and SCA meta-heuristics. These
three meta-heuristics are chosen due to its complementary weaknesses and strengths that
makes them a promising candidates for hybridization.

Based on the previous findings, the ABC algorithm has efficient exploration mecha-
nism which discards individuals that can not be improved in the predefined number of
iterations, however it suffers from poor exploitation [73]. Conversely, both FA and SCA
meta-heuristics exhibit above average intensification abilities, but they do not employ
explicit exploration mechanism which leads to lower diversification capabilities [67,80].
Dynamic FA implementation controls exploitation–exploration balance by shrinking pa-
rameter α throughout iterations, while the SCA also uses dynamic parameter r1. However,
if the initially generated population is far away from optimum, dynamic parameters would
only perform exploration around current solutions (novel solutions from other regions
of the search space will not be generated), and when termination condition is reached, in
most cases local optimum solutions will be rendered. Additionally, regardless of good
intensification of FA and SCA, the search can be further boosted by combination of its
search expressions. This stems from the fact that FA and SCA employ different search
equations—the FA uses the notion of distance between solution, while the SCA employs
trigonometric functions.

Motivated by the facts provided above, proposed hybrid meta-heuristics first combines
FA and SCA algorithms in a form of LLH with teamwork mode and afterwards such
approach is hybridized with the ABC meta-heuristics, forming a HLH teamwork mode
optimizer. Method which is proposed for the purpose of this research is therefore named
multi-swarm-ABC-FA-SCA (MS-AFS).

3.2.2. Overview of MS-AFS

In addition to combining ABC, FA, and SCA meta-heuristics, proposed MS-AFS also
employs the following mechanisms:

• Chaotic and quasi-reflection-based learning (QRL) population initialization in order
to establish boosting of the search by redirecting solutions towards more favorable
parts of the domain;

Sensors 2022, 22, 4204 9 of 34

• Efficient learning mechanism between swarms with the goal of combining weakness
and strengths of different approaches more efficiently.

The concept of employing chaotic maps in meta-heuristics methods was first proposed
by Caponetto et al. in [81]. The stochastic essence of the majority of meta-heuristics methods
relates on random number generators. Nevertheless, several recent studies suggest that the
search procedure could be improved if it were grounded in chaotic sequences [82,83].

Numerous chaotic maps exist, including circle, Chebyshev, logistic, sine, sinusoidal,
tent, and many others. Extensive simulations conducted for the purpose of current, as
well as previous research [63] with all the above-mentioned maps yielded the conclusion
that the best results can be obtained by applying the logistic map, that was selected
for implementation.

To establish chaotic-based population initialization, pseudo-random number θ0 is
generated, as the seed for chaotic sequence θ created by the logistic mapping:

θi+1 = µθi × (1− θi), i = 1, 2, . . . , N − 1, (19)

where N denotes the population size, i is the sequence number, while µ is chaotic sequence
control parameter. The µ was set to 4, as suggested in [84], while 0 < θ0 < 1 and
θ0 6= 0.25, 0.5, 0.75, 1.

Every parameter j of each solution i is mapped to rendered chaotic sequences by the
following equation:

Xc
i = θiXi, (20)

where Xc
i is new position of individual i after chaotic perturbations.

The QRL procedure was initially proposed in [85]. This approach implies the gen-
eration of the quasi-reflexive-opposite solutions following the logic that if the original
individual is positioned at a large distance from the optimum, a decent chance exists that
the opposite solution could be located much nearer to the optimum.

When utilizing the QRL procedure described above, the quasi-reflexive-opposite
individual Xqr of the solution X will be created by applying the following expression for
every component j of solution X:

Xqr = rnd
(

LB + UB
2

, X
)

, (21)

where rnd
(

LB + UB
2

, X
)

is used to generate an arbitrary number from the uniform dis-

tribution within
[

LB + UB
2

, X
]

, and LB and UB are lower and upper search boundaries,

respectively. This strategy will be executed for each parameter of observed solution X in D
dimensions.

Taking all into account, population initialization of proposed MS-AFS is summarized
in Algorithm 1.

As it can be observed from Algorithm 1, the size of starting population Pstart is N/2
individuals. In this way, the fitness function evaluations FFEs in the initialization phase
are executed only N times and additional load, in terms of computational requirements, on
the MS-AFS complexity is not imposed.

After initialization of population P by Algorithm 1, N/2 worse solutions are chosen
as the initial population (P1) for first swarm (s1), while remaining individuals (P2) are
delegated to the second swarm (s2). The s2 is created by establishing LLH with teamwork
mode between FA and SCA algorithms, while the s1 is executed only by the ABC meta-
heuristics. Due to the fact that the ABC exhibits better exploration abilities and that it has
more chance to hit the favorable regions of the search domain, worse N/2 individuals are
chosen as initial population for the s1.

Sensors 2022, 22, 4204 10 of 34

Algorithm 1 Pseudo-code for chaotic and QRL population initialization.

Step 1: Generate starting population Pstart of N/2 solutions with standard initialization
expression: Xi = LB + (UB− LB) · rand(0, 1), i = 1, ...N/2, where rand(0, 1) represents
pseudo-random number drawn from the range [0, 1].
Step 2: Randomly select 2 subsets of N/4 from Pstart for chaotic and QRL initialization,
denoted as Pc and Pqrl , respectively.
Step 3: Extend Pc by applying chaotic sequences to each individual in Pc using expres-
sions (19) and (20). The size of Pc after extension is N/2.
Step 4: Extend Pqrl by applying QRL mechanism to each individual in Pqrl using expres-
sion (21). The size of Pqrl after extension is N/2.
Step 5: Calculate fitness of all individuals from Pc and Pqrl .
Step 6: Sort all solutions from Pc ∪ Pqrl according to fitness.
Step 7: Select N best solutions as the initial population P.

The s2 simply combines search expressions of FA and SCA algorithms, Equations (13)
and (17), respectively, and in each iteration every individual is evolved either by performing
FA or SCA search. Finally, the s1 and s2 execute independently, where each swarm evolves
its own population of candidate solutions.

The s1 and s2 search processes are shown in Algorithms 2 and 3, respectively.

Algorithm 2 Search process of s1—ABC algorithm.

for each solution Xi do
perform employed bee phase according to Equation (6)
perform onlooker bee phase according to expressions (6) and (7)

end for
perform scout bee phase (explicit exploration) according to expression (4)

Algorithm 3 Search process of s2—LLH between FA and SCA.

for each solution Xi do
if rand(0, 1) > 0.5 then

Evolve Xi by FA search—expression (13)
else

Evolve Xi by SCA search—expression (17)
end if

end for

However, as noted above, in order to facilitate the search, after ψ iterations, the
mechanism of exchanging knowledge (knowledge exchange mechanism—KEM) about
the search region between s1 and s2 is triggered and it is executed in the following way
in every iteration: if rand(0, 1) > ke f replace one worst solution from s1 (Xw,s1) with the
best individual from s2 (Xb,s2) and vice-versa. However, this mechanism may also render
some problems. If the exchange of solutions between swarms is triggered too early and/or
too frequently, then diversity of swarms may be lost and local optimal solutions may be
returned. This scenario is mitigated by additional two control parameters: ψ and ke f . The
ke f (knowledge exchange frequency) controls the frequency of KEM triggering after the
condition t > ψ, where t is the current iteration counter, has been satisfied.

High-level inner workings of proposed MS-AFS are described in Algorithm 4.

Sensors 2022, 22, 4204 11 of 34

Algorithm 4 High-level MS-AFS pseudo-code.

Initialize global parameters: t = 0, T, and N.
Initialize: control parameters of ABC, FA, and SCA meta-heuristics.
Generate initial population P according to Algorithm 1.
Determine populations for s1 and s2—P1 and P2, respectively.
while t ≤ T do

Execute s1 according to Algorithm 2
Execute s2 according to Algorithm 3
if t > φ then

if rand(0, 1) > ke f then
Trigger KEM mechanism

end if
end if

end while
Return Xbest
Results analysis, performance metrics generation and visualization

3.2.3. Computational Complexity, MS-AFS Solutions’ Encoding for ELM Tuning and
Flow-Chart

Because the most computationally costly portion of the swarm intelligence algorithm
is the objective evaluation [86], the number of FFEs may be used to assess the complexity
of the method.

Proposed MS-AFS does not impose additional FFEs, not even in the initialization
phases, therefore in terms of FFEs, its complexity is given as:

O(MS− AFS) = O(N) + O((N · T)) (22)

However, there is always a trade-off, therefore the proposed MS-AFS also exhibits
some limitations. The major drawback of MS-AFS method is reflected in the fact that
the algorithm requires more control parameters. All three components of the MS-AFS,
namely the ABC, FA, and SCA, have to be tuned with their respective control parameters.
Nevertheless, the proposed MS-AFS is significantly more efficient than the individual
algorithms, justifying the requirement for more control parameters, as it is shown in
Section 4.

The plain ELM model is based on the random initial set of the input weights and biases,
consequently being vulnerable to several performance drawbacks. More specifically, the
plain ELM frequently requires a significant amount of neurons, that could be not necessary
and/or sub-optimal. This increase in the number of neurons in the hidden layer can slow
down the ELM response in case that previously unknown data are wired to the network
inputs, rendering it impractical for numerous practical applications.

The proposed hybrid multi-swarm meta-heuristics and ELM model framework utilizes
MS-AFS meta-heuristics to optimize the input weights and biases of the ELM model, while
the number of neurons in the hidden layer was determined by a simple grid search. The MP
generalized inverse has been used to obtain the output weights. Therefore, the proposed
hybrid technique is named ELM-MS-AFS.

Each MS-AFS solution consists of nn · f s + nn parameters, where nn and f s denote
number of neurons in the hidden layer, and the size of input feature vector, respectively.
For the sake of clarity, a flow-chart of proposed ELM-MS-AFS is given in Figure 1.

Sensors 2022, 22, 4204 12 of 34

Initialize parameters and
initial population

Subpopulation s2Subpopulation s1

Sort solutions by fitness in
s1 and s2

Trigger KEM mechanism

Perform FA search and
evaluate fitness according

to b)

Perform ABC search and
evaluate fitness according

to b)

Start

KEM conditions
satisfied

t<=T

Show best result from
s1 U s2

and postprocess and
visualize

End

no

yes

yes yes

no

End

Start

Input: training and testing
dataset, NN in hidden layer,

MS-AFS solution

Generate ELM

Train ELM

Test ELM

Return test classification
error (fitness) to a)

Figure 1. Overview for the proposed ELM-MS-AFS approach.

4. Experiments

This section first describes the datasets used in the experiments, followed by the
metrics that were used to evaluate the results. Finally, this section provides the obtained
results and their comparative analysis with other similar cutting-edge methods.

4.1. Datasets

The experiments in this research were performed on seven well-known UCI (Univer-
sity of California, Irvine) benchmark datasets, namely Diabetes, Heart Disease, Iris, Wine,
Wine Quality, Satellite and Shuttle, that can be retrieved from https://archive.ics.uci.edu/
ml/datasets.php (accessed on 15 May 2022).

Their characteristics have been summarized in Table 1. The Pima Indians Diabetes
dataset is utilized in diabetes diagnostics, to determine if the patient is positive or not.
The dataset comprises 768 patterns belonging to two distinct classes. The Heart Disease
dataset comprises 270 patterns, with 13 attributes and two classes, that indicate if the
patient has a heart disease or not. The third dataset, namely the Fisher Iris dataset, consists
of three flower species measurements (viz. Setosa, Verginica, and Versicolor). The Iris
dataset is comprised of three classes, and every class has fifty samples. The Wine dataset
comprises 178 samples belonging to three sorts of wines. The Wine dataset was created
by the chemical analyses that have been performed on wines produced from the grapes
grown in the same region in Italy, but by three different cultivators.

Table 1. Datasets used in the conducted experiments.

Dataset Samples Training Data Testing Data Attributes Classes

Diabetes 768 538 230 8 2
Disease 270 189 81 13 2

Iris 150 105 45 4 3
Wine 178 125 53 13 3

Wine Quality 1599 1120 479 11 6
Satellite 6400 5400 1000 36 6
Shuttle 58,000 50,750 7250 9 7

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

Sensors 2022, 22, 4204 13 of 34

The fifth dataset used, Wine Quality, deals with the sorts of the Portuguese “Vinho
Verde” wines. The quality of wines is modeled by the results obtained with physiochemical
testing. The satellite image dataset comprises the multi-spectral pixel values located in
3× 3 neighbourhood areas of the satellite images. This dataset is also available on the UCI
repository (https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite) (accessed
on 15 May 2022)), where it is stated that it has seven classes. However, it actually has
just six classes, as reported in Table 1. Finally, the seventh dataset, Shuttle, relates to the
radiators’ placement on board of the Space Shuttle, and it comprises 58,000 samples, with
nine attributes and separated into seven classes.

All datasets have been divided into training and testing groups. Satellite and Shuttle
datasets are available with already predetermined train and test subsets, and they were
used accordingly. Diabetes, Disease, Iris, Wine, and Wine Quality datasets do not have
predetermined training and testing subsets, as each one of them comes in the form of
a singular dataset. Therefore, all five mentioned datasets were subsequently separated
into testing and training subsets by utilizing 70% of data for training process, and 30%
for testing. Since most of the datasets are imbalanced, data are split in a stratified fashion
to maintain the same proportions of class labels in training and testing subsets as in the
input dataset.

Visualization of class distributions in the employed datasets is provided in Figures 2 and 3
for Diabetes, Disease, Iris, Wine, and Wine Quality before split into training and testing
subsets and for Satellite and Shuttle with already predetermined training and testing
groups, respectively.

0 1
Classes

0

100

200

300

400

500

N
um

be
r o

f i
ns

ta
nc

es

65.10%

34.90%

Diabetes dataset - distribution of classes

1 0
Classes

0

100

200

300

400

500

N
um

be
r o

f i
ns

ta
nc

es

51.32%
48.68%

Heart Disease dataset - distribution of classes

0 1 2
Classes

0

10

20

30

40

50

N
um

be
r o

f i
ns

ta
nc

es

33.33% 33.33% 33.33%
Iris dataset - distribution of classes

1 0 2
Classes

0

10

20

30

40

50

60

70

N
um

be
r o

f i
ns

ta
nc

es

39.89%

33.15%

26.97%

Wine dataset - distribution of classes

2 3 4 1 5 0
Classes

0

100

200

300

400

500

600

700

N
um

be
r o

f i
ns

ta
nc

es

42.59%
39.90%

12.45%

3.31%
1.13% 0.63%

Wine Quality dataset - distribution of classes

Figure 2. Distribution of classes in Diabetes, Disease, Iris, Wine, and Wine Quality datasets be-
fore split.

https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)

Sensors 2022, 22, 4204 14 of 34

0 5 2 1 4 3
Classes

0

200

400

600

800

1,000

N
um

be
r o

f i
ns

ta
nc

es

24.17% 23.40%
21.67%

10.80% 10.60%
9.36%

Satellite training dataset - distribution of classes

5 0 2 4 1 3
Classes

0

100

200

300

400

N
um

be
r o

f i
ns

ta
nc

es

23.50% 23.05%

19.85%

11.85% 11.20% 10.55%

Satellite testing dataset - distribution of classes

0 3 4 2 1 6 5
Classes

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

N
um

be
r o

f i
ns

ta
nc

es

78.41%

15.51%

5.65%
0.30% 0.09% 0.03% 0.01%

Shuttle training dataset - distribution of classes

0 3 4 2 1 5 6
Classes

0

2,000

4,000

6,000

8,000

10,000

12,000

N
um

be
r o

f i
ns

ta
nc

es

79.16%

14.86%

5.58%
0.27% 0.09% 0.03% 0.01%

Shuttle testing dataset - distribution of classes

Figure 3. Distribution of classes in Satellite and Shuttle datasets with predetermined training and
testing subsets.

4.2. Metrics

In order to evaluate the performances of the proposed MS-AFS, it is required to
measure them accurately and precisely. The common approach to evaluate machine
learning models is based on the false positives (FP) and false negatives (FN), along with
true positives (TP) and true negatives (TN), to accurately verify the classification accuracy,
as defined by the general formula given by Equation (23).

ACC = (TP + TN)/(TP + FP + TN + FN) (23)

By utilizing TP, TN, FP, and FN, the model’s recall, sensitivity (recall) and F-measure
can easily be determined by applying the formulas given in Equations (24)–(26):

Precision = TP/(TP + FP) (24)

Recall(sensitivity) = TP/(TP + FN) (25)

F-measure = (2 · Precision · Recall)/(Precision + Recall) (26)

The precision and recall measurements are very important for the imbalanced datasets.

4.3. Experimental Results and Comparative Analysis with Other Cutting-Edge Meta-Heuristics

The performance of the suggested method has been evaluated by utilizing the similar
experimental setup as proposed in the referred paper [2]. The proposed method has been
validated and compared against the basic versions of the algorithms that were used to create
a multi-swarm method—ABC [23], FA [24], and SCA [74]. Additionally, the elaborated
algorithm has been compared to the bat algorithm (BA) [87], Harris hawk optimization
(HHO) [88], whale optimization algorithm (WOA) [27], and Invasive Weed Optimization
(IWO) [19], which were also used in [2]. It is important to note that all meta-heuristics
included in the experiments were independently implemented by the authors, and these
results were reported in the tables. Additionally, to emphasize that meta-heuristics were
applied to ELM tuning, each proposed approach is shown with the prefix ‘ELM’.

All meta-heuristics included in comparative analysis were tested with optimal (sub-
optimal) parameters which are suggested in original papers. Values of MS-AFS specific
parameters were determined empirically and they were set as follows for all simulations:
ψ = T/5 and ke f = 0.6.

Sensors 2022, 22, 4204 15 of 34

In paper [2] simulations were executed with 20 solutions in the population (N = 20)
and the termination condition was limited to 100 iterations (T = 100). However, in this
research, a lower number of neurons in the hidden ELM layer were employed for all
observed datasets.

In the proposed research, a simple grid search has been applied to determine the
optimal (sub-optimal) number of neurons for all datasets in average. The search was
performed with 10–200 neurons with a step size of 10 and it was observed that, in average
for all datasets, the best performance was obtained with 30, 60, and 90 neurons. Therefore,
in this research, simulations with 30, 60, and 90 neurons are conducted to evaluate the
performance of the proposed ELM-MS-AFS model.

However, in this research, all methods were tested by employing a substantially lower
number of iterations than in [2]. All methods were tested with N = 20 and T = 20 in
50 independent runs, and best, worst, and mean accuracy along with standard deviation
performance metrics are reported in Tables 2–4 for 30, 60, and 90 neurons, respectively. The
basic ELM was also tested on each dataset in 50 independent runs.

Table 2. Accuracy comparative analysis for simulations with 30 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM

best (%) 73.59 87.99 80 98.15 60 77.24 84.12
worst (%) 61.90 79.87 66.67 83.33 54.37 68.48 10.39
mean (%) 71.22 84.67 72.18 92.52 57 73.68 55.44
std 2.5628 1.9972 3.9811 3.7214 1.2527 2.3860 24.6222

ELM-IWO

best (%) 80.95 89.94 100.00 100.00 62.92 82.04 93.13
worst (%) 80.09 88.96 100.00 100.00 62.29 81.59 91.14
mean (%) 80.52 89.61 100.00 100.00 62.76 81.79 92.20
std 0.0061 0.0046 0.0000 0.0000 0.0031 0.0023 0.0100

ELM-WOA

best (%) 80.52 89.61 100.00 98.15 62.92 81.59 92.90
worst (%) 79.22 87.01 100.00 96.30 61.67 80.34 88.43
mean (%) 79.87 88.72 100.00 97.69 62.29 80.94 90.93
std 0.0092 0.0123 0.0000 0.0093 0.0051 0.0067 0.0228

ELM-HHO

best (%) 79.65 89.29 100.00 100.00 62.71 82.09 93.85
worst (%) 79.22 87.34 100.00 94.44 61.25 80.89 88.08
mean (%) 79.44 88.56 100.00 98.15 61.82 81.44 91.24
std 0.0031 0.0093 0.0000 0.0262 0.0071 0.0062 0.0292

ELM-BA

best (%) 80.52 88.31 100.00 100.00 63.75 81.44 90.98
worst (%) 80.09 87.66 100.00 100.00 61.67 80.64 89.86
mean (%) 80.30 88.07 100.00 100.00 62.66 81.09 90.39
std 0.0031 0.0031 0.0000 0.0000 0.0086 0.0039 0.0056

ELM-SCA

best (%) 81.39 89.94 100.00 100.00 63.13 81.89 92.97
worst (%) 80.95 88.31 100.00 100.00 61.67 81.49 89.75
mean (%) 81.17 89.12 100.00 100.00 62.50 81.72 91.83
std 0.0031 0.0077 0.0000 0.0000 0.0066 0.0017 0.018

ELM-FA

best (%) 80.95 89.61 100.00 98.15 62.50 81.24 91.97
worst (%) 80.95 87.66 100.00 96.30 61.46 80.54 89.95
mean (%) 80.95 88.72 100.00 97.22 61.98 80.90 91.11
std 0.0000 0.0081 0.0000 0.0107 0.0043 0.0032 0.0104

ELM-ABC

best (%) 81.39 90.58 100.00 100.00 62.50 81.99 92.28
worst (%) 80.09 88.64 100.00 100.00 60.21 81.29 88.82
mean (%) 80.74 89.37 100.00 100.00 61.72 81.73 90.65
std 0.0092 0.0093 0.0000 0.0000 0.0104 0.0032 0.0174

ELM-MS-AFS

best (%) 86.15 92.53 100.00 100.00 66.25 84.59 98.67
worst (%) 83.12 90.91 100.00 100.00 65.63 82.99 97.71
mean (%) 84.63 91.80 100.00 100.00 65.99 83.67 98.21
std 0.0214 0.0072 0.0000 0.0000 0.0026 0.0076 0.0048

Sensors 2022, 22, 4204 16 of 34

Table 3. Accuracy comparative analysis for simulations with 60 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM

best (%) 69.69 89.93 71.11 94.44 58.96 80.09 90.00
worst (%) 55.84 83.12 40 81.48 52.29 74.59 3.04
mean (%) 64.85 86.52 54.4 89.48 55.87 78.11 42.43
std 3.9713 1.4753 7.9534 3.9447 1.9326 1.2749 32.6834

ELM-IWO

best (%) 77.49 89.94 100.00 100.00 62.92 83.59 94.64
worst (%) 77.49 88.96 100.00 100.00 61.67 83.34 88.22
mean (%) 77.49 89.45 100.00 100.00 62.24 83.47 91.42
std 0.0107 0.0042 0.0000 0.0000 0.0057 0.0018 0.0321

ELM-WOA

best (%) 79.22 88.96 100.00 100.00 62.29 83.34 94.45
worst (%) 77.49 88.31 100.00 98.15 61.88 82.64 91.52
mean (%) 78.35 88.64 100.00 99.07 62.08 82.99 92.67
std 0.0122 0.0027 0.0000 0.0107 0.0017 0.0050 0.0156

ELM-HHO

best (%) 79.22 90.26 100.00 100.00 63.54 83.34 93.43
worst (%) 77.92 87.99 100.00 98.15 62.08 83.34 89.32
mean (%) 78.57 89.29 100.00 99.07 63.07 83.34 91.90
std 0.0092 0.0103 0.0000 0.0107 0.0069 0.0000 0.0224

ELM-BA

best (%) 79.65 88.96 100.00 100.00 63.54 83.39 90.61
worst (%) 78.35 88.31 97.78 98.15 62.29 82.84 87.46
mean (%) 79.00 88.56 97.78 99.54 62.76 83.12 88.79
std 0.0092 0.0031 0.0000 0.0093 0.0060 0.0039 0.0163

ELM-SCA

best (%) 79.22 89.61 100.00 100.00 62.92 83.84 90.83
worst (%) 77.49 88.64 100.00 98.15 61.25 83.54 89.46
mean (%) 78.35 89.29 100.00 99.54 62.19 83.69 90.10
std 0.0122 0.0046 0.0000 0.0093 0.0086 0.0021 0.0069

ELM-FA

best (%) 78.79 89.61 100.00 100.00 63.33 82.64 91.59
worst (%) 77.49 88.64 100.00 100.00 62.08 82.54 85.79
mean (%) 78.14 89.29 100.00 100.00 62.45 82.59 88.67
std 0.0092 0.0046 0.0000 0.0000 0.0060 0.0007 0.0290

ELM-ABC

best (%) 79.22 89.94 100.00 100.00 62.71 83.54 96.77
worst (%) 79.22 89.29 100.00 100.00 62.29 83.34 87.72
mean (%) 79.22 89.61 100.00 100.00 62.55 83.44 91.83
std 0.0000 0.0027 0.0000 0.0000 0.0002 0.0014 0.0458

ELM-MS-AFS

best (%) 82.68 94.16 100.00 100.00 68.13 86.89 97.68
worst (%) 80.52 91.88 100.00 100.00 66.88 85.89 84.74
mean (%) 81.60 92.86 100.00 100.00 67.60 86.39 91.62
std 0.0153 0.0103 0.0000 0.0000 0.0052 0.0071 0.0651

Table 4. Accuracy comparative analysis for simulations with 90 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM

best (%) 70.56 92.53 75.55 90.74 61.04 80.64 80.42
worst (%) 61.04 83.44 57.78 40.74 46.04 77.59 4.70
mean (%) 65.56 87.83 67.29 71.48 53.79 79.43 44.12
std 2.2178 2.1791 4.5550 10.5018 3.1374 0.7149 29.1458

ELM-IWO

best (%) 80.09 94.48 97.78 100.00 62.92 85.39 91.84
worst (%) 79.65 92.86 97.78 100.00 61.25 84.84 89.19
mean (%) 79.87 93.34 97.78 100.00 62.24 85.12 90.29
std 0.0030 0.0077 0.0000 0.0000 0.0071 0.0039 0.0138

ELM-WOA

best (%) 79.65 93.51 97.78 100.00 62.71 84.84 92.49
worst (%) 79.22 92.53 97.78 100.00 60.21 83.94 89.05
mean (%) 79.44 93.18 97.78 100.00 61.61 84.39 90.27
std 0.0031 0.0046 0.0000 0.0000 0.0112 0.0064 0.0193

Sensors 2022, 22, 4204 17 of 34

Table 4. Cont.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-HHO

best (%) 80.52 93.51 100.00 100.00 64.17 84.34 93.00
worst (%) 77.22 92.53 97.78 100.00 61.25 84.04 84.74
mean (%) 79.87 92.86 98.33 100.00 61.60 84.19 87.72
std 0.0092 0.0046 0.0111 0.0000 0.0121 0.0021 0.0458

ELM-BA

best (%) 79.22 94.48 97.78 100.00 62.08 85.39 91.63
worst (%) 78.35 88.31 97.78 100.00 61.67 82.84 88.12
mean (%) 79.00 88.56 97.78 100.00 62.66 83.12 90.29
std 0.0092 0.0031 0.0000 0.0000 0.0086 0.0039 0.0189

ELM-SCA

best (%) 79.65 93.51 97.78 100.00 63.33 85.49 89.29
worst (%) 79.65 92.53 97.78 100.00 61.88 84.59 85.52
mean (%) 79.65 93.02 97.78 100.00 62.34 85.04 86.87
std 0.0000 0.0042 0.0000 0.0000 0.0069 0.0063 0.0210

ELM-FA

best (%) 80.95 94.16 100.00 100.00 61.88 84.44 92.39
worst (%) 79.65 92.86 97.78 100.00 60.42 82.54 90.99
mean (%) 80.30 93.59 98.33 100.00 61.09 82.59 91.70
std 0.0092 0.0067 0.0111 0.0000 0.0069 0.0007 0.0070

ELM-ABC

best (%) 79.65 92.86 97.78 100.00 62.29 84.64 96.47
worst (%) 78.35 89.29 97.78 100.00 61.04 83.34 89.68
mean (%) 79.00 89.61 97.78 100.00 61.56 83.44 92.61
std 0.0092 0.0026 0.0000 0.0000 0.0055 0.0014 0.0349

ELM-MS-AFS

best (%) 84.42 96.75 97.78 100.00 68.33 88.19 97.62
worst (%) 82.68 95.13 97.78 100.00 66.25 87.74 93.13
mean (%) 83.55 95.70 97.78 100.00 67.40 87.97 94.70
std 0.0122 0.0072 0.0000 0.0000 0.0100 0.0072 0.0253

The findings from Tables 2–4 demonstrate the superior performance of meta-heuristics-
based ELMs over the basic ELM. It can be noted that the plain ELM exhibited high standard
deviations on all datasets, for 30, 60, and 90 neurons, which was expected as the weights
are initialized in a random fashion, without any kind of “intelligence”. The proposed
ELM-MS-AFS approach produced the best results by far, considering the meta-heuristics-
based ELMs. In case of 30 neurons in a hidden layer, depicted in Table 2, the ELM-MS-AFS
obtained the best results in terms of best, worst, and mean accuracies on five datasets
(Diabetes, Disease, Wine Quality, Satellite, and Shuttle), and also being tied on the first
place in two occasions (Iris and Wine). Similar trends are observed in case of 60 neurons
(Table 3), where ELM-MS-AFS achieved the best results in terms of best, worst, and mean
accuracies on three datasets (Diabetes, Disease, Wine Quality, and Satellite), and being tied
on the first position on Iris and Wine Datasets. The ELM-MS-AFS also obtained the highest
best accuracy in the case of the Shuttle dataset. Finally, on the experiments with 90 neurons
in the hidden layer shown in Table 4, the proposed ELM-MS-AFS obtained the best results
on five datasets (Diabetes, Disease, Wine Quality, Satellite, and Shuttle), and was tied for
the first place on the Wine dataset.

Another interesting conclusion can be derived from the obtained performance for
a different amount of neurons in the hidden layer. For example, for the ELM-MS-AFS
approach, performance rise with the increased number of neurons on some datasets, as it
can be seen for the Disease dataset, where the ELM-MS-AFS achieved an average accuracy
of 91.80% with 30 neurons, 92.86% with 60 neurons, and 95.70% with 90 neurons. Similar
patterns can be observed for the Satellite dataset. On the other hand, on the Diabetes
dataset, ELM-MS-AFS achieved the best performance and average accuracy of 84.63% with
30 neurons, then a drop to 81.60% in the average accuracy can be seen with 60 neurons,
and, finally, again an increase to 83.55% with 90 neurons. Finally, for the Wine Quality
dataset, the ELM-MS-AFS achieved the best performances with an accuracy of 67.60% with
60 neurons in the hidden layer. A further incrementation in neurons did not result in an

Sensors 2022, 22, 4204 18 of 34

increased accuracy, as there is a drop of the average accuracy to 67.40% when the network is
leveraged to 90 neurons. This is a classic example of the over-fitting issue, where increasing
the number of neurons reduces the generalization capabilities of the model, and results in
the network that learns training data too well and under-performs on the test data.

As already noted above, for imbalanced datasets, accuracy metric is not enough to
gain insights into classification results, therefore in Tables 5–7, macro averaged precision,
recall, and f1-score metrics, obtained by ELM tuned with meta-heuristics approaches for
the best run, were also shown for experiments with 30, 60, and 90 neurons, respectively.
All those metrics were extracted from classification report.

In order to better visualize the performance and classification error rate speed of
convergence for the proposed ELM-MF-AFS method, convergence graphs for all seven
datasets, for the cases of 30, 60, and 90 neurons, are shown in Figure 4. The compared
algorithms were also plotted in Figure 4. It is obvious that the proposed method converges
much faster than other approaches for most of the datasets. Additionally, it can be observed
that the proposed MS-AFS has initial advantage due to the chaotic and QRL initialization.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Diabetes 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Diabetes 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.16

0.18

0.20

0.22

0.24

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Diabetes 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.08

0.09

0.10

0.11

0.12

0.13

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Heart Disease 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Heart Disease 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Heart Disease 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.04

0.02

0.00

0.02

0.04

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Iris 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.04

0.02

0.00

0.02

0.04

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Iris 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.000

0.005

0.010

0.015

0.020

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Iris 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

Figure 4. Cont.

Sensors 2022, 22, 4204 19 of 34

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.34

0.35

0.36

0.37

0.38

0.39

0.40

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine quality 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine quality 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.32

0.34

0.36

0.38

0.40

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine quality 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.16

0.17

0.18

0.19

0.20

0.21

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Satellite 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.13

0.14

0.15

0.16

0.17

0.18
Ob

je
ct

iv
e

(c
la

ss
ifi

ca
tio

n
er

ro
r)

Satellite 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.12

0.13

0.14

0.15

0.16

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Satellite 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 30 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 60 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 90 neurons convergence graphs
ELM-MS-AFS
ELM-ABC
ELM-FA
ELM-SCA
ELM-BA
ELM-HHO
ELM-WOA
ELM-IWO

Figure 4. Graphs for convergence speed evaluation on seven observed datasets for 30, 60, and
90 neurons, for the proposed method vs. other approaches.

Table 5. Precision, recall, and f1-score comparative analysis for simulations with 30 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-IWO

accuracy (%) 80.95 89.94 100.00 100.00 62.92 82.04 93.13

precision 0.789 0.900 1.000 1.000 0.294 0.806 0.391

recall 0.754 0.899 1.000 1.000 0.287 0.765 0.338

f1-score 0.767 0.899 1.000 1.000 0.286 0.769 0.358

ELM-WOA

accuracy (%) 80.52 89.61 100.00 98.15 62.92 81.59 92.90

precision 0.784 0.898 1.000 0.978 0.344 0.708 0.335

recall 0.747 0.895 1.000 0.984 0.267 0.744 0.313

f1-score 0.760 0.896 1.000 0.980 0.267 0.719 0.312

ELM-HHO

accuracy (%) 79.65 89.29 100.00 100.00 62.71 82.09 93.85

precision 0.777 0.894 1.000 1.000 0.303 0.827 0.397

recall 0.730 0.892 1.000 1.000 0.274 0.755 0.382

f1-score 0.745 0.893 1.0 1.000 0.274 0.735 0.387

ELM-BA

accuracy (%) 80.52 88.31 100.00 100.00 63.75 81.44 90.98

precision 0.800 0.887 1.000 1.000 0.318 0.866 0.244

recall 0.729 0.882 1.000 1.000 0.272 0.744 0.351

f1-score 0.748 0.883 1.000 1.000 0.271 0.718 0.271

Sensors 2022, 22, 4204 20 of 34

Table 5. Cont.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-SCA

accuracy (%) 81.39 89.94 100.00 100.00 63.13 81.89 92.97

precision 0.818 0.900 1.000 1.000 0.310 0.868 0.342

recall 0.735 0.899 1.000 1.000 0.270 0.752 0.381

f1-score 0.757 0.899 1.000 1.000 0.270 0.724 0.352

ELM-FA

accuracy (%) 80.95 89.61 100.00 98.15 62.50 81.24 91.97

precision 0.797 0.899 1.0 0.985 0.313 0.699 0.407

recall 0.743 0.895 1.000 0.982 0.272 0.748 0.356

f1-score 0.760 0.896 1.000 0.983 0.275 0.718 0.372

ELM-ABC

accuracy (%) 81.39 90.58 100.00 100.00 62.50 81.99 92.28

precision 0.805 0.906 1.000 1.000 0.372 0.205 0.347

recall 0.746 0.906 1.000 1.000 0.285 0.167 0.343

f1-score 0.764 0.906 1.000 1.000 0.297 0.065 0.345

ELM-MS-AFS

accuracy (%) 86.15 92.53 100.00 100.00 66.25 84.59 98.67

precision 0.857 0.926 1.000 1.000 0.527 0.841 0.564

recall 0.814 0.925 1.000 1.000 0.370 0.793 0.436

f1-score 0.830 0.925 1.000 1.000 0.402 0.792 0.448

Table 6. Precision, recall, and f1-score comparative analysis for simulations with 60 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-IWO

accuracy (%) 77.49 89.94 100.00 100.00 62.92 83.59 94.64

precision 0.747 0.899 1.000 1.000 0.285 0.826 0.538

recall 0.750 0.900 1.000 1.000 0.296 0.778 0.422

f1-score 0.748 0.899 1.000 1.000 0.290 0.747 0.427

ELM-WOA

accuracy (%) 79.22 88.96 100.00 100.00 62.29 83.34 94.45

precision 0.768 0.890 1.000 1.000 0.277 0.885 0.377

recall 0.756 0.889 1.000 1.000 0.253 0.770 0.384

f1-score 0.761 0.889 1.000 1.000 0.239 0.749 0.380

ELM-HHO

accuracy (%) 79.22 90.26 100.00 100.00 63.54 83.34 93.43

precision 0.769 0.902 1.000 1.000 0.277 0.850 0.366

recall 0.753 0.902 1.000 1.000 0.271 0.771 0.374

f1-score 0.760 0.902 1.000 1.000 0.265 0.749 0.370

ELM-BA

accuracy (%) 79.65 88.96 100.00 100.00 63.54 83.39 90.61

precision 0.773 0.890 1.000 1.000 0.304 0.846 0.231

recall 0.760 0.889 1.000 1.000 0.297 0.772 0.260

f1-score 0.766 0.889 1.000 1.000 0.296 0.748 0.244

ELM-SCA

accuracy (%) 79.22 89.61 100.00 100.00 62.92 83.84 90.83

precision 0.767 0.896 1.000 1.000 0.285 0.831 0.400

recall 0.763 0.896 1.000 1.000 0.296 0.787 0.325

f1-score 0.765 0.896 1.000 1.000 0.290 0.781 0.353

Sensors 2022, 22, 4204 21 of 34

Table 6. Cont.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-FA

accuracy (%) 78.79 89.61 100.00 100.00 63.33 82.64 91.59

precision 0.768 0.898 1.000 1.000 0.320 0.794 0.353

recall 0.737 0.895 1.000 1.000 0.282 0.759 0.311

f1-score 0.748 0.896 1.000 1.000 0.284 0.742 0.308

ELM-ABC

accuracy (%) 79.22 89.94 100.00 100.00 62.71 83.54 96.77

precision 0.770 0.900 1.000 1.000 0.263 0.815 0.410

recall 0.750 0.898 1.000 1.000 0.257 0.778 0.410

f1-score 0.758 0.899 1.000 1.000 0.246 0.756 0.410

ELM-MS-AFS

accuracy (%) 82.68 94.16 100.00 100.00 68.13 86.89 97.68

precision 0.805 0.942 1.000 1.000 0.550 0.866 0.412

recall 0.805 0.942 1.000 1.000 0.357 0.829 0.420

f1-score 0.805 0.942 1.000 1.000 0.386 0.835 0.416

Table 7. Precision, recall and f1-score comparative analysis for simulations with 90 neurons.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-IWO

accuracy (%) 80.09 94.48 97.78 100.00 62.92 85.39 91.84

precision 0.789 0.945 0.978 1.000 0.335 0.850 0.404

recall 0.772 0.945 0.980 1.000 0.290 0.808 0.357

f1-score 0.779 0.945 0.978 1.000 0.294 0.814 0.371

ELM-WOA

accuracy (%) 79.65 93.51 97.78 100.00 62.71 84.84 92.49

precision 0.780 0.935 0.978 1.000 0.627 0.838 0.239

recall 0.781 0.935 0.980 1.000 0.627 0.792 0.273

f1-score 0.781 0.935 0.978 1.000 0.627 0.780 0.254

ELM-HHO

accuracy (%) 80.52 93.51 100.00 100.00 64.17 84.34 93.00

precision 0.790 0.935 1.000 1.000 0.315 0.889 0.409

recall 0.788 0.935 1.000 1.000 0.289 0.782 0.367

f1-score 0.789 0.935 1.000 1.000 0.290 0.751 0.380

ELM-BA

accuracy (%) 79.22 94.48 97.78 100.00 62.08 85.39 91.63

precision 0.776 0.945 0.978 1.000 0.325 0.840 0.370

recall 0.786 0.944 0.980 1.000 0.288 0.818 0.317

f1-score 0.780 0.945 0.978 1.000 0.291 0.823 0.312

ELM-SCA

accuracy (%) 79.65 93.51 97.78 100.00 63.33 85.49 89.29

precision 0.780 0.935 0.978 1.000 0.356 0.841 0.321

recall 0.779 0.935 0.980 1.000 0.305 0.822 0.316

f1-score 0.780 0.935 0.978 1.000 0.313 0.826 0.309

Sensors 2022, 22, 4204 22 of 34

Table 7. Cont.

Diabetes Disease Iris Wine Wine Quality Satellite Shuttle

ELM-FA

accuracy (%) 80.95 94.16 100.00 100.00 61.88 84.44 92.39

precision 0.796 0.941 1.000 1.000 0.319 0.833 0.412

recall 0.786 0.942 1.000 1.000 0.268 0.788 0.360

f1-score 0.791 0.941 1.000 1.000 0.267 0.784 0.375

ELM-ABC

accuracy (%) 79.65 92.86 95.56 100.00 62.29 84.64 96.47

precision 0.796 0.930 0.958 1.000 0.330 0.830 0.402

recall 0.753 0.929 0.956 1.000 0.284 0.798 0.384

f1-score 0.765 0.928 0.955 1.000 0.288 0.799 0.391

ELM-MS-AFS

accuracy (%) 84.42 96.75 97.78 100.00 68.33 88.19 97.62

precision 0.844 0.967 0.978 1.000 0.345 0.878 0.445

recall 0.814 0.968 0.980 1.000 0.321 0.853 0.490

f1-score 0.825 0.967 0.978 1.000 0.325 0.860 0.461

Finally, visualization of obtained metrics is further showed in Figure 5, where gener-
ated confusion matrices and precision-recall (PR) curves for some simulations by proposed
ELM-MS-AFS are shown.

cla
ss0

cla
ss1

cla
ss2

cla
ss3

cla
ss4

cla
ss5

Predicted label

class0

class1

class2

class3

class4

class5

Tr
ue

 la
be

l

1 0 1 0 0 0

0 0 7 6 0 0

0 0 183 32 2 0

0 0 65 121 0 0

0 0 4 41 13 0

0 0 0 4 0 0

MS-AFS Wine quality 30 neurons confusion matrix

0

25

50

75

100

125

150

175

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS Wine quality 30 neurons precision vs. recall curve

class0 AP:0.28
class1 AP:0.17
class2 AP:0.76
class3 AP:0.54
class4 AP:0.57
class5 AP:0.17
Micro AP:0.64
AP micro AP:0.64

cla
ss0

cla
ss1

cla
ss2

cla
ss3

cla
ss4

cla
ss5

Predicted label

class0

class1

class2

class3

class4

class5

Tr
ue

 la
be

l

457 0 3 0 0 1

0 217 0 1 5 1

2 1 383 4 0 6

0 2 65 76 2 66

15 4 3 0 193 22

0 0 28 24 7 411

MS-AFS Satellite 60 neurons confusion matrix

0

100

200

300

400

0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS Satellite 60 neurons precision vs. recall curve

class0 AP:1.00
class1 AP:0.99
class2 AP:0.95
class3 AP:0.57
class4 AP:0.91
class5 AP:0.89
Micro AP:0.93
AP micro AP:0.93

cla
ss0

cla
ss1

cla
ss2

cla
ss3

cla
ss4

cla
ss5

cla
ss6

Predicted label

class0

class1

class2

class3

class4

class5

class6

Tr
ue

 la
be

l

11255 0 0 220 0 0 3

8 0 0 5 0 0 0

17 0 0 11 11 0 0

39 0 0 2115 0 0 0

0 0 0 26 783 0 0

0 0 0 1 3 0 0

1 0 0 0 0 0 1

MS-AFS Shuttle 90 neurons confusion matrix

0

2000

4000

6000

8000

10000

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS Shuttle 90 neurons precision vs. recall curve

class0 AP:1.00
class1 AP:0.00
class2 AP:0.00
class3 AP:0.91
class4 AP:0.99
class5 AP:0.14
class6 AP:0.33
Micro AP:0.98
AP micro AP:0.98

Figure 5. Generated confusion matrices and PR curves for some datasets by ELM-MS-AFS.

Sensors 2022, 22, 4204 23 of 34

Statistical Tests

In this section, findings of statistical tests conducted for simulations shown in Section 4.3,
are presented with the goal of establishing whether or not performance improvements of
proposed ELM-MS-AFS over other state-of-the-art meta-heuristics are statistically significant.

All statistical tests were performed by taking best values of all methods obtained in all
three simulations—with 30, 60, and 90 neurons in the hidden layer. In order to determine
if the generated improvements are significant in terms of statistics, a Friedman Aligned
test [89,90] and two-way variance analysis by ranks have been employed. By analyzing the
test results, a conclusion can be made if there is a significant results’ difference among the
proposed ELM-MS-AFS and other methods encompassed by comparison. The Friedman
Aligned test results for the eight compared algorithms on seven datasets are presented in
Table 8.

The results presented in Table 8 statistically indicate that the proposed ELM-MS-AFS
algorithm has superior performance when compared to the other seven algorithms with
an average rank value of 9.5. The second best performance was achieved by ELM-HHO
algorithm that scored the average rank of 24.36, while the ELM-IWO algorithm obtained
the average rank of 27.64 at third place. The basic ELM-ABC, ELM-FA and ELM-SCA meta-
heuristics obtained the average ranks of 34.21, 31.07, and 32.5, respectively. Additionally,
the Friedman Aligned statistics (χ2

r = 18.49) is greater than the χ2 critical value with seven
degrees of freedom (14.07), at significance level α = 0.05. As the result, the null hypothesis
(H0) can be rejected and it can be stated that the suggested ELM-MS-AFS achieved results
that are significantly different than the other seven algorithms.

Table 8. Friedman Aligned test ranks for the compared algorithms.

Dataset ELM-ABC ELM-FA ELM-SCA ELM-BA ELM-HHO ELM-WOA ELM-IWO ELM-MS-AFS

Diabetes 45 12 45 53 26 45 34 2

Disease 51 21 38 10.5 38 38 10.5 6

Iris 30.5 30.5 30.5 30.5 7 30.5 30.5 9

Wine 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5

Wine Quality 49 55 27 52 8 42 35 1

Satellite 43 47 22 24.5 48 40 24.5 4

Shuttle 5 41 56 54 23 36 50 3

Average 34.28 31.86 33.57 34.43 23.78 35.43 28.71 5.93

Rank 6 4 5 7 2 8 3 1

Finally, the non-parametric post-hoc procedure, the Holm’s step-down procedure, is
also conducted and presented in Table 9. By using this procedure, all methods are sorted
according to their p value and compared with α/(k− i), where k and i represent the degree
of freedom (in this work k = 10) and the algorithm number after sorting according to the p
value in ascending order (which corresponds to rank), respectively. In this study the α is set
to 0.05 and 0.1. Additionally, it is noted that the p-value results are provided in scientific
notation.

The results given in the Table 9 suggest that the proposed algorithm significantly
outperformed all opponent algorithms at both significance levels α = 0.1 and α = 0.05.

Sensors 2022, 22, 4204 24 of 34

Table 9. Results of the Holm’s step-down procedure.

Comparison p-Value Rank 0.05/(k−i) 0.1/(k−i)

MS-AFS vs. ABC 1.92× 10−3 0 0.007143 0.014286

MS-AFS vs. BA 1.92× 10−3 1 0.008333 0.016667

MS-AFS vs. FA 3.76× 10−3 2 0.01 0.02

MS-AFS vs. WOA 3.76× 10−3 3 0.0125 0.025

MS-AFS vs. SCA 5.17× 10−3 4 0.016667 0.033333

MS-AFS vs. IWO 2.17× 10−2 5 0.025 0.05

MS-AFS vs. HHO 4.04× 10−2 6 0.05 0.1

4.4. Hybridization by Pairs

Although the reasons of combining ABC, FA and SCA meta-heuristics in multi-swarm
approach are elaborated in Section 3.2.1, for the purpose of this research, additional methods
were implemented to prove that combining two algorithms is not as effective as joining three
approaches. Therefore, the following HLH teamwork mode optimizers were implemented:
ABC-FA, ABC-SCA, and FA-SCA.

All methods have the same properties as the MS-AFS meta-heuristics—they employ
chaotic and QRL population initialization and the KEM procedure controlled by ke f and ψ
control parameters (for more details please refer to Section 3.2.2). During the initialization
phase, N/2 worse individuals are included in population s1, which is guided by the ABC
algorithm in case of ABC-FA and ABC-SCA approaches, and by the FA algorithm in the case
of FA-SCA method. It is also worth mentioning that all three additional hybrid methods
have the same computational complexity as the MS-AFS.

It needs to be noted that the hybrid between FA and SCA is established as the HLH,
not as the LLH which is the case of the MS-AFS, because only in this way two populations
controlled by different methods can be generated. Alternatively, establishing LLH between
FA and SCA would not render a fair comparison with the MS-AFS, because the KEM
procedure could not be implemented. Naturally, the three methods above can be combined
in various different ways, but performing all hybridization possibilities would go far
beyond the scope of our research.

The same experimental ELM’s tuning setup as in the basic experiment (Section 4.3)
was established and the same control parameters’ values as for ELM-MS-AFS were used for
ELM-ABC-FA, ELM-ABC-SCA, and ELM-FA-SCA. The additionally implemented methods
were validated only for three more challenging datasets from the previous experiment:
Wine Quality, Satellite, and Shuttle with 30, 60, and 90 neurons.

However, with the aim of gaining more insights into the performance of proposed
ELM-MS-AFS, one more challenging dataset was included for the current comparison. The
newly utilized NSL-KDD dataset is an improved version of the KDD’99 dataset for network
intrusion detection and it has been widely used in the modern literature [91–93]. However,
according to authors’ findings, the ELM has never been applied to this dataset before.

Predefined training and testing sets for the NSL-KDD, as well as its description, can
be retrieved from the following URL: https://unb.ca/cic/datasets/nsl.html (accessed
on 15 May 2022) and it includes in total 148,517 instances with 41 mixed numerical and
categorical features along with five classes. Class 0 represents normal network traffic (no
intrusion), while the other four classes denote malicious type of network traffic (Probe, DoS,
U2R, and R2L). For training ELM, all categorical features were transformed into integers
using one hot encoding (OHE) scheme, resulting in a dataset with 122 attributes. Other
features are normalized. It also should be emphasized that the NSL-KDD dataset is highly
imbalanced (Figure 6) and in the conducted experiments it was used as such.

https://unb.ca/cic/datasets/nsl.html

Sensors 2022, 22, 4204 25 of 34

normal DoS Probe R2L U2R
Classes

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

N
um

be
r o

f i
ns

ta
nc

es

53.46%

36.46%

9.25%

0.79% 0.04%

NSL-KDD training dataset - distribution of classes

normal DoS R2L Probe U2R
Classes

0

2,000

4,000

6,000

8,000

10,000

N
um

be
r o

f i
ns

ta
nc

es

43.08%

33.08%

12.22% 10.74%

0.89%

NSL-KDD testing dataset - distribution of classes

Figure 6. Distribution of classes in NSL-KDD dataset with predetermined training and testing subsets.

Following the setup from the previous experiments, all hybrids are tested with N = 20
and T = 20 in 50 independent runs and best, mean, worst accuracy along with standard
deviation for all four datasets with 30, 60, and 90 ELM neurons are captured and reported
in Table 10. Detailed performance indicators for the best run in terms of macro averaged
precision, recall, and f1-score are shown in Table 11. In both tables, the best achieved results
are denoted with bold style.

Convergence speed graphs for all additional simulations are shown in Figure 7.

Table 10. Accuracy comparative analysis—ELM-MS-AFS vs. hybrids.

Wine Quality Satellite Shuttle NSL-KDD

Results for ELM with 30 neurons

ELM-ABC-FA

best (%) 65.21 83.04 97.08 77.43

worst (%) 63.54 82.69 92.96 73.96

mean (%) 64.17 82.87 95.32 75.26

std 0.0091 0.0018 0.0213 0.0189

ELM-ABC-SCA

best (%) 63.33 82.94 97.17 77.24

worst (%) 62.29 82.19 84.72 72.90

mean (%) 62.85 82.51 91.09 75.41

std 0.0052 0.0039 0.0623 0.0225

ELM-FA-SCA

best (%) 65.21 83.14 97.88 75.60

worst (%) 62.50 82.52 96.81 75.14

mean (%) 63.61 82.91 97.40 75.45

std 0.0142 0.0032 0.0054 0.0027

ELM-MS-AFS

best (%) 66.25 84.59 98.67 79.66

worst (%) 65.63 82.99 97.71 76.59

mean (%) 65.99 83.67 98.21 77.74

std 0.0026 0.0076 0.0048 0.0167

Sensors 2022, 22, 4204 26 of 34

Table 10. Cont.

Wine Quality Satellite Shuttle NSL-KDD

Results for ELM with 60 neurons

ELM-ABC-FA

best (%) 65.21 86.69 91.62 77.16

worst (%) 60.83 84.69 85.57 74.53

mean (%) 63.65 85.54 89.53 75.72

std 0.0194 0.0103 0.0343 0.0133

ELM-ABC-SCA

best (%) 65.63 85.59 96.15 73.07

worst (%) 62.08 84.54 92.15 71.77

mean (%) 63.54 84.94 93.88 72.35

std 0.0160 0.0057 0.0205 0.0066

ELM-FA-SCA

best (%) 66.04 86.34 96.51 78.88

worst (%) 61.67 84.84 91.70 75.11

mean (%) 64.22 85.83 93.97 76.84

std 0.0190 0.0085 0.0241 0.0190

ELM-MS-AFS

best (%) 68.13 86.89 97.68 80.29

worst (%) 66.88 85.89 84.74 75.55

mean (%) 67.60 86.39 91.62 78.42

std 0.0052 0.0071 0.0651 0.0252

Results for ELM with 90 neurons

ELM-ABC-FA

best (%) 68.13 87.04 95.21 75.96

worst (%) 63.96 85.19 90.96 73.59

mean (%) 66.30 86.03 92.80 74.95

std 0.0173 0.0094 0.0218 0.0122

ELM-ABC-SCA

best (%) 66.46 86.19 97.52 71.58

worst (%) 64.38 85.44 90.66 69.47

mean (%) 65.57 85.78 95.01 70.87

std 0.0087 0.0038 0.0378 0.0122

ELM-FA-SCA

best (%) 67.71 87.34 93.17 76.16

worst (%) 66.46 87.19 83.27 74.68

mean (%) 67.03 87.26 84.73 75.62

std 0.0052 0.0008 0.0535 0.0082

ELM-MS-AFS

best (%) 68.33 88.19 97.62 79.52

worst (%) 66.25 87.74 93.13 75.34

mean (%) 67.40 87.97 94.70 77.43

std 0.0100 0.0072 0.0253 0.0209

Sensors 2022, 22, 4204 27 of 34

Table 11. Precision, recall, and f1-score comparative analysis—ELM-MS-AFS vs. hybrids.

Wine Quality Satellite Shuttle NSL-KDD

Results for ELM with 30 neurons

ELM-ABC-FA

accuracy (%) 65.21 83.04 97.08 77.43

precision (%) 0.327 0.819 0.408 0.473

recall (%) 0.326 0.764 0.420 0.483

f1-score 0.325 0.740 0.413 0.470

ELM-ABC-SCA

accuracy (%) 63.33 82.94 97.17 77.24

precision (%) 0.320 0.873 0.404 0.470

recall (%) 0.319 0.765 0.417 0.511

f1-score 0.318 0.735 0.408 0.491

ELM-FA-SCA

accuracy (%) 65.21 83.14 97.88 75.60

precision (%) 0.328 0.882 0.413 0.453

recall (%) 0.324 0.768 0.422 0.490

f1-score 0.324 0.739 0.417 0.468

ELM-MS-AFS

accuracy (%) 66.25 84.59 98.67 79.66

precision (%) 0.527 0.841 0.564 0.492

recall (%) 0.370 0.793 0.436 0.518

f1-score 0.402 0.792 0.448 0.500

Results for ELM with 60 neurons

ELM-ABC-FA

accuracy (%) 65.21 86.69 91.62 77.16

precision (%) 0.328 0.863 0.537 0.485

recall (%) 0.305 0.835 0.357 0.499

f1-score 0.306 0.841 0.406 0.486

ELM-ABC-SCA

accuracy (%) 65.63 85.59 96.15 73.07

precision (%) 0.405 0.853 0.403 0.461

recall (%) 0.305 0.808 0.414 0.477

f1-score 0.311 0.804 0.408 0.460

ELM-FA-SCA

accuracy (%) 66.04 86.34 96.51 78.88

precision (%) 0.495 0.855 0.412 0.485

recall (%) 0.311 0.825 0.383 0.521

f1-score 0.320 0.831 0.395 0.499

ELM-MS-AFS

accuracy (%) 68.13 86.89 97.68 80.29

precision (%) 0.550 0.866 0.412 0.486

recall (%) 0.357 0.829 0.420 0.540

f1-score 0.386 0.835 0.416 0.511

Sensors 2022, 22, 4204 28 of 34

Table 11. Cont.

Wine Quality Satellite Shuttle NSL-KDD

Results for ELM with 90 neurons

ELM-ABC-FA

accuracy (%) 68.13 87.04 95.21 75.96

precision (%) 0.377 0.861 0.389 0.495

recall (%) 0.342 0.834 0.370 0.498

f1-score 0.345 0.838 0.376 0.488

ELM-ABC-SCA

accuracy (%) 66.46 86.19 97.52 71.58

precision (%) 0.370 0.879 0.411 0.475

recall (%) 0.340 0.810 0.418 0.452

f1-score 0.347 0.807 0.414 0.449

ELM-FA-SCA

accuracy (%) 67.71 87.34 93.17 76.16

precision (%) 0.486 0.865 0.415 0.495

recall (%) 0.486 0.839 0.367 0.495

f1-score 0.453 0.845 0.383 0.486

ELM-MS-AFS

accuracy (%) 68.33 88.19 97.62 79.52

precision (%) 0.345 0.878 0.445 0.512

recall (%) 0.321 0.853 0.490 0.525

f1-score 0.325 0.860 0.461 0.513

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.34

0.35

0.36

0.37

0.38

0.39

0.40

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine Quality 30 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.32

0.33

0.34

0.35

0.36

0.37

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine Quality 60 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Wine Quality 90 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.155

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Satellite 30 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Satellite 60 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.12

0.13

0.14

0.15

0.16

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Satellite 90 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 30 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 60 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

Shuttle 90 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.20

0.22

0.24

0.26

0.28

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

NSL-KDD 30 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.20

0.22

0.24

0.26

0.28

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

NSL-KDD 60 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.22

0.24

0.26

0.28

Ob
je

ct
iv

e
(c

la
ss

ifi
ca

tio
n

er
ro

r)

NSL-KDD 90 neurons ELM-MS-AFS vs. hybrids convergence graphs
ELM-MS-AFS
ELM-ABC-FA
ELM-ABC-SCA
ELM-FA-SCA

Figure 7. Graphs for convergence speed evaluation on four observed datasets for 30, 60, and
90 neurons, for the proposed ELM-MS-AFS vs. other hybrid approaches

Sensors 2022, 22, 4204 29 of 34

From provided simulation results, as well as from convergence graphs, it can clearly
be stated that the proposed ELM-MS-AFS on average exhibits superior performance over
ELM-ABC-FA, ELM-ABC-SCA, and ELM-FA-SCA hybrid meta-heuristics, therefore the
assumption that combining three approaches renders better performance than joining two
methods is justified. It is also interesting to notice that, on average, when all simulations are
taken into account, the ELM-ABC-FA and ELM-FA-SCA are close in terms of performance
and that the ELM-ABC-SCA achieves slightly worse results. Finally, by comparing with
the metrics established by other state-of-the-art swarm approaches, shown in the tables
from Section 4.3, all three hybrid meta-heuristics on average proved to be more efficient
and robust optimizers than standard, non-hybridized algorithms.

Additionally, since the NSL-KDD dataset is highly imbalanced, the PR curves for
all four hybrid methods for simulations with 30, 60, and 90 ELM’s neurons are shown
in Figure 8. From this visualization, it can be also concluded that the ELM-MS-AFS on
average manages to better classify classes with minority of samples.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS NSL-KDD 30 neurons precision vs. recall curve

normal AP:0.64
DoS AP:0.91
Probe AP:0.77
R2L AP:0.24
U2R AP:0.11
Micro AP:0.69
AP micro AP:0.69

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS NSL-KDD 60 neurons precision vs. recall curve

normal AP:0.83
DoS AP:0.92
Probe AP:0.78
R2L AP:0.18
U2R AP:0.06
Micro AP:0.77
AP micro AP:0.77

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

MS-AFS NSL-KDD 90 neurons precision vs. recall curve

normal AP:0.79
DoS AP:0.94
Probe AP:0.88
R2L AP:0.42
U2R AP:0.10
Micro AP:0.76
AP micro AP:0.76

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-FA NSL-KDD 30 neurons precision vs. recall curve

normal AP:0.71
DoS AP:0.87
Probe AP:0.70
R2L AP:0.38
U2R AP:0.06
Micro AP:0.73
AP micro AP:0.73

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-FA NSL-KDD 60 neurons precision vs. recall curve

normal AP:0.67
DoS AP:0.88
Probe AP:0.68
R2L AP:0.11
U2R AP:0.11
Micro AP:0.67
AP micro AP:0.67

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-FA NSL-KDD 90 neurons precision vs. recall curve

normal AP:0.72
DoS AP:0.89
Probe AP:0.81
R2L AP:0.10
U2R AP:0.14
Micro AP:0.73
AP micro AP:0.73

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-SCA NSL-KDD 30 neurons precision vs. recall curve

normal AP:0.62
DoS AP:0.90
Probe AP:0.75
R2L AP:0.64
U2R AP:0.01
Micro AP:0.64
AP micro AP:0.64

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-SCA NSL-KDD 60 neurons precision vs. recall curve

normal AP:0.70
DoS AP:0.85
Probe AP:0.67
R2L AP:0.29
U2R AP:0.04
Micro AP:0.67
AP micro AP:0.67

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ABC-SCA NSL-KDD 90 neurons precision vs. recall curve

normal AP:0.88
DoS AP:0.90
Probe AP:0.67
R2L AP:0.60
U2R AP:0.11
Micro AP:0.75
AP micro AP:0.75

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

FA-SCA NSL-KDD 30 neurons precision vs. recall curve

normal AP:0.70
DoS AP:0.76
Probe AP:0.67
R2L AP:0.26
U2R AP:0.03
Micro AP:0.65
AP micro AP:0.65

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

FA-SCA NSL-KDD 60 neurons precision vs. recall curve

normal AP:0.68
DoS AP:0.91
Probe AP:0.77
R2L AP:0.26
U2R AP:0.03
Micro AP:0.76
AP micro AP:0.76

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

FA-SCA NSL-KDD 90 neurons precision vs. recall curve

normal AP:0.67
DoS AP:0.89
Probe AP:0.74
R2L AP:0.24
U2R AP:0.06
Micro AP:0.70
AP micro AP:0.70

Figure 8. Generated PR curves for NSL-KDD dataset by hybrid methods.

Sensors 2022, 22, 4204 30 of 34

5. Conclusions

This paper proposes a novel approach to ELM optimization by swarm intelligence meta-
heuristics. For this purpose, a novel multi-swarm algorithm has been implemented, by
combining three famous algorithms: ABC, FA, and SCA. The goal of this hybrid method was
to combine the strengths of each individual algorithm, and compensate their weaknesses.
New multi-swarm meta-heuristics has been named MS-AFS, and later used to optimize the
weights and biases in ELM model. The number of ELM’s hidden neurons was not subjected
to optimization, as the simple grid search was employed to determine the optimal number
of neurons.

To validate the new ELM-MS-AFS technique, thorough simulations were conducted
with seven UCI benchmark datasets, with 30, 60, and 90 neurons in the hidden layer.
The results have been compared to the basic ELM, and to seven other cutting-edge meta-
heuristics-based ELMs. The proposed ELM-MS-AFS method has proven to be superior to
other methods included in the analysis, as it was confirmed with statistical tests employed
to determine the significance of the improvements of the proposed method.

Additionally, to prove that combining two algorithms is not as effective as joining three
approaches, hybrids generated by pairing each two methods employed in the proposed
multi-swarm approach, were also implemented and validated against four challenging
datasets. From obtained simulation results, it was concluded that the proposed ELM-
MS-AFS on average exhibits superior performance over ELM-ABC-FA, ELM-ABC-SCA,
and ELM-FA-SCA hybrid meta-heuristics, therefore the assumption that combining three
approaches renders better performance than joining two methods is justified.

The future research in this area will include extensive testing of the proposed ELM-
MS-AFS approach on other benchmark and real-life datasets, and employing it in various
application domains. Additionally, the number of neurons in the hidden layer will also
be subjected to the optimization process. Finally, the proposed MS-AFS meta-heuristics
will be tested and employed for solving NP-hard tasks for other domains, such as wireless
sensor networks and cloud-based systems.

Author Contributions: Conceptualization, M.Z., N.B. and C.S.; methodology, N.B., C.S. and D.J.;
software, N.B. and M.Z.; validation, M.A., D.J. and D.M.; formal analysis, M.Z.; investigation, D.J.,
D.M. and N.B.; resources, D.J., D.M., M.A. and C.S.; data curation, M.Z., C.S. and N.B.; writing—
original draft preparation, D.J., M.A. and D.M.; writing—review and editing, C.S., M.Z. and N.B.;
visualization, N.B., M.A. and M.Z.; supervision, N.B.; project administration, M.Z. and N.B.; funding
acquisition, N.B. and C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Romanian Ministry of Research and Innovation, CCCDI—
UEFISCDI, project number 178PCE/2021, PN-III-P4-ID-PCE-2020-0788, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used in this study are public and available on the UCI
repository on the following URL: https://archive.ics.uci.edu/ml/datasets.php, accessed on 15 May
2022. Preprocessed datasets along with same code is available on the following GitHub link: https:
//github.com/nbacanin/sensorsELM2022, accessed on 15 May 2022.

Acknowledgments: Catalin Stoean acknowledges the support of a grant of the Romanian Ministry
of Research and Innovation, CCCDI—UEFISCDI, project number 178PCE/2021, PN-III-P4-ID-PCE-
2020-0788, within PNCDI III.

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/nbacanin/sensorsELM2022
https://github.com/nbacanin/sensorsELM2022

Sensors 2022, 22, 4204 31 of 34

References
1. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In

Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary,
25–29 July 2004; Volume 2, pp. 985–990. [CrossRef]

2. Alshamiri, A.K.; Singh, A.; Surampudi, B.R. Two swarm intelligence approaches for tuning extreme learning machine. Int. J.
Mach. Learn. Cybern. 2018, 9, 1271–1283. [CrossRef]

3. Wang, J.; Lu, S.; Wang, S.; Zhang, Y.D. A review on extreme learning machine. Multimed. Tools Appl. 2021, 1–50.
doi: [CrossRef]

4. Rong, H.J.; Ong, Y.S.; Tan, A.H.; Zhu, Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008,
72, 359–366. [CrossRef]

5. Zhu, Q.Y.; Qin, A.; Suganthan, P.; Huang, G.B. Evolutionary extreme learning machine. Pattern Recognit. 2005, 38, 1759–1763.
[CrossRef]

6. Cao, J.; Lin, Z.; Huang, G.B. Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 2012, 36, 285–305.
[CrossRef]

7. Miche, Y.; Sorjamaa, A.; Bas, P.; Simula, O.; Jutten, C.; Lendasse, A. OP-ELM: Optimally pruned extreme learning machine. IEEE
Trans. Neural Netw. 2009, 21, 158–162. [CrossRef]

8. Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef]

9. Serre, D. Matrices: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2002.
10. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
11. Huang, G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003,

14, 274–281. [CrossRef]
12. Zheng, W.; Qian, Y.; Lu, H. Text categorization based on regularization extreme learning machine. Neural Comput. Appl. 2013,

22, 447–456. [CrossRef]
13. Zong, W.; Huang, G.B. Face recognition based on extreme learning machine. Neurocomputing 2011, 74, 2541–2551. [CrossRef]
14. Cao, F.; Liu, B.; Park, D.S. Image classification based on effective extreme learning machine. Neurocomputing 2013, 102, 90–97.

[CrossRef]
15. Wang, Z.; Yu, G.; Kang, Y.; Zhao, Y.; Qu, Q. Breast tumor detection in digital mammography based on extreme learning machine.

Neurocomputing 2014, 128, 175–184. [CrossRef]
16. Kaya, Y.; Uyar, M. A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis

disease. Appl. Soft Comput. 2013, 13, 3429–3438. [CrossRef]
17. Xu, Y.; Shu, Y. Evolutionary extreme learning machine—Based on particle swarm optimization. In Advances in Neural Networks—

ISNN 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 644–652.
18. Zong, W.; Huang, G.B.; Chen, Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242.

[CrossRef]
19. Mehrabian, A.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Informatics 2006,

1, 355–366. [CrossRef]
20. Raslan, A.F.; Ali, A.F.; Darwish, A. 1—Swarm intelligence algorithms and their applications in Internet of Things. In Swarm

Intelligence for Resource Management in Internet of Things; Intelligent Data-Centric Systems; Academic Press: Cambridge, MA, USA,
2020; pp. 1–19. [CrossRef]

21. Dorigo, M.; Birattari, M. Ant Colony Optimization. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010;
pp. 36–39. [CrossRef]

22. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

23. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.
[CrossRef]

24. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O.,
Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.

25. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization
problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]

26. Yang, X.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.
doi: [CrossRef]

27. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
28. Wang, G.G.; Deb, S.; Coelho, L.d.S. Elephant Herding Optimization. In Proceedings of the 2015 3rd International Symposium on

Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5. [CrossRef]
29. Mucherino, A.; Seref, O. Monkey search: A novel metaheuristic search for global optimization. AIP Conf. Proc. 2007, 953, 162–173.

[CrossRef]
30. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

http://doi.org/10.1109/IJCNN.2004.1380068
http://dx.doi.org/10.1007/s13042-017-0642-3
http://dx.doi.org/10.1007/s11042-021-11007-7
http://dx.doi.org/10.1016/j.neucom.2008.01.005
http://dx.doi.org/10.1016/j.patcog.2005.03.028
http://dx.doi.org/10.1007/s11063-012-9236-y
http://dx.doi.org/10.1109/TNN.2009.2036259
http://dx.doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.1007/s00521-011-0808-y
http://dx.doi.org/10.1016/j.neucom.2010.12.041
http://dx.doi.org/10.1016/j.neucom.2012.02.042
http://dx.doi.org/10.1016/j.neucom.2013.05.053
http://dx.doi.org/10.1016/j.asoc.2013.03.008
http://dx.doi.org/10.1016/j.neucom.2012.08.010
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1016/B978-0-12-818287-1.00003-6
http://dx.doi.org/10.1007/978-0-387-30164-8_22
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1109/ISCBI.2015.8
http://dx.doi.org/10.1063/1.2817338
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

Sensors 2022, 22, 4204 32 of 34

31. Yang, X.S. Flower pollination algorithm for global optimization. In Unconventional Computation and Natural Computation; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 240–249.

32. Feng, Y.; Deb, S.; Wang, G.G.; Alavi, A.H. Monarch butterfly optimization: A comprehensive review. Expert Syst. Appl. 2021,
168, 114418. [CrossRef]

33. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

34. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.
2018, 10, 151–164. [CrossRef]

35. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,
perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]

36. Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [CrossRef]
37. Bezdan, T.; Petrovic, A.; Zivkovic, M.; Strumberger, I.; Devi, V.K.; Bacanin, N. Current Best Opposition-Based Learning Salp

Swarm Algorithm for Global Numerical Optimization. In Proceedings of the 2021 Zooming Innovation in Consumer Technologies
Conference (ZINC), Novi Sad, Serbia, 26–27 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5–10.

38. Bezdan, T.; Zivkovic, M.; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Multi-objective Task Scheduling in Cloud Computing
Environment by Hybridized Bat Algorithm. In Proceedings of the International Conference on Intelligent and Fuzzy Systems,
Istanbul, Turkey, 21–23 July 2020; Springer: Cham, Switzerland, 2020; pp. 718–725.

39. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M.; Zivkovic, M. Task scheduling in cloud computing environment by
grey wolf optimizer. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

40. Bacanin, N.; Zivkovic, M.; Bezdan, T.; Venkatachalam, K.; Abouhawwash, M. Modified firefly algorithm for workflow scheduling
in cloud-edge environment. Neural Comput. Appl. 2022, 34, 9043–9068. [CrossRef]

41. Bacanin, N.; Sarac, M.; Budimirovic, N.; Zivkovic, M.; AlZubi, A.A.; Bashir, A.K. Smart wireless health care system using graph
LSTM pollution prediction and dragonfly node localization. Sustain. Comput. Infor. Syst. 2022, 35, 100711. [CrossRef]

42. Zivkovic, M.; Bacanin, N.; Tuba, E.; Strumberger, I.; Bezdan, T.; Tuba, M. Wireless Sensor Networks Life Time Optimization Based
on the Improved Firefly Algorithm. In Proceedings of the 2020 International Wireless Communications and Mobile Computing
(IWCMC), Limassol, Cyprus, 15–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1176–1181.

43. Bacanin, N.; Tuba, E.; Zivkovic, M.; Strumberger, I.; Tuba, M. Whale Optimization Algorithm with Exploratory Move for Wireless
Sensor Networks Localization. In Proceedings of the International Conference on Hybrid Intelligent Systems, Bhopal, India,
10–12 December 2019; Springer: Cham, Switzerland, 2019; pp. 328–338.

44. Zivkovic, M.; Bacanin, N.; Zivkovic, T.; Strumberger, I.; Tuba, E.; Tuba, M. Enhanced Grey Wolf Algorithm for Energy Efficient
Wireless Sensor Networks. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC),
Novi Sad, Serbia, 26–27 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 87–92.

45. Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T. Performance of a Novel Chaotic Firefly Algorithm
with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization. Mathematics
2021, 9, 2705. [CrossRef]

46. Strumberger, I.; Tuba, E.; Bacanin, N.; Zivkovic, M.; Beko, M.; Tuba, M. Designing convolutional neural network architecture by
the firefly algorithm. In Proceedings of the 2019 International Young Engineers Forum (YEF-ECE), Costa da Caparica, Portugal,
10 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 59–65.

47. Milosevic, S.; Bezdan, T.; Zivkovic, M.; Bacanin, N.; Strumberger, I.; Tuba, M. Feed-Forward Neural Network Training by Hybrid
Bat Algorithm. In Modelling and Development of Intelligent Systems, Proceedings of the 7th International Conference, MDIS 2020, Sibiu,
Romania, 22–24 October 2020; Revised Selected Papers 7; Springer: Cham, Switzerland, 2021; pp. 52–66.

48. Bezdan, T.; Stoean, C.; Naamany, A.A.; Bacanin, N.; Rashid, T.A.; Zivkovic, M.; Venkatachalam, K. Hybrid Fruit-Fly Optimization
Algorithm with K-Means for Text Document Clustering. Mathematics 2021, 9, 1929. [CrossRef]

49. Cuk, A.; Bezdan, T.; Bacanin, N.; Zivkovic, M.; Venkatachalam, K.; Rashid, T.A.; Devi, V.K. Feedforward multi-layer perceptron
training by hybridized method between genetic algorithm and artificial bee colony. In Data Science and Data Analytics: Opportunities
and Challenges; CRC Press: Boca Raton, FL, USA, 2021; p. 279.

50. Stoean, R. Analysis on the potential of an EA–surrogate modelling tandem for deep learning parametrization: An example for
cancer classification from medical images. Neural Comput. Appl. 2020, 32, 313–322. [CrossRef]

51. Bacanin, N.; Bezdan, T.; Zivkovic, M.; Chhabra, A. Weight optimization in artificial neural network training by improved monarch
butterfly algorithm. In Mobile Computing and Sustainable Informatics; Springer: Cham, Switzerland, 2022; pp. 397–409.

52. Gajic, L.; Cvetnic, D.; Zivkovic, M.; Bezdan, T.; Bacanin, N.; Milosevic, S. Multi-layer perceptron training using hybridized bat
algorithm. In Computational Vision and Bio-Inspired Computing; Springer: Cham, Switzerland, 2021; pp. 689–705.

53. Bacanin, N.; Alhazmi, K.; Zivkovic, M.; Venkatachalam, K.; Bezdan, T.; Nebhen, J. Training Multi-Layer Perceptron with Enhanced
Brain Storm Optimization Metaheuristics. Comput. Mater. Contin. 2022, 70, 4199–4215. [CrossRef]

54. Jnr, E.O.N.; Ziggah, Y.Y.; Relvas, S. Hybrid ensemble intelligent model based on wavelet transform, swarm intelligence and
artificial neural network for electricity demand forecasting. Sustain. Cities Soc. 2021, 66, 102679.

http://dx.doi.org/10.1016/j.eswa.2020.114418
http://dx.doi.org/10.1016/j.future.2020.03.055
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1016/j.eswa.2021.114864
http://dx.doi.org/10.1007/s42235-021-0050-y
http://dx.doi.org/10.1007/s00521-022-06925-y
http://dx.doi.org/10.1016/j.suscom.2022.100711
http://dx.doi.org/10.3390/math9212705
http://dx.doi.org/10.3390/math9161929
http://dx.doi.org/10.1007/s00521-018-3709-5
http://dx.doi.org/10.32604/cmc.2022.020449

Sensors 2022, 22, 4204 33 of 34

55. Bacanin, N.; Bezdan, T.; Venkatachalam, K.; Zivkovic, M.; Strumberger, I.; Abouhawwash, M.; Ahmed, A. Artificial Neural
Networks Hidden Unit and Weight Connection Optimization by Quasi-Refection-Based Learning Artificial Bee Colony Algorithm.
IEEE Access 2021, 9, 169135–169155. [CrossRef]

56. Bacanin, N.; Zivkovic, M.; Bezdan, T.; Cvetnic, D.; Gajic, L. Dimensionality Reduction Using Hybrid Brainstorm Optimization
Algorithm. In Proceedings of the International Conference on Data Science and Applications, Kolkata, India, 26–27 March 2022;
Springer: Cham, Switzerland, 2022; pp. 679–692.

57. Latha, R.S.; Saravana Balaji, B.; Bacanin, N.; Strumberger, I.; Zivkovic, M.; Kabiljo, M. Feature Selection Using Grey Wolf
Optimization with Random Differential Grouping. Comput. Syst. Sci. Eng. 2022, 43, 317–332. [CrossRef]

58. Zivkovic, M.; Stoean, C.; Chhabra, A.; Budimirovic, N.; Petrovic, A.; Bacanin, N. Novel Improved Salp Swarm Algorithm: An
Application for Feature Selection. Sensors 2022, 22, 1711. [CrossRef]

59. Bacanin, N.; Petrovic, A.; Zivkovic, M.; Bezdan, T.; Antonijevic, M. Feature Selection in Machine Learning by Hybrid Sine Cosine
Metaheuristics. In Proceedings of the International Conference on Advances in Computing and Data Sciences, Nashik, India,
23–24 April 2021; Springer: Cham, Switzerland, 2021; pp. 604–616.

60. Salb, M.; Zivkovic, M.; Bacanin, N.; Chhabra, A.; Suresh, M. Support vector machine performance improvements for cryp-
tocurrency value forecasting by enhanced sine cosine algorithm. In Computer Vision and Robotics; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 527–536.

61. Bezdan, T.; Zivkovic, M.; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Glioma Brain Tumor Grade Classification from MRI
Using Convolutional Neural Networks Designed by Modified FA. In Proceedings of the International Conference on Intelligent
and Fuzzy Systems, Izmir, Turkey, 21–23 July 2020; Springer: Cham, Switzerland, 2020; pp. 955–963.

62. Bezdan, T.; Milosevic, S.; Venkatachalam, K.; Zivkovic, M.; Bacanin, N.; Strumberger, I. Optimizing Convolutional Neural
Network by Hybridized Elephant Herding Optimization Algorithm for Magnetic Resonance Image Classification of Glioma
Brain Tumor Grade. In Proceedings of the 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad,
Serbia, 26–27 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 171–176.

63. Basha, J.; Bacanin, N.; Vukobrat, N.; Zivkovic, M.; Venkatachalam, K.; Hubálovskỳ, S.; Trojovskỳ, P. Chaotic Harris Hawks
Optimization with Quasi-Reflection-Based Learning: An Application to Enhance CNN Design. Sensors 2021, 21, 6654. [CrossRef]

64. Tair, M.; Bacanin, N.; Zivkovic, M.; Venkatachalam, K. A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search
for Medical Diagnostics. Comput. Mater. Contin. 2022, 72, 959–982. [CrossRef]

65. Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F. COVID-19 cases
prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021, 66, 102669. [CrossRef]

66. Zivkovic, M.; Venkatachalam, K.; Bacanin, N.; Djordjevic, A.; Antonijevic, M.; Strumberger, I.; Rashid, T.A. Hybrid Genetic
Algorithm and Machine Learning Method for COVID-19 Cases Prediction. In Proceedings of the International Conference on
Sustainable Expert Systems: ICSES 2020, Lalitpur, Nepal, 28–29 September 2020; Springer: Gateway East, Singapore, 2021;
Volume 176, p. 169.

67. Zivkovic, M.; Jovanovic, L.; Ivanovic, M.; Krdzic, A.; Bacanin, N.; Strumberger, I. Feature selection using modified sine cosine
algorithm with COVID-19 dataset. In Evolutionary Computing and Mobile Sustainable Networks; Springer: Gateway East, Singapore,
2022; pp. 15–31.

68. Bui, D.T.; Ngo, P.T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm
intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [CrossRef]

69. Feng, Z.k.; Niu, W.j.; Zhang, R.; Wang, S.; Cheng, C.T. Operation rule derivation of hydropower reservoir by k-means clustering
method and extreme learning machine based on particle swarm optimization. J. Hydrol. 2019, 576, 229–238. [CrossRef]

70. Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A. Salp swarm algorithm: Theory, literature review, and application in
extreme learning machines. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 185–199.

71. Chen, H.; Zhang, Q.; Luo, J.; Xu, Y.; Zhang, X. An enhanced bacterial foraging optimization and its application for training kernel
extreme learning machine. Appl. Soft Comput. 2020, 86, 105884. [CrossRef]

72. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report; Erciyes University: Kayseri,
Turkey, 2005.

73. Tuba, M.; Bacanin, N. Artificial Bee Colony Algorithm Hybridized with Firefly Algorithm for Cardinality Constrained Mean-
Variance Portfolio Selection Problem. Appl. Math. Inf. Sci. 2014, 8, 2831–2844. [CrossRef]

74. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
75. Bačanin Dzakula, N. Unapred̄enje Hibridizacijom Metaheuristika Inteligencije Rojeva za Resavanje Problema Globalne Opti-

mizacije. Ph.D. Thesis, Univerzitet u Beogradu-Matematički fakultet, Beograd, Serbia, 2015.
76. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann.

Oper. Res. 2016, 240, 171–215. [CrossRef]
77. Bacanin, N.; Tuba, M.; Strumberger, I. RFID Network Planning by ABC Algorithm Hybridized with Heuristic for Initial Number

and Locations of Readers. In Proceedings of the 2015 17th UKSim-AMSS International Conference on Modelling and Simulation
(UKSim), Cambridge, UK, 25–27 March 2015; pp. 39–44. [CrossRef]

78. Attiya, I.; Abd Elaziz, M.; Abualigah, L.; Nguyen, T.N.; Abd El-Latif, A.A. An Improved Hybrid Swarm Intelligence for
Scheduling IoT Application Tasks in the Cloud. IEEE Trans. Ind. Infor. 2022. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3135201
http://dx.doi.org/10.32604/csse.2022.020487
http://dx.doi.org/10.3390/s22051711
http://dx.doi.org/10.3390/s21196654
http://dx.doi.org/10.32604/cmc.2022.024989
http://dx.doi.org/10.1016/j.scs.2020.102669
http://dx.doi.org/10.1016/j.catena.2019.04.009
http://dx.doi.org/10.1016/j.jhydrol.2019.06.045
http://dx.doi.org/10.1016/j.asoc.2019.105884
http://dx.doi.org/10.12785/amis/080619
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1007/s10479-015-2034-y
http://dx.doi.org/10.1109/UKSim.2015.83
http://dx.doi.org/10.1109/TII.2022.3148288

Sensors 2022, 22, 4204 34 of 34

79. Wu, X.; Li, R.; Chu, C.H.; Amoasi, R.; Liu, S. Managing pharmaceuticals delivery service using a hybrid particle swarm
intelligence approach. Ann. Oper. Res. 2022, 308, 653–684. [CrossRef]

80. Bezdan, T.; Cvetnic, D.; Gajic, L.; Zivkovic, M.; Strumberger, I.; Bacanin, N. Feature Selection by Firefly Algorithm with Improved
Initialization Strategy. In Proceedings of the 7th Conference on the Engineering of Computer Based Systems, Novi Sad, Serbia,
26–27 May 2021; pp. 1–8.

81. Caponetto, R.; Fortuna, L.; Fazzino, S.; Xibilia, M.G. Chaotic sequences to improve the performance of evolutionary algorithms.
IEEE Trans. Evol. Comput. 2003, 7, 289–304. [CrossRef]

82. Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft
Comput. 2020, 88, 105946. [CrossRef]

83. Kose, U. An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Appl.
Sci. 2018, 8, 1613. [CrossRef]

84. Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2020, 77, 1201–1215.
[CrossRef]

85. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional Differential Evolution. In Proceedings of the 2007 IEEE Congress
on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2229–2236. [CrossRef]

86. Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [CrossRef]
87. Yang, X.S. Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 2011, 3, 267–274. [CrossRef]
88. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
89. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937,

32, 675–701. [CrossRef]
90. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92.

[CrossRef]
91. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

92. Dhanabal, L.; Shantharajah, S. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms.
Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

93. Protić, D.D. Review of KDD Cup’99, NSL-KDD and Kyoto 2006+ datasets. Vojnoteh. Glas. 2018, 66, 580–596. [CrossRef]

http://dx.doi.org/10.1007/s10479-021-04012-4
http://dx.doi.org/10.1109/TEVC.2003.810069
http://dx.doi.org/10.1016/j.asoc.2019.105946
http://dx.doi.org/10.3390/app8091613
http://dx.doi.org/10.1016/j.apm.2019.09.029
http://dx.doi.org/10.1109/CEC.2007.4424748
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.5937/vojtehg66-16670

	Introduction
	Background
	Extreme Learning Machine
	Swarm Intelligence
	ELM Tuning by Swarm Intelligence Meta-Heuristics

	Proposed Hybrid Meta-Heuristics
	Original Algorithms
	The Original ABC Algorithm
	The Original Firefly Algorithm
	The Original SCA Method

	Proposed Multi-Swarm Meta-Heuristics Algorithm
	Motivation and Preliminaries
	Overview of MS-AFS
	Computational Complexity, MS-AFS Solutions' Encoding for ELM Tuning and Flow-Chart

	Experiments
	Datasets
	Metrics
	Experimental Results and Comparative Analysis with Other Cutting-Edge Meta-Heuristics
	Hybridization by Pairs

	Conclusions
	References

