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Abstract

We consider multi-target tracking via probabilistic data association among

tracklets (trajectory fragments), a mid-level representation that provides good

spatio-temporal context for efficient tracking. Model parameter estimation

and the search for the best association among tracklets are unified naturally

within a Markov Chain Monte Carlo sampling procedure. The proposed ap-

proach is able to infer the optimal model parameters for different tracking

scenarios in an unsupervised manner.

1 Introduction

Long studied in the radar and remote sensing world, multi-target tracking has been draw-

ing increasing attention in the visual tracking community due to the prevalence of video

cameras mounted in public places. The enormous quantity of video demands intelligent

algorithms that can adapt to different input sequences. Most existing tracking algorithms

require parameter tuning for different scenes. Although methods for automatic parameter

estimation exist, they typically require labeled training sequences.

Another challenge in multi-target tracking is the presence of an unknown and ever-

changing number of targets. We adopt Markov Chain Monte Carlo Data Association

(MCMCDA) to estimate a varying number of trajectories given a set of tracklets extracted

from the video sequence. Tracklets are mid-level features that provide more spatial and

temporal context than raw sensor detections, while being less demanding to produce than

persistent object trajectories. Each tracklet is a partial trajectory extracted by a tracker

within a short time period and therefore less prone to drift and occlusion than a long

trajectory. The final output of our data association algorithm is a partition of the set of

tracklets such that the tracklets belonging to each individual object have been grouped

together (see Figure 1).

To summarize, we propose to recover the trajectories of moving foreground objects

from a set of short-term tracklets using MCMCDA and to automatically infer the optimal

model parameters from unlabeled data. We show that by adopting the Bayesian paradigm,

inference of both the optimal parameters and the tracklet partition can be naturally unified.

Experimental results also demonstrate the advantage of working at the level of tracklets

when objects are closely spaced or occlude each other.
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Figure 1: Illustration of multi-target data association by tracklets. Left: unordered col-

lection of raw tracklets extracted from overlapping temporal windows. Right: partition of

tracklets into sets associated with individual objects, each drawn in a different color.

1.1 Related work

Multi-target data association is traditionally addressed using the classic multiple hypoth-

esis tracker (MHT) [7] or joint probabilistic data association filter (JPDAF) [1]. MHT

maintains, at least in principle, a complete hypothesis tree of feasible data association

assignments between object tracks and incoming observations. The full method is com-

putationally infeasible unless combined with (suboptimal) pruning heuristics. JPDAF is

a sequential method that updates each known trajectory by a weighted sum of compatible

observations in each new frame [9]. As the number of observation grows, the complexity

of both methods becomes unmanageable in practice. Recursive Bayesian methods such

as the mean-shift or particle filter trackers make a first-order Markovian assumption that

the current state of a target only depends on the previous time frame. Many of these basic

methods also assume they are tracking a single object in isolation, and the obvious exten-

sion to tracking multiple single objects separately runs into problems when the objects are

closely spaced or interacting. To model the interaction among targets, various graphical

models have been developed. Yang et al. combine individual mean shift trackers in a

star-graph and use belief propagation to infer the optimal joint probability [10]. A pair-

wise Markov random field has been adopted to prevent nearby trackers from claiming the

same set of image pixels in [8, 12]. Methods based on MCMC sampling have a computa-

tional advantage and can be extended to handle a varying number of targets [8, 12, 13].

However, being limited by the the underlying Markovian assumption, it is hard to achieve

optimal tracking results in the long run. To relax this assumption, researchers have been

working on approaches that use longer-range temporal information [3].

More recently, MCMCDA has been adopted for multi-target tracking [5, 6, 11]. This

approach has the advantage of searching for the globally optimal solution while still being

computationally manageable, and provides a principled way to incorporate prior knowl-

edge. Automatic parameter estimation is proposed in [5] as a linear programming prob-

lem, but labeled sequences are required. Our paper is inspired by these recent advances

in MCMCDA, however we propose a purely Bayesian approach that infers the model pa-

rameters from unlabeled data by sampling, while simultaneously estimating the optimal

solution for the data association.



2 Multi-target tracking as data association

Denote the set of observations within the time interval [1, T ] as Z = {Z1, Z1+∆t , . . . , ZT}
where Zt is the set of observations from an unknown number of targets obtained at time

frame t and ∆t controls the sampling rate. The data association view of multi-target track-

ing aims at finding the optimal partition of the observation set ω∗ = {τ0,τ1, . . . ,τK}, such

that τ0 is the set of false alarms, τk is the trajectory of target k, and K is the estimated

number of targets that appear within the entire time interval. We constrain each observa-

tion to be associated with at most one trajectory, and constrain a valid trajectory to have

at least two observations to distinguish between a single observation and a false alarm.

In the Bayesian framework, we take the the maximum a posterior (MAP) estimator of

the posterior distribution as the optimal solution for the partition ω , i.e.

ω∗ = argmax
ω

(p(ω|Z))
Bayes’ rule
←→ argmax

ω
(p(Z|ω)p(ω)) (1)

where p(Z|ω) is the likelihood function that models how well the partition fits the ob-

servations and p(ω) expresses our prior knowledge about desirable properties of good

trajectories. This prior is often parameterized as p(ω|λ ), with λ = {λ i} being a vector

of model parameters. The values of λ are crucial to the algorithm’s performance. In [11],

these parameters are estimated from labeled video sequences by solving a linear system of

equations. However, as the authors pointed out, the ground truth data often generate con-

tradictory equations and thus heuristics have to be used to form a solvable system. One

of our main contributions is to show how to infer λ from unlabeled data in a principled

way by a Bayesian hierarchical model with hyperprior p(λ |θ). The hyperparameters θ
are set to yield non-informative priors because we want our method to adapt to different

tracking scenarios with the minimal amount of human supervision. However, it is easy

to modify the priors to incorporate domain knowledge. Instead of manually setting the

model parameters λ , we treat them as unknowns as well, and infer both λ and ω as

(ω∗,λ ∗) = argmax
ω, λ

(p(ω,λ |Z))⇐⇒ argmax
ω, λ

(p(Z|ω,λ )p(ω|λ )p(λ |θ)) (2)

To find the solution of Eqn. 2 is extremely challenging due to the combinatorial solution

space of ω . MCMC sampling has been shown to be a powerful computing approach for

solving such complicated problems [5, 6, 11]. We show how to extend MCMCDA with

inference of the model parameters λ in Section 3. The rest of this section will first explain

how we extract the features from the video sequence and use them in our models.

2.1 Feature Extraction and Modeling

We define a set of basic features similar to [11], adapted for use with tracklet observations

as input. We use simple, single-target trackers such as mean-shift or particle filtering to

generate tracklets. Indeed, the strength of our approach is that it does not depend on how

the initial tracklets are produced, since we automatically estimate our parameters from

the data itself. Tracklets are initialized by a foreground object detector that runs on every

10th frame. The object detector fits a rectangular cover to the foreground map generated

by a background subtraction algorithm, in a manner similar to [13]. For each detection,

a tracker is initialized to track the rectangular region for up to d subsequent frames (e.g.



d = 30). Each tracklet is thus a sequence of rectangles that delineates the location and size

of a candidate object, and tracklets for the same object overlap temporally to be resilient

to missed detections in some frames.

Let the tracklet for the jth detected object rectangle that is initialized at frame t be

Z
j
t = {(X j

ti
,S j

ti
,V j

ti
) : i ∈ [0,d]}, where X = (x, y) is the coordinate of the object center,

S = (w, h) is the width and height of the object, and V = (dx, dy) is the velocity vec-

tor normalized w.r.t. object size. To recover the true trajectories of foreground objects

is equivalent to finding a subset of tracklets that belong to each foreground object and

stitching them together in an optimal way. The estimated trajectory for each object, τk, is

represented as {τk1
,τk2

, . . . ,τk|τk |
}, where τki

denotes the ith tracklet in the trajectory.

We extract four tracklet-level measures to model the likelihood of belonging to the

same trajectory based on spatial, motion, and appearance consistencies. In this scheme,

a distance function D j defines the similarity of two rectangles at one time instance based

on feature j. This rectangle-level measure is aggregated into a tracklet-level distance

measure f j(Z1,Z2) as follows: if two tracklets Z1 and Z2 overlap temporally, the distance

measures between rectangles in the overlapping frames are averaged; otherwise, we com-

pute the distance between the ending rectangle of Z1 and the starting rectangle of Z2 to

allow missing detections and gaps between tracklets. This tracklet-level distance f j is fur-

ther aggregated to a trajectory-level distance M jk based on the pairwise distances between

pairs of successive tracklets in the trajectory. This layered aggregation scheme provides

more accurate and stable measures in a trajectory context than purely frame-wise mea-

sures. We use a general exponential model to define the likelihood function for a single

trajectory τk given the observed tracklet features

ℓ j(τk) =
|τk|−1

∏
i=1

ℓi(τki+1
|τki

) =
|τk|−1

∏
i=1

λ je
−λ j f j(τki+1

,τki
)
= λ

|τk|−1
j e

−λ jM jk (3)

where M jk =
|τk|−1

∑
i=1

f j(τki+1
,τki

) (4)

We now define the D j distance functions for each feature M j. M1: Color Appearance. We

measure appearance similarity between two tracklets by Earth Mover’s Distance (EMD)

[4]. D1 is the EMD distance between color histograms extracted from two rectangular

regions. M2: Object Size. Rectangles with quite different sizes are unlikely to come

from the same object. Hence, we define D2 = ||S1−S2||/max(w1,w2) as the normalized

difference between object sizes. M3: Spatial Proximity. The spatial proximity among

tracklets within the same trajectory is measured by Euclidean difference of object location

of the two tracklets normalized w.r.t. the object size, i.e., D3 = ||X1−X2||/max(w1,w2).
M4: Velocity Coherence. The velocity distance is measured by D4 = ||V1−V2||, as we

do not want to merge two tracklets into one trajectory if they are going in two different

directions, even if they are spatially close to each other and have similar appearance.

Based on Eqn. 3, we are set to define the likelihood function of K estimated trajecto-

ries given observations from the entire sequence Z as

p(Z|ω,λ ) =
K

∏
k=1

ℓ(τk) =
K

∏
k=1

4

∏
j=1

ℓ j(τk) =
4

∏
j=1

λ ∑k |τk|−K

j e−λ jM j , M j = ∑
k

M jk (5)

We also incorporate prior knowledge about desirable properties of trajectories by com-

puting the following features.



M5: False Alarms. To avoid a trivial configuration of ω where all the tracklets are con-

sidered as false alarms, we define the penalty function:

p f (ω) = λ5e−λ5M5 , where M5 = |τ0| (6)

M6: Trajectory Length. Let F(τk) be the set of frames covered by a trajectory τk and let

DF(τk) = max(F(τk))−min(F(τk)). We encourage long trajectories by the following

exponential model

pl(ω) =
K

∏
k=1

pl(τk) =
K

∏
k=1

λ6e
−

λ6
DF(τk) = λ K

6 e−λ6M6 , M6 = ∑
k

DF(τk)
−1 (7)

M7, M8: Merge Pairs and Spatial Overlap. In practice, we extract tracklets from tem-

porally overlapping windows, and therefore each trajectory is expected to be fragmented

into multiple overlapping tracklets. Candidate merge pairs are two tracklets with a partic-

ular parent/child structure, to be described in the next section. If eventually they are not

merged, we call them dangling merge pairs. To encourage merging overlapping tracklets

rather than starting new trajectories, we penalize large numbers of dangling merge pairs

as well as spatial overlap between different trajectories.

pg(ω) = λ7e−λ7M7 , M7 = |G|, G is the set of dangling merge pairs (8)

po(ω) =
K

∏
k=1

po(τk) =
K

∏
k=1

λ8e
−λ8M8k = λ K

8 e−λ8M8 , M8 = ∑
k

M8k
(9)

where M8k
is the amount of spatial overlap between object rectangles, aggregated into a

track-level measure in a similar manner as discussed for Eqn.3. With Eqns. 6-9, the prior

probability is defined as follows:

p(ω|λ ) = p f (ω)pl(ω)pg(ω)po(ω) = λ5λ K
6 λ7λ K

8 e
−∑

8
j=5 λ jM j (10)

The last piece of the model is the hyperprior for the model parameters λ , since we treat

them as parameters to be estimated by the algorithm along with ω . Because we model

both the likelihood function and the prior distribution by exponential distributions, for

computational efficiency we choose the Gamma distribution for all our hyperpriors.

p(λ |θ)∼ Gamma(θ 0,θ 1) ∝ λ θ 0−1e
− 1

θ1 λ
(11)

where θ 0 = {θ 0
i : i = 1, . . . ,8} is the vector of shape parameters for the Gamma distri-

bution and θ 1 is the vector of scale parameters. The hyperparameters θ that govern the

Gamma distributions are chosen to yield non-informative priors, assuming we do not have

prior knowledge about the tracking scenario.

3 MCMCDA with unsupervised parameter estimation

Because of the combinatorial solution space of ω , to find even a good approximate par-

tition of tracklets into trajectories is extremely challenging. We use MCMC sampling

techniques as a stochastic mode seeking procedure, and extend the previous approaches
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Figure 2: Different move types in MCMCDA. The tracklets in the same color belong to

the same trajectory and false alarms are drawn in white.

in [6, 11] with a fully Bayesian treatment that simultaneously estimates the model pa-

rameters λ along with the observation partition ω .

From Eqn. 5, 10, and 11, we can derive the full conditional distributions for ω and λ .

p(λ1|−) ∝ p(Z|ω, λ1)p(λ1) ∝ λ ∑k |τk|−K

1 e−λ1M1 λ
θ 0

1−1

1 e
− 1

θ1
1

λ1

= λ
(α1−1)
1 e

− 1
β1

λ1 ∼ Gamma(α1,β1) (12)

where α1 = (θ 0
1 + ∑k |τk| −K), β1 = ( 1

θ 1
1

+ M1)
−1. Similar derivations show that all

p(λ j|−)∼ Gamma(α j,β j). where

α = {(θ 0
1...4 +∑

k

|τk|−K), (θ 0
5 +1), (θ 0

6 +K), (θ 0
7 +1), (θ 0

8 +K)}, β = (
1

θ 1
+M)−1 (13)

We see that by adopting exponential models and conjugate Gamma priors, the full condi-

tional distributions for λ are also Gamma distributions, which can be efficiently sampled

using a Gibbs sampler [2].

A similar derivation leads to the full conditional distribution for ω

p(ω|−) ∝ p(Z|ω,λ )p(ω|λ ) ∝
4

∏
j=1

λ ∑k |τk|−K

j λ K
6 λ K

8 e−λMT

(14)

This is not a known distribution, so we resort to the Metropolis Hastings algorithm [2].

By design, a series of reversible proposal moves yields a Markov chain that is irreducible,

aperiodic, and that converges to a stationary distribution by the ergodic theorem [6]. In

our case, the stationary distribution π(ω) is defined in Eqn.14, and the acceptance ratio is

computed as

A(ω,ω ′) = min(1,
π(ω ′)q(ω ′,ω)

π(ω)q(ω,ω ′)
) (15)

The proposal distributions q(ω,ω ′) consists of four pairs of reversible moves, as il-

lustrated in Fig.2. To describe the constructions of the proposals, we first introduce a

neighborhood tree structure of observations similar to [6], designed to make the search

space manageable. Tracklet Z1 is the parent of tracklet Z2 if their initial frame numbers are

within the maximal allowed missing frames Tmax and if their spatial distance falls below

a threshold controlled by the maximal speed of the targets. The probability of proposing

each type of move, pω(m), is essentially a uniform distribution, but adapted to the current

configuration of ω for better efficiency. For example, if the number of trajectories K = 0,



Algorithm 1 MCMCDA with parameter estimation

Input: Z, nmc, ω0, θ Output: λ ∗, ω∗

Initialization: ω ← ω0, λ ∼ Gamma(θ 0,θ 1), (λ ∗, ω∗) = (λ , ω0)
for n = 1 to nmc

update ω sample a move m from the distribution pω(m)
propose ω ′ from the move specific proposal pm(ω|λ )
sample U ∼ Uniform(0,1)
ω ← ω ′ if log(U) < log(A(ω,ω ′))

update λ update α, β according to Eqn. 13

sample λ ∼ Gamma(α,β )
(λ ∗, ω∗)← (λ , ω) if p(ω,λ |Z) > p(ω∗,λ ∗|Z)

only the birth move is allowed.

Birth/Death. Every birth move proposes a new trajectory by sampling uniformly at

random (u.a.r.) from the current set of free tracklets τ0 in ω . We then extend τ ′K+1

by recursively appending a child tracklet of the current ending tracklet with probabil-

ity γ . The child tracklet is chosen based on consistency between the child and par-

ent tracklets as defined in the likelihood function. Hence, we define ext(child) ∝ (1−
log(ℓ(child|parent)))−1, with ℓ as given by Eqn. 3. The birth move is rejected if |τK+1|<
2 because we cannot distinguish between a false alarm and a trajectory with only a single

tracklet. For the (reverse) death move, we choose k u.a.r. from {1, . . .K} and delete τk

from ω , adding the tracklets associated with τk back to the set of false alarms τ0.

Extension/Reduction. In an extension move, a trajectory τk is selected u.a.r. from ω and

extended by the same recursive procedure as in the birth move. In a reduction move, we

pick a tracklet τk u.a.r. and then select a break point i from {2, . . . , |τk|} according to the

probability bk(i) ∝ − log(ℓ(τki+1
|τki

)), which is inversely proportional to the consistency

measure, so the trajectory is likely to break at its weakest link. The tracklets after the

break point are added back to the false alarm set. The same operations are performed

backwards in time in a similar manner.

Split/Merge. The split move is similar to a reduction, but instead of freeing up the

chain of tracklets after the break point, it becomes a new trajectory. Specifically, we

u.a.r. select τk and select a break point from {2, . . . , |τk| − 1}. To propose a merge

move, we pick a pair of trajectories (τi,τ j) u.a.r. from the set of all possible merge pairs

G = {(τi,τ j) : τ j(t1) ∈ child(τi(t|τi|))} and append τ j to the end of τi (the rectangles in

the temporal overlap between the tracklets are averaged).

Switch. This move is included to help explore the solution space. It is essentially

the same as a series of birth/death and split/merge moves. We select a pair of trajec-

tories (τi(tp),τ j(tq)) u.a.r. from the set of switchable trajectories {(τip ,τ jq) : τ jq+1
∈

child(τip)&τip+1
∈ child(τ jq)}. The tail sections of the two trajectories after their switch

points are swapped.

To summarize, by introducing the hyperpriors θ over the model parameters λ , our algo-

rithm is able to estimate λ and the object trajectories ω in a unified Bayesian framework

so that the tracking method can adapt to different videos automatically. The MAP es-

timation is computed by MCMC sampling, where λ can be sampled easily by a simple

Gibbs sampler, thanks to the choice of the conjugate Gamma prior, and ω is sampled

using the Metropolis Hastings algorithm with reversible moves. The complete algorithm



is summarized in Algorithm 1.

4 Experimental Results

We first illustrate our algorithm using a sequence from the EU Caviar Project1. The

supplied ground truth trajectories are broken up to create a set of overlapping tracklets

of length 30 frames, starting at every 10th frame. We obtain the optimal parameter λ ∗

from the ground truth tracklets and show how the estimated trajectories are affected by

perturbing the parameters. In Figure 3(c), we plot the estimated number of trajectories

against λ8, the parameter for the spatial overlap term. Even such a crude measure shows

the importance of setting proper parameter values. If the value of λ8 is too small, the

overlapping tracklets do not get merged properly and are instead hypothesized as new

trajectories (Figure 3(a)). The appropriate parameter has to be set to achieve optimal

association (Figure 3(b)). Note that there are also correlations among the model param-

eters that make them difficult to fine tune, and therefore adaptive methods are desired to

determine the optimal parameter values automatically.
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Figure 3: Illustration of multi-target data association by tracklets and the influence of one

model parameter. Left: a “bad” partition of tracklets where more than four trajectories

were estimated because λ8 is small. Middle: a “good” partition of tracklets into sets

associated with individual objects, each drawn in a different color. The orange one is the

trajectory of a person not currently visible. Right: The total estimated number of targets

varies while changing even one single model parameter.

We next show the learnt parameters and estimated trajectories for real scenes. The

first test sequence is a challenging multi-target soccer sequence2. Players were automat-

ically detected at every 10th frame via background subtraction and used to seed simple

correlation-based template trackers to generate tracklets. The second sequence is captured

using a Sony camcorder at an outdoor art’s festival. The task becomes more challenging

here due to lower camera elevation angle and higher crowd density, which lead to more

occlusion and more complex trajectory dynamics. We use an edge-based head detector

for detection and color-based particle filter for tracklet generation. Figure 4 shows the

estimated trajectories for each case and the inferred model parameters. The algorithm

1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
2http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html



is able to use noisy tracklets (Figure 4(a,e)) generated by a variety of simple trackers to

recover reasonable trajectories under challenging situations.

5 Conclusion

In this paper, we use tracklet features for multi-target tracking, which provides greater

spatio-temporal context for data association. By introducing a hierarchical Bayesian

model, we propose a principled method for unsupervised learning of model parameters

and object trajectories. The MAP solution is made computationally tractable by MCMC

sampling techniques. This algorithm could be extended easily to an online version by

using sliding temporal windows.
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