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Abstract. Following the pioneering CRYPTO ’99 paper by Kocher et
al. differential power analysis (DPA) was initially geared around low-
cost computations performed using standard desktop equipment with
minimal reliance on device-specific assumptions. In subsequent years, the
scope was broadened by, e.g., making explicit use of (approximate) power
models. An important practical incentive of so-doing is to reduce the data
complexity of attacks, usually at the cost of increased computational
complexity. It is this trade-off which we seek to explore in this paper.
We draw together emerging ideas from several strands of the literature—
high performance computing, post-side-channel global key enumeration,
and effective combination of separate information sources—by way of
advancing (non-profiled) ‘standard DPA’ towards a more realistic threat
model in which trace acquisitions are scarce but adversaries are well
resourced. Using our specially designed computing platform (including
our parallel and scalable DPA implementation, which allows us to work
efficiently with as many as 232 key hypotheses), we demonstrate some
dramatic improvements that are possible for ‘standard DPA’ when com-
bining DPA outcomes for several intermediate targets. Unlike most pre-
vious ‘information combining’ attempts, we are able to evidence the fact
that the improvements apply even when the exact trace locations of the
relevant information (i.e. the ‘interesting points’) are not known a priori
but must be searched simultaneously with the correct subkey.

1 Introduction

Differential power analysis (DPA) was initially conceived as a computationally
‘cheap’ way to recover secret information from side-channel leakages, under the
assumption that trace measurements could be easily acquired [14]. Over time, the
emphasis has changed and several directions have been pursued in the literature,
e.g. attacks using power models [6] and attacks using several trace points [7] ([15]
surveys the many variations of DPA style attacks). Across all these directions,
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one ‘measure’ of attack success has emerged and now dominates the scientific
discourse with regards to attack efficiency. This measure is the number of power
traces needed to identify the correct (sub)key1.

What is the purpose of considering (sub)key recovery attacks? From a prac-
tical perspective any strategy is considered successful if it reveals ‘enough’ infor-
mation about the (global) key to enable a brute force search. It is crucial that
side-channel resistance, like other aspects of security, be considered with respect
to realistic threat models. Real world adversaries are then (arguably) mostly
interested in exploring trade-offs between the number of leakage traces available
and the computational resources dedicated to extracting as much information
as possible from those traces. Recent work by Veyrat-Charvillon et al. [25,26]
present an algorithm for searching the candidate space containing the key and
a means to estimate its size if the enumeration capabilities of the analyst are
below those of a better-resourced adversary.

Resources, from the point of view of a contemporary DPA adversary, include
not only sophisticated measurement equipment but crucially also processing ca-
pabilities that directly map to the time necessary to mount and complete attacks
[8]. Moradi et al.’s recent work [18] demonstrates how the use of a handful of
modern graphics cards allows for dramatic increase in processing capabilities,
enabling an attack on 32-bit key hypotheses in a known point scenario (the leak-
age point corresponding to the attacked operation was determined a priori via
a known key attack).

In this submission we explore the possibilities for sophisticated use of modern
processing capabilities (such as those associated with high performance comput-
ing (HPC), albeit restricted to the setting of a few machines or a ‘small’ cluster)
to facilitate ‘multi-target’ DPA attacks. Multi-target DPA consists in amalga-
mating outcomes from multiple single-target attacks with the aim of reducing
global key entropy more quickly than an individual single-target attack. For ex-
ample, against a sequential AES implementation, multi-target DPA could amal-
gamate the outcomes of standard attacks on the AddRoundKey, SubBytes, and
MixColumns operations. We will show later that we can do this meaningfully,
and also efficiently, for correlation-based DPA attacks—even in realistic scenar-
ios where the exact leakage points for those target functions are not known and
must each be searched within windows of the trace. Most importantly, we show
that such attacks can dramatically out-perform single-target attacks and are by
far the best strategy to minimise the number of leakage traces required.

1.1 Our contribution

An adversary who is capable of attacking large numbers of key hypotheses has
a greater choice of intermediate target functions to attack. For instance, possi-
ble AES targets include the output of AES MixColumns (involving four bytes

1 The overall key recovery works according to a divide-and-conquer strategy; each (for
example) byte of the key is attacked and recovered individually.
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of the secret key) as well as the (implementation-dependent) intermediate com-
putations for MixColumns (involving two or three key bytes at once). Given
the potential plethora of intermediate value combinations for a sequential AES
implementation (as typically found on micro-processors) we investigate the ef-
fectiveness of some of the possible combinations with respect to the reduction
on key guessing entropy. We also touch on the possibility of combining different
distinguisher outputs and explain when this is (or is not) going to be helpful.

We also take inspiration from the suggestion of Veyrat-Charvillon et al.
[25,26] (originally for the purposes of a key enumeration algorithm) that prob-

ability distributions on the subkeys can be derived from the outcome of a DPA
attack. We propose an alternative (more conservative) heuristic for assigning
‘probability’ scores to subkeys, and show how these can be used to simply and
usefully combine information from multiple standard univariate DPA attacks in
a strategy inspired by Bayesian updating.

This research is rooted in our developed capability to efficiently process
large numbers of key hypotheses over many repeat experiments; our architecture
(which we sketch out) is influenced by the design of modern HPC platforms.

We structure our contribution as follows. We briefly provide the relevant
preliminaries and then discuss prior literature (Section 2). We then introduce
our specialised attack framework and explain our attack strategy, including our
method of assigning and updating ‘probability’ scores, in Section 3. Section 4
reports the results of our experiments with simulated leakage data, exploring
what can be achieved by combining the outcomes of attacks against different
target functions, as well as investigating the potential to combine different DPA
strategies. In Section 5 we report the outcomes of some practical attacks against
traces measured from an ARM 7 microcontroller, including scenarios in which
the precise locations of the intermediate targets in the traces are unknown.

1.2 Preliminaries: Differential power analysis

We consider a ‘standard DPA attack’ scenario as defined in [16], and briefly
explain the underlying idea as well as introduce the necessary terminology here.
We assume that the power consumption P of a cryptographic device depends
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R

∈ X—
which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that P = L ◦ Fk∗(X) + ε, where L : Z → R describes the data-dependent
component and ε comprises the remaining power consumption which can be
modeled as independent random noise (this simplifying assumption is common
in the literature—see, again, [16]). The attacker has N power measurements
corresponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and
wishes to recover the secret key k∗. The attacker can accurately compute the
internal values as they would be under each key hypothesis {Fk(xi)}

N
i=1, k ∈ K

and uses whatever information he possesses about the true leakage function L
to construct a prediction model M : Z → M.
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DPA is motivated by the intuition that the model predictions under the
correct key hypothesis should give more information about the true trace mea-
surements than the model predictions under an incorrect key hypothesis. A dis-
tinguisher D is some function which can be applied to the measurements and
the hypothesis-dependent predictions in order to quantify the correspondence be-
tween them. For a given such comparison statistic,D, the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K

(where x = {xi}
N
i=1 are the known inputs and e = {ei}

N
i=1 is the observed noise).

Then the attack is o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.
The success rate of a DPA attack is the probability that the correct key is

ranked first by the distinguisher (the o-th order success rate is the probability
it is ranked among the o first candidates); the guessing entropy is the expected
number of candidates to test before reaching the correct one [24]. These met-
rics are often associated with the subkeys targeted in the ‘divide-and-conquer’
paradigm rather than with the global key when the partial outcomes are finally
combined; we use the terms accordingly, unless explicitly stated.

Unless stated otherwise, we use the (estimate of the) Pearson correlation
coefficient as distinguisher, in combination with a Hamming weight power model.

2 Related literature

Our work unites and advances three broad areas of the literature: resource-
intensive side-channel strategies, post-SCA global key enumeration, and optimal
combination of multiple sources of exploitable information.

Resource-intensive strategies. Such strategies have for a long time been consid-
ered mainly relevant in single-trace settings (e.g. SPA attacks using algebraic
methods [19,20]); this has only lately begun to change, with a few recent studies
making use of modern graphics cards to speed up DPA attacks [3,18]. These ar-
ticles essentially use GPUs within a single machine to speed up the processing of
standard correlation DPA attacks. Our more ambitious approach is to distribute
all the different components of a DPA attack (including workloads related to
combination functionality) across several cards and several machines.

Post-SCA global key enumeration. Recent work by Veyrat-Charvillon et al.
[25,26] focuses on the opportunity for a well-resourced adversary to view side-
channel analysis as an auxiliary phase in an enhanced global key search, rather
than a stand-alone ‘win-or-lose’ attack. They present an algorithm for searching,
based on probability distributions for each of the subkeys (derived from DPA
outcomes) [25]. In the case of profiling DPA with Gaussian templates, the true
leakage distributions conditioned on each subkey hypothesis are known, and the
probabilities are naturally produced in the Bayesian template matching. In the
case of non-profiling DPA, these conditional leakage distributions are not known;
an attack does not produce a probability distribution on the subkey candidates
but a set of distinguisher scores (for example, correlations) associated with each
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candidate. Deriving probabilities from these scores is tricky; the method sug-
gested in [25] is to use the hypothesis-dependent fitted leakage models after a
non-profiled linear regression (‘stochastic’) attack as estimates on the ‘true’ con-
ditional distributions. However, non-profiled linear regression-based DPA specif-
ically relies on the fact that the models built under incorrect key hypotheses are
invalid. Consequently, the hypothesised functions do not describe the true data-
dependent deterministic behaviour of the trace measurements, and so they are
useless for (statistical) inference. For this reason, we opt for a different (‘safer’)
heuristic for assigning ‘probability’ scores, as explained in Section 3.1.

Combining multiple sources of information. Whilst profiling attacks with multi-
variate Gaussian templates [7] naturally exploit multiple trace points, notions of
‘multivariate’ non-profiled DPA are varied in nature and intention. In particu-
lar, techniques designed to defeat protected implementations are best considered
separately from attempts to enhance trace efficiency, and we now focus on the
latter. Already in an unprotected implementation, information on a given sub-
key generally leaks via more than one target function (AddRoundKey, SubBytes
and MixColumns, for example, in the case of AES) and moreover each of those
target functions can be seen to leak at more than one trace point. In some cases,
an adversary may even have opportunity to observe multiple side-channels si-
multaneously (timing, power consumption, electromagnetic radiation. . . ).

In the realms of both profiled and non-profiled DPA, several efforts have
been made to combine information from multiple trace points in such a way as
to optimise the (trace) efficiency of an attack. Dimensionality reduction tech-
niques such as principal component analysis or linear discriminant analysis can
be used to transform the (often collinear) trace measurements into a reduced
number of linearly uncorrelated variables, together accounting for the important
variation in the original data [1,4,22]. In this way it is even possible to combine
information from different side-channels, such as power and electro-magnetic ra-
diation [22]. Such methods can be very effective if the leakage associated with
a particular intermediate value is concentrated into a single component giving
rise to a stronger attack outcome than the ‘best’ of any individual point in the
raw dataset. A recent work by Hajra et al. [12] achieves a similar end via sig-
nal processing techniques. They show how to maximise the signal-to-noise ratio
(SNR) (and consequently demonstrate the success rate of a univariate correla-
tion DPA) by finding the linear Finite Impulse Response (FIR) filter coefficients
for the leakage signal. Hutter et al. [13] also seek to enhance DPA efficiency by
incorporating multiple sources of information, but take an entirely different ap-
proach in which the combination is instead made at the trace acquisition stage.
They measure the difference in consumption between two identical devices op-
erating on different data, which they reason has a higher data-dependent signal
because all environmental and operation-dependent noise is cancelled out.

Other suggestions involve performing separate attacks (against different tar-
gets, power models or using different distinguishers) and then attempting to
combine the distinguishing vectors themselves in a meaningful way. Doget et al.
[9] present options for combining difference-of-means (DoM) style outcomes in
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order to avoid the ‘suboptimality’ associated with attacks exploiting only one
or a few of the bits at a time. Whitnall et al. [28] try applying a multivariate
extension of the mutual information to the AddRoundKey and an S-box jointly,
but find that it is less efficient than the corresponding attack against the S-box
alone, and moreover would not scale easily beyond a two-target scenario due to
the complex nature of the statistic. Souissi et al. [21] suggest to combine different
distinguishers (namely, Pearson’s and Spearman’s correlation) applied against
the same or different leakage points by taking either the sum or the maximum
of the two, and show that the former works better, and is most effective if the
trace points contain non-equivalent information. Most directly related to our
study is a paper by Elaabid et al. [10] which suggests to (pointwise) multiply

correlation distinguishing vectors together in order to enhance distinguishing
outcomes. They do this for four known leakage points, all relating to the same
target function and power model, and find that it substantially improves over
the outcomes achieved for any one of those leakage points taken individually.
Our own combining approach is different: we first convert distinguishing vectors
to ‘probability’ scores and view the multiplication as a Bayesian updating-like
procedure. Moreover, we focus on combinations between different target val-

ues (rather than different leakage points for the same value) with potentially
different-sized subkey hypotheses.

3 Methodology

3.1 Assigning probabilities

The attempt of [25] to estimate ‘genuine’ probabilities on the subkey hypotheses
in the non-profiled setting (see Section 2), by using the recovered models derived
from a linear regression based attacks, is expensive as well as unsuitable for
our purpose. Ignoring the fact that the incorrect key hypotheses (using their
approach) recover invalid models, the method of [25,26] may be viewed as one
possible heuristic to assign probabilities to key guesses. It preserves the ranking
of the keys as they appear in the distinguishing vector produced by a non-profiled
linear regression-based DPA. However, because of the nature of the formula
used it dramatically exaggerates the apparent distance between the high- and
low-ranked key candidates. If the implied key is the right one it reinforces this
‘correct’ result. But if it is not the right one it reinforces the misleading result.
In their application (i.e. key enumeration) this may cause a less efficient key
search. However, we are aiming to combine distinguisher results, and hence key
rankings, and mixing in a grossly exaggerated incorrect key ranking may destroy
the effectiveness of the method.

Embracing the heuristic nature of the task of obtaining (from distinguishing
vectors) scores which may be handled as though probabilities, we suggest the
conversion be kept simple and conservative. Our approach firstly transforms the
distinguishing vector to be positive-valued with a baseline of zero (in a manner
appropriate to the statistic—e.g. the absolute value for correlation, subtraction of
the minimum for the mutual information) before secondly normalising the scores
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to sum to one. We draw analogy between this idea and the notion of subjective
probability basic to a Bayesian view of statistics: both involve human-allocated
scores derived from one’s current best knowledge about reality.

3.2 Combining probabilities

A Bayesian interpretation views probabilities as measures of uncertainty on hy-
potheses. Each time new information becomes available, the current state of
knowledge can be updated via Bayes’ theorem:

P(H|B) =
P(B|H)P(H)

P(B)
,

where H is some hypothesis (for example, a guess on the key, “K = k”), and B
is some data (for example, a set of trace measurements l = L ◦ Fk∗(x) + e).

Suppose that we have probabilities for (K = k) conditioned on two sources of
data l1, l2, which are conditionally independent given K = k so that P(l1, l2|K =
k) = P(l1|K = k)P(l2|K = k). This is a natural assumption for the leakages of
two target intermediate values: they are related via their shared dependence on
the underlying key, but as long as they are separated in the trace, we would
not expect any dependency in the residual variances after the key is taken
into account. In this case, the task of combining the conditional probabilities
is straightforward (see [2]):

P(K = k|l1, l2) =
P(l1, l2|K = k)P(K = k)

P(l1, l2)

=
P(l1|K = k)P(l2|K = k)P(K = k)

P(l1, l2)

=
P(l1)P(l2)

P(l1, l2)
×

P(K = k|l1)P(K = k|l2)

P(K = k)
,

(via Bayes’ theorem again, since P(li|K = k) = P(K = k|li)P(li)/P(K = k)).
Since a = P(l1)P(l2)/P(l1, l2) does not depend on the key hypothesis we can
treat it as a normalisation constant which just needs to be computed so as to
satisfy

∑
k∈K P(K = k|l1, l2) = 1. In the typical case that all keys are a priori

equally likely, the denominator in the second product term is 1

|K| (constant for

all key hypotheses) and simply gets absorbed into the normalising constant.
Thus, conditional probabilities on the key candidates can be updated with the
introduction of any new, independent information via a simple multiplication-
and-normalisation step.

3.3 Parallelised attack architecture

Combining multiple distinguishing vectors and attacking target functions involv-
ing 24 or more bits of the key are both computationally demanding tasks, and
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Keys attacked per second, OpenCL kernel for attacking 32 bits of key using the MixColumns operation
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Fig. 1. Average keys per second recorded during DPA attacks on 32-bits of the input
to the MixColumns operation for a variety of different sample sizes. Implementations
are a ‘naive’ single-threaded CPU implementation, a parallelised OpenCL CPU-based
implementation, and the two fastest OpenCL GPU implementations.

necessitate the use of parallelised computation. We elected to use the OpenCL
language and a set of graphics cards to parallelise the computation needed to
attack up to 32-bits of a key, the combination and normalisation of distinguish-
ing vectors, and finally the statistics necessary for evaluating the effectiveness of
each combined attack.

We took inspiration from modern HPC facilities, in which a significant amount
of the computing power is delivered by GPUs. Hence our experimental setup con-
sists of several (up to 6) workstations, each containing two discrete GPUs (the
cost per machine is approximately 2000 GBP). These were various pairs of high-
end AMD and Nvidia cards, installed in our own workstations or within the
Bluecrystal Phase 3 supercomputing facility2. In total, including all the func-
tionality used to fully produce and analyse our experimental results, we were
able to complete at least 250 operations on combined distinguishing vectors, in
very roughly a couple of weeks of computation time.

The most computationally demanding function was performing a 32-bit DPA
attack on the MixColumns operation. Here we decided to share the cost over
multiple GPUs, with each work group inside a single card computing a partial
piece of the distinguishing vector using a portion of the traces and a subset of
the key hypotheses, followed by a global reduction to compute the final vector.
Fig. 1 shows the performance of our OpenCL attack implementation for a variety
of devices, in terms of the number of key hypotheses tested per second.

We note that these benchmark timings are not likely to be optimal. We
did not try to improve the memory coalescence of our kernels, nor did we try to
perform any other non-trivial optimisation beyond maximising kernel occupancy,
and so there may be considerable headroom in key-search throughput still to be
gained. It is clear from the extremely cheap price for a dual GPU setup, coupled
with the considerable performance increases observed with the introduction of
new GPU architectures, that an adversary can acquire very large side-channel
key-search capabilities at minimal financial cost.

Bartkewitz et al. [3] use Nvidia’s CUDA technology and a Tesla C2070 to
parallelise 8-bit CPA attacks on the SubBytes operation, and focus on maximis-

2 Bluecrystal is managed by the Advanced Computing Research Centre at the Uni-
versity of Bristol—see http://www.bris.ac.uk/acrc/.
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ing trace data throughput in an 8-bit setting. Our more ambitious goal is to
optimise for large key-search problems as well as for trace data throughput. In
this context Moradi et al. [18] utilise 4 Nvidia Tesla GPUs to attack 32-bits of
key using 60, 000 traces, and are able to attack a single time-point every 33 min-
utes. A direct comparison is not possible as we are using slightly more modern
hardware and the exact computational costs included in the benchmarking are
not clear—however we might expect to be able to perform a similar attack in
approximately 20 minutes.

4 Experiments with simulated data

The goal of our combining strategy is to reduce (relative to ‘standard univariate
DPA’) the guessing entropy on the subkeys (and consequently on the global
key). Many types of combination are possible. We study the effect of combining
outcomes from different targets as well as, secondarily, the effect of combining
outcomes from different distinguishers applied to the same target. We do this
initially for simulated trace measurements so that we can take into account
different noise levels (i.e. by varying the SNR) as well as the impact of using an
imperfect power model. Both aspects have practical relevance.

4.1 Combining outcomes from different targets

We simulated leakages of AES AddRoundKey, SubBytes, and three 8-bit interim
values in the computation of MixColumns: one involving two key bytes (namely
GFm2(statei ⊕ statei+1) where statei is the ith state byte after the SubBytes
operation, and GFm2 denotes doubling in Rijndael’s finite field), one involving
three key bytes (namely GFm2(statei⊕statei+1)⊕statei+1⊕statei+2), and one
involving four key bytes (namely GFm2(statei⊕statei+1)⊕statei+1⊕statei+2⊕
statei+3)

3.
In the case of the 16-bit multi-target attack we necessarily hypothesise over

two key bytes (in order to incorporate the MixColumns leakage). The experi-
ments each involve two AddRoundKey correlation-based DPA attacks (which are
then combined into probabilities on the full 16-bit subkeys via multiplication),
two S-box attacks (combined likewise), and the one MixColumns attack, before
multiplying each possible target function pair together, as well as multiplying
all three together. Similarly, for the 24-bit multi-target attack we hypothesise
over three key bytes. The experiments in the 24-bit attack then involve three
AddRoundKey attacks, three S-box attacks, and the one attack on an interim
MixColumns value. We amalgamate probabilities by multiplication as in the
16-bit case. The 32-bit multi-target attack proceeds in the same fashion: we
combine four AddRoundkey attack results and four SubBytes results into the

3 This targets a single intermediate byte. The relative effectiveness of combining all
four attacks on all the possible intermediate bytes would also be interesting to in-
vestigate, but generating results requires time and so is left as future work.
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(a) Outcomes for attacks combining several targets using up to 32-bit key hypotheses.
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Fig. 2. Simulation results
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MixColumns attack result. The graphs in Fig. 2(a) show these different scenarios
for a single column of the AES state.

In the following paragraphs we analyse these graphs with respect to three
questions that are relevant for practice. Firstly, what is the impact of a (low)
SNR with regards to our multi-target strategy? As we base our DPA attacks on
correlation distinguishers, we would hope that, similarly to single-target attacks,
multi-target attacks will ‘scale’ alongside the SNR. Secondly, we are interested in
how the size of the key hypotheses impacts on the guessing entropy, and lastly, in
how multi-target attacks behave when the attacker’s power model is imprecise.

Impact of SNR. The top two graphs in Fig. 2(a) show the subkey guessing
entropies (for a 16-bit key guess) as the number of traces increases, for the attacks
against simulated Hamming weight leakages with two SNR levels. Aside from the
fact that all attacks require increased numbers of traces as the SNR decreases (as
we would expect) the scenarios exhibit similar outcomes. The attacks on S-boxes
are effective at reducing uncertainty on the key (the results for these are printed
in red), but are clearly outperformed by all three ‘bivariate’ combinations—even
the one between the MixColumns sub-computation and AddRoundKey. The
combination between all three further reduces the enumeration work required.

Impact of larger distinguishing vectors. The top right and the bottom graphs in
Fig. 2(a) show the subkey guessing entropies for increasing subkey sizes (16-bit
in the top right, 24-bit in the bottom left, and 32-bit in the bottom right). In all
three experiments the multi-target attacks outperform the single target attacks.
Note that the guessing entropy range naturally increases with the size of the
key hypothesis and is in no way an indicator of attack degradation. For the
16-bit attack the guessing entropy is out of 216 and eight such guesses need to
be combined to get a global key with guessing entropy between 1 and 2128. For
the 32-bit attack the guessing entropy is out of 232 but only four such guesses
need to be combined. It is the global guessing entropy which ultimately matters
and the subkeys always need to be combined at some point – incorporating
information at (e.g.) the 32-bit level simply increases the scope of intermediate
targets exploitable by the attacker. For both hypothesis sizes, the outcomes
suggest that we are able to succeed with roughly half the number of leakage traces
when using the best multi-target attack (for a fixed subkey guessing entropy, the
best multi-target attacks require roughly half of the traces required by the best
single-target attack). It is possible to estimate global key guessing entropies
based on these results by assuming that the attacks on the other ‘chunks’ of
the key would behave identically. For instance, in the 16-bit case, if all eight
16-bit attacks give identical outcomes, we could estimate global key entropies
by raising the results of a single 16-bit attack to the power eight. However, this
does not necessarily translate into practice, so we will instead show actual global
key guessing entropies when we come to discuss attacks on real data.

Impact of imperfect power model. The left picture of Fig. 2(b) shows the out-
comes (against a 16-bit subkey target: the legend from Fig. 2(a) applies) in the
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case where the Hamming weight is not a perfect match to the leakage, because
of the presence of a constant reference state (representing an address, for exam-
ple) of Hamming weight 1. The most striking impact of this distortion occurs for
attacks that include AddRoundKey as a target, which are no longer able to iden-
tify the correct key as a likely candidate. This is because the Hamming distance
of the AddRoundKey from the reference state when the correct key is guessed
is the same as the Hamming weight of the AddRoundKey when the key guess
is the correct key XORed with the reference state. In effect, an incorrect key is
masquerading as the correct one, and the correlation DPA against AddRound-
Key will naturally preference this. (The same cannot happen for the S-box, for
example, because the key XOR is inside the highly nonlinear transformation,
with the Hamming distance being taken afterwards).

Nonetheless, in this case where the reference state is itself of low weight,
incorporating AddRoundKey information still produces marginal reductions on
the guessing entropies after S-box and MixColumns (separately, and combined).
Greater imprecision of the power model will more strongly impact on AddRound-
Key attacks; it may be advisable to exclude it as a target in such cases.

4.2 Combining outputs from the same target

One might ask whether or not the outcomes of different distinguishing statistics

or power models can likewise be combined to some advantage.

Using different distinguishing statistics. Suppose we run three different attacks
against the leakage of an AES S-box, e.g.: mutual information [11], Kolmogorov–
Smirnov [27], and the variance ratio [23], all using a Hamming weight power
model. The distinguishing vectors are transformed to have a baseline of zero and
to sum to one, for use as heuristic ‘probability’ scores. We would then like to
know whether the combined outcomes improve upon the individual ones.

The right picture in Fig. 2(b) shows what happens when we attempt this
in the example scenario of Hamming weight leakage with SNR 0.0625. When
the same measurements are used for all of the attacks, combining the outcomes
actually increases the guessing entropy. By contrast, when independent measure-
ments are used in each case (i.e., each distinguisher has been applied against a
different point in the trace leaking the same information but with independent
noise), there is some scope to refine the information on the key by combin-
ing outcomes—although all three outcomes together on average produce worse
results than the best combination of two. We found that it was generally the
addition of mutual information which degraded the outcome, as it required sub-
stantially more data to estimate to an equivalent degree of precision.

This is very much in line with what we might expect, and acts as a note-
worthy warning: it is the addition of new information which improves attack
outcomes—exploiting the same measurements using the same power models but
with different distinguishers does not contribute anything further. In the context
of our heuristic ‘probability’ distributions such a practice could be particularly
dangerous, as it still serves to exaggerate the magnitude of the peaks, thus giving
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a false sense of increased certainty. Note that the multiplication step implicitly
assumes independence of the separate score vectors, which is clearly violated in
the case that they are all based on the same leakage information.

Using different power models. In the light of the ineffectiveness of combining
information about the same target, we briefly revisit previous work by Bevan
and Knudsen [5]. They suggest to combine eight difference-of-means attacks,
each targeting a distinct bit of the intermediate value, by ‘summing over the
distinguisher results’ (in our approach we convert them into ‘probability’ distri-
butions on the set of 28 subkeys, as per Section 3.1). Since each attack exploits
a separated portion of the overall leaked value we may expect that each new
bit attacked helps to further reduce the candidate search space—and, indeed,
our experiments confirm this (see Appendix A). Such a technique is hence very
useful in leakage scenarios which are unfamiliar to an attacker, which is often
the case when attacking dedicated hardware.

5 Practical attacks

We tested our strategy in practice using a dataset of 10,000 traces from an
ARM7 microcontroller running an unprotected implementation of AES. The
10,000 traces were divided up in 200 sets of 50 traces each to conduct suffi-
cient repeat experiments to report reasonably precise estimates for the guessing
entropies in the same vein as our simulated attacks. Multi-target attacks, sim-
ilar to multivariate attacks, are greatly helped by knowledge about where the
attacked intermediate values leak in the traces. Consider for instance a (multi-
variate) template attack: it is much harder for an adversary to conduct such an
attack when in the profiling phase a similar device is available but not the exact
implementation (of, say, AES). In such a case an adversary could still build tem-
plates for microprocessor instructions during profiling, but in the attack phase
the adversary would need to find the specific trace points at which to apply the
templates. Similarly, knowing precisely where the single-target leakages occur is
helpful for a multi-target attack. We consequently focus initially on a ‘known
point’ scenario and then make a first attempt at relaxing this assumption.

5.1 Practical attacks against known interesting points

We applied two multi-target attacks (one involving 16-bit, one 32-bit key hy-
potheses) under the assumption that interesting trace points are known, running
200 repeat experiments for increasing samples of up to size 50. For each 16-bit
subkey, correlation DPA attacks were performed against the two corresponding
AddRoundKey operations, the S-boxes and the MixColumns sub-computation
GFm2(statei ⊕ statei+1), where statei is the state byte corresponding to the
ith key byte after the S-box substitutions and (in this implementation) the
ShiftRows operation. For each 32-bit subkey, correlation DPA attacks are per-
formed against four AddRoundKey operations, four S-boxes, and the 32-bit Mix-
Columns computation GFm2(statei⊕statei+1)⊕statei+1⊕statei+2⊕statei+3.
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The first two graphs in Fig. 3(a) show the guessing entropies on the first
key-byte pair and the final global guessing entropies, estimated by multiplying
the eight subkey guessing entropies together (the outcomes for the other seven
subkey guesses can be found in the Appendix of the full version of our paper,
see [17]).4 They largely, but not perfectly, match up with our observations for
simulated traces. This is an important point: theory and practice rarely perfectly
align, even in the case of a relatively ‘simple’ platform like the ARM7. In the
practical experiments, AddRoundKey and the MixColumns sub-value are con-
sistently unable to identify the correct key alone (at least, not within 50 traces).
However, the two together produce guessing entropies to rival the effectiveness
of the S-box attack, and both produce improvements in combination with the
S-box. All three together produce the best guessing entropies for many of the
16-bit subkeys, although they are sometimes outperformed by the two-target
S-box+AddRoundKey attacks, which achieve a marginal advantage overall.

The second two graphs in Fig. 3(a) show the guessing entropies for the first
32-bit subkey and the final global guessing entropies. The global entropies were
estimated by multiplying the four subkey entropies together. We observed vary-
ing behaviour for our combined attacks on different subkeys; our targeted Mix-
Columns computation does not leak nearly as much information in the middle 8
bytes of the state as it does in the first and final 4 bytes. Consequently, despite
(as suggested by our simulated attacks) observing strong performance of the
combined three-target attacks in the latter two cases, in the global setting this
advantage is diminished, and the ‘trivariate’ attack produces similar performance
to the combined four-byte S-box+AddRoundKey attacks. It is noteworthy that
even in the presence of this variable leakage, most combined attacks outperform
the S-box attack. Graphs and data for each of the four separate subkey attacks
can be found in the Appendix of the full version of our paper [17].

5.2 Practical attacks where interesting points are a priori unknown

The natural next question to ask is whether we can relax the assumption that
the leakage points are precisely known. We made some preliminary inroads using
‘desktop-level’ resources (whilst our GPU machines were occupied with other
experiments), focusing, for computational feasibility, on 8-bit key hypotheses.
The three targets we selected to combine were AddRoundKey, the S-box outputs,
and the interim MixColumns valueGFm2(statei⊕statei+1) with the assumption
that the second involved key byte of the two is known.

We relaxed the ‘known point’ assumption by visually inspecting the AES
traces in order to identify the intervals in which each of the three target functions
are contained. The first round takes about 1,400 clock cycles in total and the
(non-overlapping) windows we selected for experimentation were of widths 240,
230, and 180 for AddRoundKey, SubBytes and MixColumns respectively. Within

4 The more refined rank estimation methodology of [26] indicates that this simple
method of approximating global guessing entropies underestimates the rank by 20
to 40 binary orders of magnitude.
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S-box AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

16-bit subkey guessing entropy Global guessing entropy, 16-bit attacks

32-bit subkey guessing entropy Global guessing entropy, 32-bit attacks
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these windows we took an ‘exhaustive search’ approach. First, we subjected
each point to a standard DPA attack against the associated target function, and
computed the ‘probability’ scores. We then pairwise combined them in each of
the three possible configurations, and finally we combined all three. We tried
two strategies: in the first, we took (for each configuration) the combined vector
with the largest peak as the one most likely to correspond to the correct key and
pair/triple of leakage points, and in the second we took the Nt combined vectors
with the largest peaks and multiplied these together (for different values of Nt),
so achieving a sort of ‘majority vote’.

The left side of Fig. 3(b) shows the average guessing entropy for each of the
attacks using the first ‘maximum peak’ strategy. The AddRoundKey attack in
an unknown point scenario performs very badly. Further analysis of the trace
window reveals that there are other points exhibiting strong correlations with
AddRoundKey⊕R, for R some other (possibly address?) value in {0, 255} (see
Fig. 5 in Appendix B).5 Moreover, at these points the correct key correlations
are low, so that the contribution to the combined leakage is highly distorting (as
opposed to when an ‘imperfect but close’ leakage prediction is made, in which
case the combination can still improve distinguishability). In the presence of
such misleading leakage information, it is reassuring that the attack outcomes
are robust to the combining step.

The combined MixColumns and S-box attack exhibits lower guessing en-
tropies than either of the two taken individually. The trivariate attack (as ex-
pected from the above) does not really add much to this, but again we reflect
that the inclusion of AddRoundKey at least does not seem to harm the outcome.

The right side of Fig. 3(b) shows the advantage gained by multiplying the
top-ranked few ‘probability’ vectors for the trivariate attack, as well as (for
comparison) for the S-box attack on its own. Interestingly, even the addition
of the second ranked vector degrades the S-box attack, whereas the product
combining for the top-ranked triples reduces the guessing entropy at least up
to Nt = 20. The subsequent total improvement over the S-box outcome on its
own indicates this as a potentially worthwhile strategy for key recovery in an
unknown point scenario.

From a practical perspective, a useful forward approach for multi-target at-
tacks would be to ‘try out’ (for a concrete device and implementation) different
combinations of targets, and different point selection strategies, to see which give
the best results. We want to caution against drawing too many conclusions from
these last experiments: they clearly represent a first step only!

6 Conclusion

We have shown how to amalgamate single-target ‘standard’ DPA attacks (us-
ing a correlation distinguisher and a Hamming weight power model) into multi-

5 Note that the leakage of the S-box is less vulnerable to such distortions: a non-zero
reference state will not masquerade as an alternative key hypothesis, as the key
addition happens inside the S-box.
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target attacks capable of increasing information on the correct key by combining
DPA outcomes that are treated as heuristic probabilities. Leveraging our mod-
ern HPC-inspired computing platform, we are able to efficiently handle key hy-
potheses of up to 32 bits using a small cluster of simple workstations containing
consumer graphics cards. Such a capability allows us to combine many inter-
mediate targets; in this work we made the first serious attempt to explore the
characteristics of successful combinations. Our results indicate that combining
S-box+AddRoundKey or additionally including an intermediate MixColumns
computation typically produces the strongest results. Multi-target attacks scale
predictably with noise and are robust with regards to imprecise power models.
Our primary investigative effort is mainly on ‘known’ (leakage) point attacks,
in line with assumptions generally made for multivariate attacks. When leakage
points are not known, an exhaustive search in suitable visually-identified trace
windows, together with a ‘majority vote’-style approach to decide on ‘peaks’,
leads to improved practical attacks even in this challenging scenario.

Our definition of multi-target attacks and intuitive and efficient combination
technique opens up many interesting new research questions: e.g. is there any
single best combination of intermediate values for a given cipher? How effectively
can we combine power and EM attack results in this way? Could we even move
further on and include results from the second encryption round? What other
strategies for combining in unknown point scenarios exist? How could we use
this against implementations when masking and hiding are used? For better or
worse, these are “interesting times”—to call to mind the fabled Chinese curse.
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A Combining difference-of-means outcomes

Fig. 4 shows the reduction in subkey guessing entropy as an increasing number
of difference-of-means (against different individual bits) are combined via our
strategy.
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Fig. 4. Combining the outcomes of up to eight difference-of-means attacks against
Hamming weight leakage of the AES S-box.

B Unknown point attacks: problem of rival peaks

Fig. 5 illustrates the difficulty of separating the true key from strong rival can-
didates when the relevant ‘interesting points’ in the trace are not known. As de-
scribed in Section 5, this introduces distorting information into the point search,
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which reduces the ability to increase an attack’s effectiveness by the addition of
AddRoundKey outcomes.
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Fig. 5. Left: Example of a fixed XOR offset from the key producing a rival peak in the
AddRoundKey correlation attack against the ARM7 traces. Right: The evolution of an
AddRoundKey correlation attack against the ARM7 traces, showing the confounding
effect of strong rival candidates.
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