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Abstract

Embodied Question Answering (EQA) is a relatively new

task where an agent is asked to answer questions about

its environment from egocentric perception. EQA as intro-

duced in [8] makes the fundamental assumption that every

question, e.g. “what color is the car?”, has exactly one tar-

get (“car”) being inquired about. This assumption puts a

direct limitation on the abilities of the agent.

We present a generalization of EQA – Multi-Target EQA

(MT-EQA). Specifically, we study questions that have mul-

tiple targets in them, such as “Is the dresser in the bed-

room bigger than the oven in the kitchen?”, where the

agent has to navigate to multiple locations (“dresser in bed-

room”, “oven in kitchen”) and perform comparative rea-

soning (“dresser” bigger than “oven”) before it can an-

swer a question. Such questions require the development of

entirely new modules or components in the agent. To ad-

dress this, we propose a modular architecture composed of

a program generator, a controller, a navigator, and a VQA

module. The program generator converts the given ques-

tion into sequential executable sub-programs; the naviga-

tor guides the agent to multiple locations pertinent to the

navigation-related sub-programs; and the controller learns

to select relevant observations along its path. These ob-

servations are then fed to the VQA module to predict the

answer. We perform detailed analysis for each of the model

components and show that our joint model can outperform

previous methods and strong baselines by a significant mar-

gin. Project page: https://embodiedqa.org.

1. Introduction

One of the grand challenges of AI is to build intelligent

agents that visually perceive their surroundings, communi-

cate with humans via natural language, and act in their envi-

ronments to accomplish tasks. In the vision, language, and

AI communities, we are witnessing a shift in focus from

internet vision to embodied AI – with the creation of new

tasks and benchmarks [7, 2, 14, 35], instantiated on new

simulation platforms [21, 28, 32, 33, 20, 6].

The focus of this paper is one such embodied AI task,
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Figure 1: Difference between EQA-v1 and MT-EQA. While EQA-

v1’s question asks about a single target “car”, MT-EQA’s question

involves multiple targets (e.g., bedroom, dressing table, bathroom,

sink) to be navigated, and attribute comparison between multiple

targets (e.g., dressing table and sink).

Embodied Question Answering (EQA) [8], which tests an

agent’s overall ability to jointly perceive its surrounding,

communicate with humans, and act in a physical environ-

ment. Specifically, in EQA, an agent is spawned in a ran-

dom location within an environment and is asked a question

about something in that environment, for example “What

color is the lamp?”. In order to answer the question cor-

rectly, the agent needs to parse and understand the question,

navigate to a good location (looking at the “lamp”) based

on its first-person perception of the environment and pre-

dict the right answer (e.g. “blue”).

However, there is still much left to be done in EQA. In

its original version, the EQA-v1 dataset only consists of

single-target question-answer pairs, such as “What color is

the car?”. The agent just needs to find the car then check

its color based on its last observed frames. However, the

single target constraint places a direct limitation on the pos-

sible set of tasks that the AI agent can tackle. For example,

consider the question “Is the kitchen larger than the bed-

room?” in EQA-v1; the agent would not be able to answer

this question because it involves navigating to multiple tar-

gets –“kitchen” and “bedroom” – and the answer requires

comparative reasoning between the two rooms, where all of

these skills are not part of the original EQA task.

In this work, we present a generalization of EQA –
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Q: Does the dressing table in the 

Bedroom have same color as the 
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nav_room (bedroom)
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equal_color()

Program 

generator

Figure 2: Program Generator.

multi-target EQA (MT-EQA). Specifically, we study ques-

tions that have multiple implicit targets in them, such as

“Is the dresser in the bedroom bigger than the oven in the

kitchen?”. At a high-level, our work is inspired by the vi-

sual reasoning work of Neural Modular Networks [4] and

CLEVR [18]. These works study compositional and modu-

lar reasoning in a fully-observable environment (an image).

Our work may be viewed as embodied visual reasoning,

where an agent is asked a question involving multiple mod-

ules and needs to gather information before it can execute

them. In MT-EQA, we propose 6 types of compositional

questions which compare attribute properties (color, size,

distance) between multiple targets (objects/rooms). Fig. 1

shows an example from the MT-EQA dataset and contrasts

it to the original EQA-v1 dataset.

The assumption in EQA-v1 of decoupling navigation

from question-answering not only makes the task simpler

but is also reflected in the model used – the EQA-v1 model

simply consists of an LSTM navigator which after stopping,

hands over frames to a VQA module. In contrast, MT-EQA

introduces new modeling challenges that we address in this

work. Consider the MT-EQA question in Fig. 1 – “Does

the table in the bedroom have same color as the sink in the

bathroom?”. From this example, it is clear that not only is

it necessary to have a tighter integration between navigator

and VQA, but we also need to develop fundamentally new

modules. An EQA-v1 [8] agent would navigate to the final

target location and run the VQA module based on its last

sequence of frames along the path. In this case, only the

“sink” would be observed from the final frames but dress-

ing table would be lost. Instead, we propose a new model

that consists of 4 components: (a) a program generator, (b) a

navigator, (c) a controller and (d) a VQA module. The pro-

gram generator converts the given question into sequential

executable sub-programs, as shown in Fig. 2. The controller

executes these sub-programs sequentially and gives control

to the navigator when the navigation sub-programs are in-

voked (e.g. nav room(bedroom)). During navigation,

the controller processes the first-person views observed by

the agent and predicts whether the target of the sub-program

(e.g. bedroom) has been reached. In addition, the controller

extracts cues pertinent to the questioned property of the

sub-target, e.g. query(color). Finally, these cues are

fed into the VQA module which deals with the comparison

of different attributes, e.g. executing equal color() by

comparing the color of dressing table and sink (Fig. 1 ).

Empirically, we show results for our joint model and an-

alyze the performance of each of our components. Our full

model outperforms the baselines under almost every navi-

gation and QA metric by a large margin. We also report

performance for the navigator, the controller, and the VQA

module, when executed separately in an effort to isolate and

better understand the effectiveness of these components.

Our ablation studies show that our full model is better at

all sub-tasks, including room navigation, object navigation

and final EQA accuracy. Additionally, we find quantita-

tive evidence that MT-EQA questions on closer targets are

relatively easier to solve as they require shorter navigation,

while questions for farther targets are harder.

2. Related Work

Our work relates to research in embodied perception and

modular predictive models for program execution.

Embodied Perception. Visual recognition from images has

witnessed tremendous success in recent years with the ad-

vent of deep convolutional neural networks (CNNs) [22,

31, 15] and large-scale datasets, such as ImageNet [26] and

COCO [24]. More recently, we are beginning to witness a

resurgence of active vision. For example, end-to-end learn-

ing methods successfully predict robotic actions from raw

pixel data [23]. Gupta et al. [14] learn to navigate via map-

ping and planning. Sadeghi & Levine [27] teach an agent

to fly in simulation and show its performance in the real

world. Gandhi et al. [11] train self-supervised agents to fly

from examples of drones crashing.

At the intersection of active perception and language

understanding, several tasks have been proposed, includ-

ing instruction-based navigation [7, 2], target-driven navi-

gation [36, 14], embodied question answering [8], interac-

tive question answering [13], and task planning [35]. While

these tasks are driven by different goals, they all require

training agents that can perceive their surroundings, under-

stand the goal – either presented visually or in language in-

structions – and act in a virtual environment. Furthermore,

the agents need to show strong generalization ability when

deployed in novel unseen environments [14, 32].

Environments. There is an overbearing cost to developing

real-world interactive benchmarks. Undoubtedly, this cost

has hindered progress in studying embodied tasks. On the

contrary, virtual environments that offer rich, efficient simu-

lations of real-world dynamics, have emerged as promising

alternatives to potentially overcome many of the challenges

faced in real-world settings.

Recently there has been an explosion of simulated 3D

environments in the AI community, all tailored towards

different skill sets. Examples include ViZDoom [20],

TorchCraft [30] and DeepMind Lab [5]. Just in the

last year, simulated environments of semantically com-

plex, realistic 3D scenes have been introduced, such as
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HoME [6], House3D [32], MINOS [28], Gibson [33] and

AI2THOR [21]. In this work, we use House3D, following

the original EQA task [8]. House3D is a rich, interactive

3D environment based on human-designed indoor scenes

sourced from SUNCG [29].

Modular Models. Neural module networks were originally

introduced for visual question answering [4]. These net-

works decompose a question into several components and

dynamically assemble a network to compute the answer,

dealing with variable compositional linguistic structures.

Since their introduction, modular networks have been ap-

plied to several other tasks: visual reasoning [16, 19], rela-

tionship modeling [17], embodied question answering [9],

multitask reinforcement learning [3], language grounding

on images [34] and video understanding [12]. Inspired

by [10, 19], we cast EQA as a partially observable version

of CLEVR and extend the modular idea to this task, which

we believe requires an increasingly modular model design

to address visual reasoning within a 3D environment.

3. Multi-Target EQA Dataset

We now describe our proposed Multi-Target Embod-

ied Question Answering (MT-EQA) task and associated

dataset, contrasting it against EQA-v1. In v1 [8], the au-

thors select 750 (out of about 45,000) environments for the

EQA task. Four types of questions are proposed, each ques-

tioning a property (color, location, preposition) of a single

target (room, object), as shown at the top of Table. 1. Our

proposed MT-EQA task generalizes EQA-v1 and involves

comparisons of various attributes (color, size, distance) be-

tween multiple targets, shown at the bottom of Table. 1.

Next, we describe in detail the generation process, as well

as useful statistics of MT-EQA.

3.1. MultiTarget EQA Generation

We generate question-answer pairs using the annotations

available on SUNCG. We use the same number of rooms

and objects as EQA-v1 (see Figure 2 in [8]). Each ques-

tion in MT-EQA is represented as a series of functional pro-

grams, which can be executed on the environment to yield

a ground-truth answer. The functional programs consist

of some elementary operations, e.g., select(), unique(), ob-

ject color pair(), query(), etc., that operate on the room and

object annotations.

Each question type is associated with a question tem-

plate and a sequence of operations. For example, consider

the question type in MT-EQA object color compare, whose

template is “Does <OBJ1> share same color as <OBJ2>
in <ROOM>?”. Its sequence of elementary operations is:

select(rooms) → unique(rooms) → select(objects) →

unique(objects) → pair(objects) → query(color compare).

The first function, select(rooms), returns all rooms in the

environment. The second function, unique(rooms), selects

IOU=0.618 IOU=0.181 IOU=0.316IOU=0.431

(a) coffee machine (b) refrigerator

Figure 3: IOU between the target’s mask and the centered rect-

angle mask. Higher IOU is achieved when the target has larger

portion in the center of the view.

a single unique room from the list to avoid ambiguity. Simi-

larly, the third function, select(objects), and fourth function,

unique(objects), return unique objects in the selected room.

The fifth function, pair(objects), pairs the objects. The final

function, query(color compare), compares their colors.

We design 6 types of questions comparing different at-

tributes between objects (inside same room/across different

rooms), distance comparison, and room size comparison.

All question types and templates are shown in Table 2.

In some cases, a question instantiation returned from

the corresponding program, as shown above, might not be

executable, as rooms might be disconnected or not reach-

able. To check if a question is feasible, we execute the cor-

responding nav room() and nav object() programs

and compute shortest paths connecting the targets in the

question. If there is no path1, it means the agent would not

be able to look at all targets starting from its given spawn

location. We filter out such impossible questions.

For computing the shortest path connecting the targets,

we need to find the position (x, y, z, yaw) that best views

each target. In order to do so, we first sample 100 positions

near the target. For each position, we pick the yaw angle

that looks at the target with the highest Intersection-Over-

Union (IOU), computed using the target’s mask2 and a cen-

tered rectangular mask. Fig. 3 shows 4 IOU scores of coffee

machine and refrigerator from different positions. We sort

the 100 positions and pick the one with highest IOU as the

best-view position of the target, which is used to connect

the shortest-path. For each object, its highest IOU value

IOUbest is recorded for evaluation purposes (as a reference

of the target’s best-view).

To minimize the bias in MT-EQA, we perform entropy-

filtering, similar to [8]. Specifically for each unique ques-

tion, we compute its answer distribution across the whole

dataset. We exclude questions whose normalized answer

distribution entropy is below 0.93. This prevents the agent

from memorizing easy question-answer pairs without look-

ing at the environment. For example, the answer to “is the

1This is a result of noisy annotations in SUNCG and inaccurate occu-

pancy maps due to the axis-aligned assumption returned by House3D.
2House3D returns the the ground-truth semantic segmentation for each

first-person view.
3Rather than 0.5 in [8], we set the normalized entropy threshold as 0.9

(maximum is 1) since all of our questions have binary answers.
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Question Type Template
E

Q
A

-v
1

location “What room is the <OBJ> located in?”

color “What color is the <OBJ>?”

color room “What color is the <OBJ> in the <ROOM>?”

preposition “What is <on/above/below/next-to> the <OBJ> in the <ROOM>?”

M
T

-E
Q

A

object color compare inroom “Does <OBJ1> share same color as <OBJ2> in <ROOM>?”

object color compare xroom “Does <OBJ1> in <ROOM1> share same color as <OBJ2> in <ROOM2>?”

object size compare inroom “Is <OBJ1> bigger/smaller than <OBJ2> in <ROOM>?”

object size compare xroom “Is <OBJ1> in <ROOM1> bigger/smaller than <OBJ2> in <ROOM2>?”

object dist compare “Is <OBJ1> closer than/farther from <OBJ2> than <OBJ3> in <ROOM>?”

room size compare “Is <ROOM1> bigger/smaller than <ROOM2> in the house?”

Table 1: Question types and the associated templates used in EQA-v1 and MT-EQA.

Question Type Functional Form

object color compare select(rooms) → unique(rooms) → select(objects) → unique(objects) → pair(objects) → query(color compare)

object size compare select(rooms) → unique(rooms) → select(objects) → unique(objects) → pair(objects) →query(size compare)

object dist compare select(rooms) → unique(rooms) → select(objects) → unique(objects) → triplet(objects) →query(dist compare)

room size compare select(rooms) → unique(rooms) → pair(rooms) → query(size compare)

Table 2: Functional forms of all question types in the MT-EQA dataset. Note that for each object color/size comparison question type,

there exists two modes: inroom and xroom, depending on whether the two objects are in the same room or not. For example, ob-

ject color compare xroom compares the color of two objects in two different rooms.

random q-LSTM q-NN q-BoW “no”

Test Acc. (%) 49.44 48.24 53.74 49.22 53.28

Table 3: EQA (test) accuracy using questions and priors.

Houses
Unique 

questions

Total 

questions

train 486 2,030 14,495

val 50 938 1,954

test 52 1,246 2,838

obj_color_comp_inroom

24%

obj_color_comp_xroom

45%

obj_size_comp_inroom

5%

obj_size_comp_xroom

10%

obj_dist_comp

13%

room_dist_comp

3%

Figure 4: Overview of MT-EQA dataset including split statistics

and question type distribution.

bed in the living room bigger than the cup in the kitchen?” is

always Yes. Such questions are excluded from our dataset.

After the two filtering stages, the MT-EQA questions are

both balanced and feasible.

In addition, we check if MT-EQA is easily addressed by

question-only or prior-only baselines. For this, we evaluate

four question-based models: (a) an LSTM-based question-

to-answer model, (b) a nearest neighbor (NN) baseline that

finds the NN question from the training set and uses its

most frequent answer as the prediction, (c) a bag-of-words

(BoW) model that encodes a question followed by a learned

linear classifier to predict the answer and (d) a naive “no”

only answer model, since “no” is the most frequent answer

by a slight margin. Table. 3 shows the results. There ex-

ists very little bias on the “yes/no” distribution (53.28%),

and all question-based models make close to random pre-

dictions. In comparison, and as we empirically show in

Sec. 5, our results are far better than these baselines, in-

dicating the necessity to explore the environment in order

to answer the question. Besides, the results also address the

concern in [1] where language-only models (BoW and NN)

already form competitive baselines for EQA-v1. In MT-

EQA, these baselines perform close to chance as a result of

the balanced binary question-answer pairs in MT-EQA.

Overall, our MT-EQA dataset consists of 19,287 ques-

tions across 588 environments4, referring to a total of 61

unique object types in 8 unique room types. Fig. 4 shows

the question type distribution. Approximately 32 questions

are asked for each house on average, 209 at most and 1 at

fewest. There are relatively fewer object size compare and

room size compare questions as many frequently occurring

comparisons are too easy to guess without exploring the en-

vironment and thus fail the entropy filtering. We will release

the MT-EQA dataset and the generation pipeline.

4. Model

Our model is composed of 4 modules: the question-to-

program generator, the navigator, the controller, and the

VQA module. We describe these modules in detail.

4.1. Program Generator

The program generator takes the question as input and

generates sequential programs for execution. We define

4The 588 environments are subset of EQA-v1’s. Some environments

are discarded due to entropy filtering and unavailable paths.
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Q: Does the bathtub have same color 

as the sink in the bathroom?

Program 
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nav_room (bathroom)
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query (color)
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equal (color)
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bathroom

Query (color)
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op: equal

answer
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Figure 5: Model architecture: our model is composed of a program generator, a navigator, a controller, and a VQA module.

1) nav object(phrase) 2) nav room(phrase)

3) query(color / size / room size)

4) equal color()

5) object size compare(bigger / smaller)

6) object dist compare(farther / closer)

7) room size compare(bigger / smaller)

Table 4: MT-EQA executable programs.

7 types of executable programs for the MT-EQA task in

Table. 4. For example, “Is the bathtub the same color as

the sink in the bathroom?” is decomposed into a series

of sequential sub-programs: nav room(bathroom)

→ nav object(bathtub) → query color()

→ nav object(sink) → query color() →
equal color(). Similar to CLEVR [18], the question

programs are automatically generated in a templated

manner (Table. 2), making sub-component decomposition

(converting questions back to programs) simple (Table. 4).

We use template-based rules by selecting and filling in the

arguments in Table. 4 to generate the programs (which

is always accurate). While a neural model could also be

applied, a learned program generator is not the focus of our

work.

4.2. Navigator

The navigator executes the nav room() and

nav object() programs. As shown in Fig. 6(a),

we use an LSTM as our core component. At each time

step, the LSTM takes as inputs the current egocentric (first-

person view) image, an encoding of the target phrase (e.g.

“bathtub” if the program is nav object(bathtub)),

and the previous action, in order to predict the next action.

The navigator uses a CNN feature extractor that takes a

224x224 RGB image returned from the House3D renderer,

and transforms it into a visual feature, which is then fed into

CNN

LSTM

target: bathtub

action: “turn left”

Prev. action

(a) Navigator

CNN

LSTM

“Select”

program

vqa feature

(b) Controller

Figure 6: Navigator and Controller.

the LSTM. Similar to [8], the CNN is pre-trained under a

multi-task framework consisting of three tasks: RGB-value

reconstruction, semantic segmentation, and depth estima-

tion. Thus, the extracted feature contains rich information

about the scene’s appearance, content, and geometry (ob-

jects, color, texture, shape, and depth). In addition to the

visual feature, the LSTM is presented with two additional

inputs. The first is the target embedding, where we use the

average embedding of GloVE vectors [25] over words de-

scribing the target. The second is previous action, which is

in the form of a look-up from an action embedding matrix.

We want to note the different perceptual skills required

for room and object navigation: Room navigation re-

lies on understanding the overall scene and finding cross-

room paths (entry/exit), while object navigation requires

localizing the target object within a room and finding a

path to reach it. To capture the difference, we imple-

ment two separate navigation modules, nav room() and

nav object() respectively. These two modules share

same architecture but are trained separately for different tar-

gets.

In MT-EQA, the action space for navigation consists of

3 action types: turning left (30 degrees), turning right (30

degrees), and moving forward. This is almost the same as
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EQA-v1 [8], except we use larger turning angles – as our

navigation paths are much longer due to the multi-target set-

ting. We find that this change reduces the number of actions

required for navigation, leading to easier training.

4.3. Controller

The controller is the central module in our model, as it

connects all of the other modules by: 1) creating a plan from

the program generator, 2) collecting the necessary observa-

tions from the navigator, and 3) invoking the VQA module.

Fig. 6 (b) shows the controller, whose key component

is another LSTM. Consider the question “Does the bathtub

have same color as the sink in the bathroom?” with part

of its program as example – nav room(bathroom) →
nav object(bathtub). The controller starts by call-

ing the room navigator to look for “bathroom”. During nav-

igation, the controller keeps track of the first-person views,

looking for the target. Particularly, it extracts the features

via CNN which are then fused with the target embedding as

input to the LSTM. The controller predicts SELECT if the

target is found, stopping the current navigator, in our exam-

ple nav room(bathroom), and starting execution of the

next program, nav object(bathtub).

Finally, after the object target “bathtub” has been found,

the next program – query color(), is executed. The

controller extracts attribute features from the first-person

view containing the target. In all, there are three attribute

types in MT-EQA - object’s color, object’s size, and room’s

size. Again, we treat object and room differently in our

model. For object-specific attributes, we use the hidden

state of the controller at the location where SELECT was

predicted. This state should contain semantic information

for the target, as it is where the controller is confident the

target is located. For room-specific attributes, the controller

collects a panorama by asking the navigator to rotate 360

degrees (by performing 12 turning-right actions) at the lo-

cation where SELECT is predicted. The CNN features from

this panorama view are concatenated as the representation.

During program execution by the controller, the ex-

tracted cues for all the targets are stored, and in the end they

are used by the VQA module to predict the final answer.

4.4. VQA Module

The final task requires comparative reasoning, e.g.,

object size compare(bigger), equal color(), etc.

When the controller has gathered all of the targets for com-

parison, it invokes the VQA module. As shown in top-right

of Fig. 5, the VQA module embeds the stored features of

multiple targets into the question-attribute space, using a

FC layer followed by ReLU. The transformed features are

then concatenated and fed into another FC+ReLU which

is conditioned on the comparison operator (equal, bigger

than, smaller than, etc.). The output is a binary prediction

(yes/no) for that attribute comparison. We call it composi-

tional VQA (cVQA). The cVQA module in Fig. 5 depicts a

two-input comparison as an example, but our cVQA module

also extends to three inputs, for questions like “Is the refrig-

erator closer to the coffee machine than the microwave?”.

4.5. Training

Training follows a two-stage approach: First, the full

model is trained using Imitation Learning (IL); Second, the

navigator is further fine-tuned with Reinforcement Learning

(RL) using policy gradients.

First, we jointly train our full model using imitation

learning. For imitation learning, we treat the shortest paths

and the key positions containing the targets as our ground-

truth labels for navigation and for the controller’s SELECT

classifier, respectively. The objective function consists of a

navigation objective and a controller objective at every time

step t, and a VQA objective at the final step. For the i-th

question, let Pnav
i,t,a be action a’s probability at time t, P sel

i,t

be the controller’s SELECT probability at time t, and P vqa
i

be the answer probability from VQA, then we minimize the

combined loss:

L = Lnav + αLctrl + βLvqa

= −
∑

i

∑

t

∑

a

yni,t,a logP
nav
i,t,a

︸ ︷︷ ︸

Cross-entropy on navigator action

-α
∑

i

∑

t

(yci,t logP
sel
i,t + (1− yci,t) log(1− P sel

i,t ))

︸ ︷︷ ︸

Binary cross-entropy on controller’s SELECT

-β
∑

i

(yvi logP
vqa
i + (1− yvi ) log(1− P vqa

i ))

︸ ︷︷ ︸

Binary cross-entropy on VQA’s answer

.

Subsequently, we use RL to fine-tune the room and ob-

ject navigators.

We provide two types of reward signals to the navigators.

The first is a dense reward, corresponding to the agent’s

progress toward the goal (positive if moving closer to the

target and negative if moving away). This reward is mea-

sured by the distance change in the 2D bird-view distance

space, clipped to lie within [−1.0, 1.0]. The second is a

sparse reward that quantifies whether the agent is looking at

the target object when the episode is terminated. For object

targets, we compute IOUT between the target’s mask and

the centered rectangle mask at termination. We use the best

IOU score of the target IOUbest as reference and compute

the ratio IOUT

IOUbest

. If the ratio is greater than 0.5, we set the

reward to 1.0 otherwise -1.0. For room targets, we assign

reward 0.2 to the agent if it is inside the target room at ter-

mination, otherwise -0.2.
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Object Navigation Room Navigation EQA

dT d∆ hT IOUr
T

%stopo %rT %stopr ep len %easy %medium %hard %overall

1 Nav+cVQA 5.41 -0.64 0.19 0.15 36 34 60 153.13 58.42 53.29 51.46 53.24

2 Nav(RL)+cVQA 3.80 0.10 0.33 0.30 46 40 62 144.80 67.57 55.91 53.28 57.40

3 Nav+Ctrl+cVQA 5.25 -0.56 0.20 0.18 36 37 70 145.20 59.73 53.48 49.04 54.44

4 Nav(RL)+Ctrl+cVQA 3.60 0.16 0.33 0.29 48 43 72 127.71 72.22 59.97 54.92 61.45

Table 5: Quantitative evaluation of object/room navigation and EQA accuracy for different approaches.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 Nav+cVQA 64.15 52.47 57.85 55.68 49.38 48.37 53.24

2 Nav(RL)+cVQA 71.24 53.92 74.38 60.81 51.23 46.66 57.40

3 Nav+Ctrl+cVQA 66.41 52.65 57.85 53.48 49.38 48.37 54.44

4 Nav(RL)+Ctrl+cVQA 72.68 58.19 76.86 63.37 54.94 55.57 61.45

Table 6: EQA accuracy on each question type for different approaches.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 [BestView] + attn-VQA (cnn) 71.16 59.56 65.29 65.93 58.64 49.74 60.50

2 [BestView] + cVQA (cnn) 82.92 72.70 80.99 83.88 69.75 64.32 74.14

3 [ShortestPath+BestView] + Ctrl + cVQA 90.70 85.49 82.64 88.64 68.52 71.87 82.88

4 [ShortestPath] + seq-VQA 53.32 54.44 51.24 50.55 47.53 49.74 52.36

5 [ShortestPath] + Ctrl + cVQA 76.09 69.11 75.21 79.49 64.20 61.23 69.77

Table 7: EQA accuracy of different approaches on each question type in oracle setting (given shortest path or best-view images).

5. Experiments

In this section we describe our experimental results.

Since MT-EQA is a complex task and our model is mod-

ular, we will show both the final results (QA accuracy) and

the intermediate performance (for navigation). Specifically,

we first describe our evaluation setup and metrics for MT-

EQA. Then, we report the comparison of our model against

several strong baselines. And finally, we analyze variants of

our model and provide ablation results.

5.1. Evaluation Setup and Metrics

Spawn Location. MT-EQA questions involve multiple tar-

gets (rooms/objects) to be found. To prevent the agent from

learning biases due to spawn location, we randomly select

one of the mentioned targets as reference and spawn our

agent 10 actions (typically 1.9 meters) away.

EQA Accuracy. We compute overall accuracy as well as

accuracy for each of the 6 types of questions in our dataset.

In addition, we also categorize question difficulty level into

easy, medium, and hard by binning the ground-truth action

length. Easy questions are those with fewer than 25 action

steps along the shortest path, medium are those with 25-

70 actions, and hard are those with more than 70 actions.

We report accuracy for each difficulty, %easy , %medium,

%hard, as well as overall, %overall, in Table 5.

Navigation Accuracy. We also measure the navigation ac-

curacy for both objects and rooms in MT-EQA. As each

question involves several targets, the order of them being

navigated matters. We consider the ‘ground truth’ ordering

of targets for navigation as the order in which they are men-

tioned in the question, e.g., given “Does the bathtub have

same color as the sink?”, the agent is trained and evaluated

for visiting the “bathtub” first and then the “sink”.

For each mentioned target object, we evaluate the agent’s

navigation performance by computing the distance to the

target object at navigation termination, dT , and change in

distance to the target from initial spawned position to ter-

minal position, d∆. We also compute the stop ratio %stopo
as in EQA-v1 [8]. Additionally, we propose two new met-

rics based on the IOU of the target object at its termina-

tion. When the navigation is done, we compute the IOU

of the target w.r.t a centered rectangular box (see Fig. 3

as example). The first metric is mean IOU ratio IOUr
T =

1
N

∑

i
IOUT (oi)

IOUbest(oi)
) where IOUbest(oi) is the highest IOU

score for object oi. The second is hit accuracy hT – we

compute the percentage of the ratio IOUT (oi)/IOUbest(oi)

greater than 0.5, i.e., hT = 1
N

∑

i ||
IOUT (oi)

IOUbest(oi)
> 0.5||.

Both metrics measure to what extent the agent is looking

at the target at termination.

For each mentioned target room, we evaluate the agent’s

navigation by recording the percentage of agents terminat-

ing inside the target room %rT and the stop ratio %stopr.

For all the above metrics except for dT , larger is better.

Additionally, we report the overall number of action steps

(episode length) executed for each question, i.e., ep len.

5.2. EQA Results

Nav+Ctrl+cVQA is our full model, which is com-

posed of a program generator, a navigator, a controller
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and a comparative VQA module. Another variant of our

model, the REINFORCE fine-tuned model is denoted as

Nav(RL)+Ctrl+cVQA. We also train a simplified version

of our full model, Nav+cVQA. which does not use a con-

troller. For this model, we let the navigator predict termi-

nation whenever a target is detected, then feed its hidden

states to the VQA model. The training details are similar to

our full model for both IL and RL. We show comparisons

of both navigation and EQA accuracy in Table. 5.

RL helps both navigation and EQA accuracies. Both ob-

ject and room navigation performance are improved after

RL finetuning. We notice without finetuning d∆ for both

models (Row 1 &3 ) are negative, which means the agent

has moved farther away from the target during navigation.

After RL finetuning, d∆ jumps from −0.56 to 0.16 (Row

3 & 4). The hit accuracy also improves from 20% to 33%,

indicating that the RL-finetuned agent is more likely to find

the target mentioned in the question. Episode lengths from

the stronger navigators are shorter, indicating that better

navigators find their target more quickly. And, higher EQA

accuracy is also achieved with the help of RL finetuning

(from 54.44% to 61.45%). After breaking down the EQA

into different types, we observe the same trend in Table. 6 –

our full model with RL far outperforms the others.

Controller is important. Comparing our full model (Row

4) to the one without a controller (Row 2), we notice that

the former outperforms the latter across almost all the met-

rics. One possible reason is that the VQA task and navi-

gation task are quite different, such that the features (hid-

den state) from the navigator cannot help improve the VQA

module. On the contrary, our controller decouples the two

tasks, letting the navigator and VQA module focus on their

own roles.

Questions with shorter ground-truth path are easier. We

observe that our agent is far better at dealing with easy ques-

tions than hard ones (72.22% over 54.92% in Table. 5 Row

4). One reason is that the targets mentioned in the easy

questions, e.g., sink and toilet in “Does the sink have same

color as the toilet in the bathroom?”, are typically closer to

each other, thus are relatively easier to be explored, whereas

questions like “Is the kitchen bigger than the garage?” re-

quires a very long trajectory and the risk of missing one

(kitchen or garage) is increased. The same observation is

found in Table. 6, where we get higher accuracy for “in-

room” questions than “cross-room” ones.

5.3. Oracle Comparisons

To better understand each module of our model, we run

ablation studies. Table. 7 shows EQA accuracy of different

approaches given the shortest paths or best-view frames.

Our VQA module helps. We first compare the per-

formance of our VQA module against an attention-based

VQA. Given the best view of each target, we can directly

feed the features from those images to the VQA module,

using the CNN features instead of hidden states from con-

troller side. The attention-based VQA architecture is sim-

ilar to [8], which uses an LSTM to encode questions and

then uses its representation to pool image features with at-

tention. Comparing the two methods in Table. 7, Row 1 &

2, our VQA module achieves 13.64% higher accuracy. The

benefit mainly comes from the decomposition of attribute

representation and comparison in our VQA module.

Controller’s features help. We compare the controller’s

features to raw CNN features for VQA. When given both

shortest path and best-view position, we run our full model

with these annotations and feed the hidden states from the

controller’s LSTM to our VQA model. As shown in Ta-

ble. 7, Row 2 & 3, the controller’s features are far better

than raw CNN features, especially for object color compare

and object size compare question types.

Controller’s SELECT matters. Our controller predicts

SELECT and extracts the features at that moment. One pos-

sible question is how important is this moment selection. To

demonstrate its advantage, we trained another VQA module

which uses a LSTM to encode the whole sequence of frames

along the shortest path and uses its final hidden state to pre-

dict the answer, denoted as seq-VQA. The hypothesis is that

the final hidden state might be able to encode all relevant

information, as the LSTM has gone through the whole se-

quence of frames. Table. 7, Row 4, shows its results, which

is nearly random. On the contrary, when controller is used

to SELECT frames in Row 5, the results are far better. How-

ever, there is still much space for improvement. Comparing

Table. 7, Row 3 & 5, the overall accuracy drops 13% when

using features from the predicted SELECT instead of oracle

moments, and 20% when using additional navigators (com-

paring Table. 7, Row 3, & Table. 6, Row 4), indicating the

necessity of both accurate SELECT and navigation.

6. Conclusion

We proposed MT-EQA, extending the original EQA

questions from a limited single-target setting to a more chal-

lenging multi-target setting, which requires the agent to

perform comparative reasoning before answering questions.

We collected a MT-EQA dataset as a test benchmark for the

task, and validated its usefulness with simple baselines from

just text or prior. We also proposed a new EQA model con-

sisting of four modular components: a program generator, a

navigator, a controller, and VQA module for MT-EQA. We

experimentally demonstrated that our model significantly

outperforms baselines on both question answering and nav-

igation, and conducted detailed ablative analysis for each

component in both the embodied and oracle settings.
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