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Abstract In many practical applications of supervised learning the task involves the predic-
tion of multiple target variables from a common set of input variables. When the prediction
targets are binary the task is called multi-label classification, while when the targets are con-
tinuous the task is called multi-target regression. In both tasks, target variables often exhibit
statistical dependencies and exploiting them in order to improve predictive accuracy is a core
challenge. A family of multi-label classification methods address this challenge by building
a separate model for each target on an expanded input space where other targets are treated
as additional input variables. Despite the success of these methods in the multi-label classi-
fication domain, their applicability and effectiveness in multi-target regression has not been
studied until now. In this paper, we introduce two new methods for multi-target regression,
called stacked single-target and ensemble of regressor chains, by adapting two popular multi-
label classification methods of this family. Furthermore, we highlight an inherent problem of
these methods—a discrepancy of the values of the additional input variables between train-
ing and prediction—and develop extensions that use out-of-sample estimates of the target
variables during training in order to tackle this problem. The results of an extensive experi-
mental evaluation carried out on a large and diverse collection of datasets show that, when
the discrepancy is appropriately mitigated, the proposed methods attain consistent improve-
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ments over the independent regressions baseline. Moreover, two versions of Ensemble of
Regression Chains perform significantly better than four state-of-the-art methods includ-
ing regularization-based multi-task learning methods and a multi-objective random forest
approach.

Keywords Multi-target regression · Multi-label classification · Stacking · Chaining

1 Introduction

Multi-target regression (MTR), also known as multivariate or multi-output regression, refers
to the task of predicting multiple continuous variables using a common set of input variables.
Such problems arise in various fields including ecological modeling (Kocev et al. 2009;
Dzeroski et al. 2000) (e.g. predicting the abundance of plant species using water quality
measurements), economics (Ghosn and Bengio 1996) (e.g. predicting stock prices from
econometric variables) and energy (e.g. predicting energy production in solar/wind farms
using historical measurements and weather forecast information). Given the importance and
diversity of its applications, it is not surprising that research on this topic has started as early
as 40 years ago in Statistics (Izenman 1975).

Recently, a closely related task called multi-label classification (MLC) (Tsoumakas
et al. 2010; Zhang and Zhou 2014) has received increased attention by Machine Learning
researchers. Similarly to MTR, MLC deals with the prediction of multiple variables using a
common set of input variables. However, prediction targets in MLC are binary. In fact, the
two tasks can be thought of as instances of the more general learning task of multi-target
prediction where targets can be continuous, binary, ordinal, categorical or even of mixed
type. The baseline approach of learning a separate model for each target applies to both
MTR and MLC. Moreover, they share the same core challenge of exploiting dependencies
between targets (in addition to dependencies between targets and inputs) in order to improve
prediction accuracy, as acknowledged by researchers working in both tasks (e.g. Izenman
2008; Dembczynski et al. 2012). Despite their commonalities, MTR and MLC have typically
been treated in isolation and only few works (Blockeel et al. 1998; Weston et al. 2002; Teh
et al. 2005; Balasubramanian and Lebanon 2012) have given a general formulation of their
key ideas, recognizing the dual applicability of their approaches.

Motivated by the tight connection between the two tasks, this paper looks at a family of
MLC methods that, despite being almost directly applicable to MTR problems, have not been
applied so far in this domain. In particular, we consider methods that decompose the MLC
task into a series of binary classification tasks, one for each label. This category, includes
the typical one-versus-all or Binary Relevance approach that assumes label independence
but also approaches that model label dependencies by building models that treat other labels
as additional input variables (meta-inputs). In this work we adapt two popular methods of
this kind (Godbole and Sarawagi 2004; Read et al. 2011) for MTR, contributing two new
MTR methods: Stacked single-target (SST) and Ensemble of Regressor Chains (ERC). Both
methods have been very successful in the MLC domain and provided inspiration for many
subsequent works (Cheng and Hüllermeier 2009; Dembczynski et al. 2010; Kumar et al.
2012; Read et al. 2014).

Although the adaptation is trivial (as it basically consists of employing a regression instead
of a binary classification algorithm to solve each single-target prediction task), it widens the
applicability of existing approaches and increases our understanding of challenges shared by
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both learning tasks, such as the modeling of target dependencies. This kind of abstraction of
key ideas from solutions tailored to related problems can sometimes offer additional advan-
tages, such as improving the modularity and conceptual simplicity of learning techniques
and avoiding reinvention of the same solutions.1

In addition to evaluating the direct adaptations of the corresponding MLC methods in
the MTR domain, we also take a careful look at the treatment of targets as additional input
variables and spot a shortcoming that was overlooked in the original MLC formulations of
both methods. Specifically, we notice that in both methods the values of the meta-inputs are
generated differently between training and prediction, causing a discrepancy that is shown
to drastically downgrade their performance. To tackle this problem, we develop extended
versions of the two methods that manage to decrease the discrepancy by using out-of-sample
estimates of the targets during training. These estimates are obtained via an internal cross-
validation methodology.

The performance of the proposed methods is comprehensively analyzed based on a large
experimental study that includes 18 diverse real-world datasets, 14 of which are firstly used
in this paper and are made publicly available for future benchmarks. The experimental results
reveal that, affected by the discrepancy problem, the direct adaptations of the corresponding
MLC methods fail to obtain better accuracy than the baseline approach that performs indepen-
dent regressions. On the other hand, the extended versions obtain consistent improvements
against the baseline, confirming the effectiveness of the proposed solution. Furthermore,
extended versions of ERC obtain significantly better accuracy than state-of-the-art methods,
including a method based on ensembles of multi-objective decision trees (Kocev et al. 2007)
and a recent regularization-based multi-task learning method (Jalali et al. 2010, 2013). More-
over, it is shown that, compared to the rest of the methods, the extended versions of ERC
are associated with the smallest risk of decreasing the accuracy of the baseline, an appealing
property.

The rest of the paper is organized as follows: Sect. 2 presents the SST and ERC methods
and describes the discrepancy problem and the proposed solution. Section 3 discusses related
work from the MTR field, including well-known statistical procedures and multi-task learning
methods, and points out differences with previous work on the discrepancy problem. The
details of the experimental setup (method configuration, evaluation methodology, datasets)
are given in Sects. 4 and 5 presents and discusses the experimental results. Finally, Sect. 6
offers our conclusion and outlines future work directions.

2 Methods

We first formally describe the MTR task and provide the notation that will be used subse-
quently for the description of the methods. Let X and Y be two random vectors where X

consists of d input variables X1, . . . , Xd and Y consists of m target variables Y1, . . . , Ym .
We assume that samples of the form (x, y) are generated i.i.d. by some source according
to a joint probability distribution P(X, Y) on X × Y where X = Rd 2 and Y = Rm are
the domains of X and Y and are often referred to as the input and the output space. In a
sample (x, y), x = [x1, . . . , xd ] is the input vector and y = [y1, . . . , ym] is the output vector
which are realizations of X and Y respectively. Given a set D = {(x1, y1), . . . , (xn, yn)} of
n training examples, the goal in MTR is to learn a model h : X → Y that given an input

1 See NIPS’11 workshop on relations among machine learning problems at http://rml.anu.edu.au/.
2 X = Rd is used only for the sake of brevity. The domain of the input variables can also be discrete.
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vector x, is able to predict an output vector ŷ = h(x) that best approximates the true output
vector y.

In the baseline Single-Target (ST) method, a multi-target model h is comprised of m

single-target models h j : X → R where each model h j is trained on a transformed training
set D j = {(x1, y1

j ), . . . , (x
n, yn

j )} to predict the value of a single target variable Y j . This
way, target variables are modeled independently and no attempt is made to exploit potential
dependencies between them. Despite the simplicity of the ST approach, several empirical
studies (e.g. Luaces et al. 2012) have shown that Binary Relevance, its MLC counterpart,
often obtains comparable performance with more sophisticated MLC methods that model
label dependencies, especially in cases where the underlying single-target prediction model
is well fitted to the data (Dembczynski et al. 2012; Read and Hollmén 2014, 2015). A theoret-
ical explanation of these results was offered by Dembczynski et al. (2012) who showed that
modeling the marginal conditional distributions P(Yi |x) of the labels (as done by Binary Rel-
evance) can be sufficient for getting good results in multi-label losses whose risk minimizers
can be expressed in terms of marginal distributions (e.g. Hamming loss).

2.1 Stacked single-target

Stacked single-target (SST) is inspired from the Stacked Binary Relevance method (Godbole
and Sarawagi 2004) where the idea of stacked generalization (Wolpert 1992) was applied in
a MLC context. The training of SST consists of two stages. In the first stage, m independent
single-target models h j : X → R are learned as in ST. However, instead of directly using
these models for prediction, SST involves an additional training stage where a second set of
m meta models h′

j : X × Rm → R are learned, one for each target Y j . Each meta model h′
j

is learned on a transformed training set D′
j = {(x′1, y1

j ), . . . , (x
′n, yn

j )}, where the original

input vectors of the training examples (xi ) have been augmented by estimates of the values
of their target variables (ŷi

1, . . . , ŷi
m) to form expanded input vectors x′i = [xi , ŷi

1, . . . , ŷi
m].

These estimates are obtained by applying the first stage models to the examples of the training
set.

To obtain predictions for an unknown instance xq , the first stage models are first applied
and an output vector ŷ

q = [h1(x
q), . . . , hm(xq)] is obtained. Then, the second stage models

are applied on transformed input vectors x′q = [xq , ŷ
q ] to produce the final output vector

ỹq = [h′
1(x

′q
1 ), . . . , h′

m(x
′q
m )]. The training and prediction procedures of SST are graphically

illustrated in Fig. 1.

2.2 Ensemble of regressor chains

Regressor Chains (RC) is derived from Classifier Chains (Read et al. 2011), a recently pro-
posed MLC method based on the idea of chaining binary models. The training of RC consists
of selecting a random chain (permutation) of the set of target variables and then building a
separate regression model for each target. Assuming that the chain C = {Y1, Y2, . . . , Ym} (C
represents an ordered set) is selected, the first model concerns the prediction of Y1, has the
form h1 : X → R and is the same as the model built by the ST method for this target. The
difference in RC is that subsequent models h j , j > 1 are learned on transformed training
sets D′

j = {(x′1
j , y1

j ), . . . , (x
′n
j , yn

j )}, where the original input vectors of the training exam-
ples have been augmented by the actual values of all previous targets of the chain to form
expanded input vectors x′i

j = [x i
1, . . . , x i

d , yi
1, . . . , yi

j−1]. Thus, the models built for targets

Y j have the form h j : X × R j−1 → R.
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Fig. 1 Graphical illustration of SST’s training and prediction procedures
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Fig. 2 Graphical illustration of RC’s training and prediction procedures

Given such a chain of models, the output vector ŷ
q of an unknown instance xq is obtained

by sequentially applying the models h j , thus ŷ
q = [h1(x

q), h2(x
′q
2 ), . . . , hm(x

′q
m )] where

x
′q
j = [x

q
1 , . . . , x

q
d , ŷ

q
1 , . . . , ŷ

q
j−1]. Note that since the true values y

q
1 , . . . , y

q
j−1 of the target

variables are not available at prediction time, the method relies on estimates of these values
obtained by applying the models h1, . . . , h j−1. The training and prediction procedures of
RC are graphically illustrated in Fig. 2.
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One notable property of RC is that it is sensitive in the selected chain ordering. To alleviate
this issue, Read et al. (2011) proposed an ensemble scheme called Ensemble of Classifier
Chains where a set of k Classifier Chains models with different random chains are built on
bootstrap samples of the training set and the final predictions come from majority voting.
This scheme has been shown to consistently improve the accuracy of a single Classifier Chain
in the classification domain. We apply the same idea on RC and compute the final predictions
by taking the mean of the k estimates for each target. The resulting method is called Ensemble

of Regressor Chains (ERC).

2.3 Theoretical insights into stacking and chaining

Both stacking and chaining have enjoyed significant attention from the MLC community,
mainly due to their high performance and conceptual simplicity. A number of recent works
have attempted a theoretical analysis of the methods (Dembczynski et al. 2010, 2012; Read
and Hollmén 2015). Adopting a statistical perspective, the authors of Dembczynski et al.
(2010, 2012) distinguish between two types of label dependence:

– unconditional, where P(Y) �=
∏m

i=1 P(Yi ); and
– conditional, where P(Y|x) �=

∏m
i=1 P(Yi |x),

and show that modeling them is important for improving generalization performance. Accord-
ing to this analysis, stacking is interpreted as a method that models unconditional label
dependence and is more suitable for minimizing label-wise decomposable multi-label loss
functions,3 while chaining is interpreted as a method that models conditional dependence
and is more suitable for minimizing multi-label loss functions that cannot be decomposed
label-wise.

Another interesting interpretation is offered by Read and Hollmén (2015) who show
that Binary Relevance can (under certain conditions) achieve optimal performance in any
dataset, and that improvements over the independent approach are often the result of
using an inadequate base learner. Under this view, stacking and chaining can be consid-
ered as ‘deep’ independent learners who owe their improved performance over Binary
Relevance (when the same base learner is used) to the use of labels as nodes in the
inner layers of a deep neural network. These nodes represent readily available4 (in the
training phase), high-level transformations of the original inputs. This interpretation of stack-
ing and chaining applies directly to the MTR versions of these methods that we present
here.

From a bias-variance perspective, we observe that by introducing additional features to
single-target models, SST and ERC have the effect of decreasing their bias at the expense
of an increased variance. This suggests that whenever the increase in variance is out-
weighed by the decrease in bias, one should expect gains in generalization performance
over ST. This also hints that both methods will probably benefit from being combined
with a base regressor that includes a variance reduction mechanism like bagged (Breiman
1996) regression trees.5 As shown in Munson and Caruana (2009), bagged trees not only
ignore irrelevant features but can also exploit features that contain useful but noisy infor-
mation. Both properties are very important in the context of SST and ERC because some

3 Note, however, that this analysis concerns a version of stacking that does not include the original input
variables in the input space of the second stage models.
4 This is in contrast with traditional deep learning where high-level feature representations are typically
learned from the data in an unsupervised way.
5 An explicit feature selection could alternatively be applied as a means of variance reduction.
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of the extra features that they introduce might be irrelevant (e.g. whenever two target
variables are statistically independent) and/or noisy (as discussed in the following subsec-
tion).

2.4 Generation of meta-inputs

Both SST and ERC are based on the same core idea of treating other prediction targets
as additional input variables. These meta-inputs differ from ordinary inputs in the sense
that while their actual values are available at training time, they are missing during predic-
tion. Thus, during prediction both methods have to rely on estimates of these values which
come either from ST (in the case of SST) or from RC (in the case of ERC) models built
on the training set. An important question that is answered differently by each method is
the following: What type of values should be used at training time for the meta-inputs?

SST uses estimates of the variables obtained by applying the first stage models on the train-
ing examples, while ERC uses their actual values. We observe that in both cases a core
assumption of supervised learning is violated: that the training and testing data should be
identically and independently distributed. In the SST case, the in-sample estimates that are
used to form the training examples of the second stage models will typically be more accu-
rate than the out-of-sample estimates used at prediction time. The situation is even more
problematic in the case of ERC since the actual target values are used during training. In
both cases, some of the input variables that are used by the underlying regression algo-
rithm during model induction, become noisy (or noisier in the case of SST) at prediction
time and, as a result, the induced model might wrongly estimate (overestimate) their useful-
ness.

To mitigate this problem, we propose the use of out-of-sample estimates of the targets
during training in order to increase the compatibility between the training values of the tar-
get variables and the values used during prediction. One way to obtain such estimates is to
use a subset of the training set for building the first stage ST models (in the case of SST)
or the RC models (in the case of ERC) and apply them to the held-out part. However, this
approach would lead to reduced second stage training sets for SST as only the examples of
the held-out set would be available for training the second stage models. The same holds
for ERC where the chained RC models would be trained on training sets of decreasing
size. The solution that we propose to this problem is the use of an internal f -fold cross-
validation approach that allows obtaining out-of-sample estimates of the target variables for
all the training examples. Compared to the actual target values or the in-sample estimates
of the targets, the cross-validation estimates are expected to better resemble the values that
are used during prediction. As a result, we expect that the contribution of the meta-inputs
to the prediction of each target will be better estimated by the underlying regression algo-
rithm.

The training procedures of the extended SST (denoted as SSTcv) and RC (denoted as
RCcv) methods are outlined in Algorithms 1 and 3. ERCcv consists of simply repeating
the RCcv procedure k times with different random chains. The corresponding prediction
procedures are presented in Algorithms 2 and 4. Note that the prediction procedures of
the original and the extended versions of each method coincide. In Sect. 5 we com-
pare the performance of the extended versions of SST and ERC with the performance
of the directly adapted variants, henceforth denoted as SSTtrain and ERCtrue. To better
study the effects of the discrepancy problem, the comparison also includes SST using the
actual target values (SSTtrue) and ERC using in-sample estimates of the target variables
(ERCtrain).
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Algorithm 1: SSTcv training

1

Input: Training set D, number of internal cross-validation folds f

Output: 1st & 2nd stage models h j & h′
j
, j = 1 . . . m

2 // Build 1st stage models

3 for j = 1 to m do

4 D j = {(x1, y1
j
), . . . , (xn , yn

j
)} // transform D to D j

5 h j : D j → R // build model for Y j using D j

6 split D j randomly into f disjoint parts Di
j
, i = 1 . . . f

7 for i = 1 to f do

8 hi
j
: D j \ Di

j
→ R // build model for Y j using D j \ Di

j

9 // Generate 2nd stage training sets

10 for j = 1 to m do

11 D′
j
← ∅

12 for i = 1 to f do

13 D′i
j

← ∅

14 foreach xk ∈ Di
j

do

15 ŷk = [hi
1(xk ), . . . , hi

m (xq )]

16 x′k = [xk , ŷk ] // concatenate xk and ŷk

17 D′i
j

= D′i
j

∪ (x′k , yk
j
)

18 D′
j
= D′

j
∪ D′i

j

19 // Build 2nd stage models

20 for j = 1 to m do

21 h′
j
: D′

j
→ R

Algorithm 2: SST prediction

1

Input: Unknown instance xq , 1st & 2nd stage models h j & h′
j
, j = 1 . . . m

Output: Output vector ỹq

2 ŷq = ỹq = 0

3 // Apply the 1st stage models

4 for j = 1 to m do

5 ŷ
q
j

= h j (x
q )

6 x′q = [xq , ŷq ] // concatenate xq and ŷq

7 // Apply the 2nd stage models

8 for j = 1 to m do

9 ỹ
q
j

= h′
j
(x′q )

2.5 Discussion

Besides the type of values that each method uses for the meta-inputs at training time, SST
and ERC have additional conceptual differences. A notable one is that the model built for
each target Y j by SST, uses all other targets as inputs while in RC each model involves
only targets that precede Y j in a random chain. As a result, the model built for Y j by RC,
cannot benefit from statistical relationships with targets that appear later than Y j in the
chain. This potential disadvantage of RC is partially overcome by ERC since each target
is included in multiple random chains and, therefore, the probability that other targets will
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Algorithm 3: RCcv training

1

Input: Training set D, number of internal cross-validation folds f

Output: Chained models h j , j = 1 . . . m

2 // Generate D′
1

3 D′
1 = {(x1, y1

1 ), . . . , (xn , yn
1 )} // transform D to D′

1
4 for j = 1 to m do

5 h j : D′
j
→ R // build model for Y j using D′

j

6 if j < m then

7 // Generate D′
j+1

8 D′
j+1 ← ∅

9 split D′
j

randomly into f disjoint parts D′i
j
, i = 1 . . . f

10 for i = 1 to f do

11 hi
j
: D′

j
\ D′i

j
→ R // build model for Y j using D′

j
\ D′i

j

12 foreach x′k
j

∈ D′i
j

do

13 x ′i
j+1 = x ′i

j

14 ŷk
j

= hi
j
(x′k

j
)

15 x′k
j+1 = [x′k

j
, ŷk

j
] // append x′k

j
with ŷk

j

16 D′
j+1 = D′

j+1 ∪ (x′k
j+1, yk

j+1)

Algorithm 4: RC prediction

1

Input: Unknown instance xq , chain models h j , j = 1 . . . m

Output: Output vector ŷq

2 ŷq = 0

3 x
′q
1 = xq

4 for j = 1 . . . m do

5 ŷ
q
j

= h j (x
′q
j
)

6 if j < m then

7 x
′q
j+1 = [x

′q
j
, ŷ

q
j
] // append x

′q
j

with ŷ
q
j

precede it is increased. At a first glance, SST seems to represent a more straightforward way
of including all the available information about other targets. However, we should take into
account that, since both methods rely on estimates of the meta-inputs at prediction time (as
discussed in previous subsection), the more the meta-inputs that are included in the input
space, the higher the amount of error accumulation that is risked at prediction time. From
this perspective, ERC seems to adopt a more cautious approach than SST. On the other hand,
the estimates of the meta-inputs that are used by the second stage models in SST come
from independent models, while the estimates of the meta-inputs used by each model in RC
(and ERC) come from models that include information about other targets and thus involve
a higher risk of becoming noisy. Overall, there seems to be a trade-off between using the
additional information available in the targets and the noise that this information comes with.
Which of the two methods (and which variant) achieves a better balance in this trade-off is
revealed by the experimental analysis in Sect. 5.
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2.6 Complexity analysis

In this section we discuss the time complexity of all variants of the proposed methods at
training and test time, given a single-target regression algorithm with training complex-
ity O(gtr (n, d)) and test complexity O(gte(n, d)) for a dataset with n examples and d

input variables. The training and test complexities of the ST method are O(m·gtr (n, d)) and
O(m·gte(n, d)) respectively, as it involves training and querying m independent single-target
models.

With respect to SST, the method builds 2·m models at training time, all of which are queried
at prediction time. In all variants of the method, half of the models are built on the original
input space and half of the models are built on an input space augmented by m meta-inputs.
Thus, in the case of SSTtrue, where the meta-inputs are readily available, the training and
test complexities are O(m·(gtr (n, d)+gtr (n, d+m))) and O(m·(gte(n, d)+gte(n, d+m)))

respectively. Given that in most cases (see Table 3) the number of targets is much smaller
than the number of inputs, i.e. m ≪ d , the effective training and test complexities of SSTtrue

become O(m·gtr (n, d)) and O(m·gte(n, d)) respectively, thus same with ST’s complexities.
SSTtrain and SSTcv have the same test complexity with SSTtrue but a larger training complex-
ity because of the process of generating estimates for the meta-inputs. In the SSTtrain case,
the training complexity is O(m·gtr (n, d)+m·gte(n, d)) because the m first-stage models are
applied to obtain estimates for all the training examples. For most regression algorithms
(e.g. regression trees), the computational cost of making predictions for n instances is much
smaller than the cost of training on n examples. For instance, the training complexity of a
typical binary regression tree learner is O(n·d2) (Su and Zhang 2006) while the test com-
plexity is O(n· log2 d). Thus, practically, the training complexity of SSTtrain is similar to
that of SSTtrue. When it comes to SSTcv , in addition to the m first-stage models, f addi-
tional models are built on f −1

f
·n examples each. Therefore, the training complexity of SSTcv

is O(m·gtr (n, d) + m· f ·gtr (
f −1

f
·n, d) + m·gte(n, d)) ≈ O( f ·m·gtr (n, d)+m·gte(n, d)).

Given
that gte(n, d) ≪ gtr (n, d), we conclude that the training complexity of SSTcv is roughly f

times ST’s training complexity. Also, note that SSTtrain and SSTcv can be parellelized stage-
wise both at training and at prediction time, i.e. all single-target models within the same level
can be trained and queried independently, while SSTtrue is fully parallelizable at training
time (all single-target models can be trained independently) and stage-wise parallelizable at
test time.

In ERC, each RC model consists of a chain of m models built on input spaces aug-
mented by {0, 1, . . . , m − 1} meta-inputs, thus m−1

2 meta-inputs on average. In the case of
ERCtrue and for an ensemble size of k RC models, the training and test complexities are
O(k·m·gtr (n, d+(m−1

2 )) and O(k·m·gte(n, d+(m−1
2 )) respectively. Given, as before, that

m ≪ d , the training complexity of ERCtrue becomes O(k·m·gtr (n, d)) and its test complex-
ity becomes O(k·m·gte(n, d)), thus k times ST’s complexity in both cases. Following a similar
reasoning as we did above for SST, we can show that the training complexity of ERCtrain is
similar to that of ERCtrue and that the training complexity of ERCcv is O(k· f ·m·gtr (n, d)),
i.e. k· f times ST’s training complexity. Obviously, the test complexities of both ERCtrain

and ERCcv are the same as ERCtrue’s test complexity. With respect to parellelization, we
observe that each member of an ERCtrain or ERCcv ensemble can be trained independently,
while ERCtrue is fully parallelizable at training time, i.e. all k·m single-target models can be
trained independently. For all ERC variants, test time parallelization is also possible since
each ensemble member can be queried independently.
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Table 1 Training and test complexities of the proposed methods with single- and multi-core implementations

Method Training complexity Test complexity

Single-core Multi-core Single-core Multi-core

SST true O(m·gtr (n, d)) O(gtr (n, d)) O(m·gte(n, d)) O(gte(n, d))

train O(m·gtr (n, d)) O(gtr (n, d)) O(m·gte(n, d)) O(gte(n, d))

cv O( f ·m·gtr (n, d)) O(gtr (n, d)) O(m·gte(n, d)) O(gte(n, d))

ERC true O(k·m·gtr (n, d)) O(gtr (n, d)) O(k·m·gte(n, d)) O(m·gte(n, d))

train O(k·m·gtr (n, d)) O(m·gtr (n, d)) O(k·m·gte(n, d)) O(m·gte(n, d))

cv O(k· f ·m·gtr (n, d)) O(m·gtr (n, d)) O(k·m·gte(n, d)) O(m·gte(n, d))

n, d and m denote the numbers of data points, inputs, and targets respectively. k denotes the number of chains
in ERC and f the number of internal cross-validation folds in the cv variants of SST and ERC

Table 1 summarizes the training and test complexities of each method assuming a
single-core implementation as well as the minimum possible complexity when a multi-
core implementation is used. Note that, as shown in the table, SSTcv and ERCcv have the
same multi-core complexity with SSTtrain and ERCtrain respectively because their internal
cross-validation procedure can also be parallelized.

3 Related work

3.1 Multi-target regression

MTR was first studied in Statistics under the term multivariate regression with Reduced
Rank Regression (RRR) (Izenman 1975), FICYREG (Merwe and Zidek 1980) and two-
block PLS (Wold 1985) (the multiple response version of PLS) being three of the earliest
methods. Among these methods, two-block PLS has been used more widely, especially in
Chemometrics. More recently, the Curds and Whey (C&W) method was proposed (Breiman
and Friedman 1997) and was found to outperform RRR, FICYREG and two-block PLS. As
noted by Breiman and Friedman (1997), C&W, RRR and FICYREG can all be expressed
using the same generic form ỹ = Bŷ, where ŷ are estimates obtained by applying ordinary
least squares regression on the target variables and B is a matrix that modifies these estimates
in order to obtain a more accurate prediction ỹ, under the assumption that the targets are
correlated.

In all methods, B can be expressed as B = T̂−1DT̂, where T̂ is the matrix of sample
canonical co-ordinates and D is a diagonal “shrinking” matrix that is obtained differently in
each method. SST is highly similar to these methods but allows a more general formulation
of the MTR problem. Firstly, SST does not impose any restriction to the family of models
that generate the uncorrected (first stage) estimates in contrast to these approaches that use
estimates obtained from least squares regression. Secondly, the correction of the estimates
applied by SST comes from a learning procedure that jointly considers target and input
variables rather than target variables alone.

As shown by Breiman and Friedman (1997), the above methods can be described by an
alternative but equivalent scheme. According to this, y is first transformed to the canonical
co-ordinate system y′ = T̂y, then separate least squares regression is performed on each y′
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to obtain ŷ′, these estimates are scaled by D to obtain ỹ′ = Dŷ′ and finally transformed back
to the original output space ỹ = T̂−1ỹ′. As discussed by Dembczynski et al. (2012), from
this perspective, these methods fall under a more general scheme where the output space is
first transformed, single-target regressors are then trained on the transformed output space
and an inverse transformation is performed (possibly along with shrinkage/regularization) to
obtain predictions for the original targets. Due to its generality, this scheme has been adopted
by a number of recent methods in both MLC (Hsu 2009; Zhang and Schneider 2011, 2012;
Tai and Lin 2012) and MTR (Balasubramanian and Lebanon 2012; Tsoumakas et al. 2014).

A large number of MTR methods are derived from the predictive clustering tree (PCT)
framework (Blockeel et al. 1998). The main difference between the PCT algorithm and a
standard decision tree is that the variance and the prototype functions are treated as parameters
that can be instantiated to fit the given learning task. Such an instantiation for MTR tasks are
the multi-objective decision trees (MODTs) where the variance function is computed as the
sum of the variances of the targets, and the prototype function is the vector mean of the target
vectors of the training examples falling in each leaf (Blockeel et al. 1998, 1999). Bagging
and random forest ensembles of MODTs were developed by Kocev et al. (2007) and were
found significantly more accurate than MODTs and equally good or better than ensembles
of single-objective decision trees for both regression and classification tasks. In particular,
multi-objective random forests yielded better performance than multi-objective bagging.

Methods that deal with the prediction of multiple target variables can be found in the
literature of the related learning task of multi-task learning. According to Caruana (1997),
multi-task learning is a form of inductive transfer (Pratt 1992) where the aim is to improve
generalization accuracy on a set of related tasks by using a shared representation that exploits
commonalities between them. This definition implies that a multi-task method should be able
to deal with problems where different prediction tasks do not necessarily share the same set
of training examples or descriptive features and, moreover, each task can have a different
data type. Thus, multi-task learning is actually a generalization of MTR.

Artificial neural networks (ANNs) are very well suited for multi-task problems because
they can be naturally extended to support multiple outputs and offer flexibility in defining
how inputs are shared between tasks. Thus, it is not surprising that most of the earliest
multi-task methods were based on ANNs. Caruana (1994), for example, proposed a method
where backpropagation is used to train single ANN with multiple outputs (connected to the
same hidden layers), and showed that it has better generalization performance compared to
multiple single-task ANNs. A different architecture was used by Baxter (1995) where only
the first hidden layers are shared and subsequent layers are specific to each task. The question
of how much sharing is better when multi-task ANNs are applied for stock return prediction
was explored by Ghosn and Bengio (1996) who concluded that a partial sharing of network
parameters is preferable compared to full or no sharing. More recently, Collobert and Weston
(2008) applied a deep multi-task neural network architecture for natural language processing.

A large number of multi-task learning methods stem from a regularization perspective.6

Regularization-based multi-task methods minimize a penalized empirical loss of the form
min

W
L (W ) + Ω(W ), where W is a parameter matrix that has to be estimated, L (W ) is an

empirical loss calculated on the training data and Ω(W ) is a regularization term that takes
a different form in each method depending on the underlying task relatedness assumption.
Most methods assume that all tasks are related to each other (Evgeniou and Pontil 2004;
Ando and Zhang 2005; Argyriou et al. 2006, 2008; Chen et al. 2009, 2010a; Obozinski et al.
2010), while there are methods assuming that tasks are organized in structures such as clusters

6 A nice categorization of regularization-based multi-task methods can be found in Zhou et al. (2012).
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(Jacob et al. 2008; Zhou et al. 2011a), trees (Kim and Xing 2010) and graphs (Chen et al.
2010b). A well-studied category of methods, which are particularly useful when dealing with
high-dimensional input spaces, assume that models for different tasks share a common low-
rank subspace and impose a trace-norm constraint on the parameter matrix (Argyriou et al.
2006, 2008; Ji and Ye 2009). A similar category of methods constraint all models to share
a common set of features (thus performing a joint feature selection), typically by applying
L1/Lq -norm (q > 1) regularization (Obozinski et al. 2010). An approach that relaxes the
above restrictive constraint allowing models to leverage different extents of feature sharing
is proposed in Jalali et al. (2010, 2013).

Finally, we would like to mention that a number of MTR methods are based on the
Gaussian Processes framework (e.g., Bonilla et al. 2007; Álvarez and Lawrence 2011). These
methods capture correlations between tasks by appropriate choices of covariance functions.
A nice review of such methods as well as their relations to regularization-based multi-task
approaches can be found in Alvarez et al. (2011).

3.2 Discrepancy in meta-inputs

In the MLC domain, Senge et al. (2013a) studied how the discrepancy issue affects the
performance of Classifier Chains and showed that longer chains (i.e. multi-label problems
with more labels to be predicted) lead to a higher performance deterioration. In an extension
of that work Senge et al. (2013b), a “rectified” version of Classifier Chains (called Nested
Stacking) was presented that uses in-sample estimates of the label variables for training
as in Stacked Binary Relevance. It was shown that this method performs better than the
original Classifier Chains, especially when the label dependencies are strong. Following the
opposite direction, Montañés et al. (2011) proposed AID, a method similar to Stacked Binary
Relevance, and found that using the actual label values instead of (in-sample) estimates, leads
to better results for most multi-label evaluation measures in both AID and Stacked Binary
Relevance.

Our work is the first to study this issue in the MTR domain.7 The issue is studied jointly
for SST and ERC, thus allowing general conclusions to be drawn for this type of methods.
Furthermore, Montañés et al. (2011), Senge et al. (2013b) compared only the use of actual
target values with the use of in-sample estimates while our comparison includes the use
of out-of-sample estimates obtained by a cross-validation procedure. Finally, Senge et al.
(2013b) evaluate the use of estimates in Classifier Chains whereas we focus on the ensemble
version of the corresponding MTR method (ERC) that is expected to offer more resilience
to error propagation, as discussed in Sect. 2.5.

4 Experimental setup

This section describes our experimental setup. We first present the participating methods
and their parameters and provide details about their implementation in order to facilitate
reproducibility of the experiments. Next, we describe the evaluation measure and explain the
process that was followed for the statistical comparison of the methods. Finally, we present
the datasets that we used and their main statistics.

7 Actually, an early version of this work Spyromitros-Xioufis et al. (2012) is the first to consider the discrepancy
problem in the context of input space expansion methods.
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Table 2 Methods used in experiments with abbreviations and citations

Abbr. Method Citation

ST Single target

SSTtrue Stacked ST, true values This paper

SSTtrain Stacked ST, in-sample estimates This paper

SSTcv Stacked ST, cv estimates This paper

ERCtrue Ensemble of Regressor Chains, true values This paper

ERCtrain Ensemble of Regressor Chains, in-sample estimates This paper

ERCcv Ensemble of Regressor Chains, cv estimates This paper

MORF Multi-Objective Random Forest Kocev et al. (2007)

TNR Trace Norm Regularization multi-task learning Argyriou et al. (2008)

Dirty A Dirty model for multi-task learning Jalali et al. (2010, 2013)

RLC Random Linear target Combinations Tsoumakas et al. (2014)

4.1 Methods, parameters and implementation

The experimental evaluation includes all variants of the proposed SST and ERC methods,
the ST baseline and the following state-of-the-art multiple prediction methods: (a) multi-
objective random forest (MORF) (Kocev et al. 2007), (b) trace norm regularization for multi-
task learning (TNR) (Argyriou et al. 2008), (c) the Dirty approach for multi-task learning
(Jalali et al. 2010, 2013) and (d) a very recent multi-target method based on random linear
combinations of the output space (RLC) (Tsoumakas et al. 2014). For easy reference, Table 2
lists all methods included in the evaluation along with their abbreviations and citations where
appropriate.

The proposed methods as well as ST and RLC transform the mutli-target regression
task into a series of single-target regression tasks which can be dealt with using any standard
regression algorithm. For most of the experiments, we use bagged regression trees as the base
regressor. This choice was motivated in Sect. 2.3 and is further discussed in Sect. 5.1 where
we present results using a variety of well-known linear and non-linear regression algorithms.
The ensemble size of all ERC variants is set to k = 10 RC models, each one trained using
a different random chain. In datasets with less than 10 distinct chains, we create exactly as
many RC models as the number of distinct chains. Furthermore, since the base regressor
involves bootstrap sampling, we do not perform sampling in ERC, i.e. each RC model is
trained using all training examples. In SST, we exclude the target being predicted by each
second stage model from the input space of that model as we found that this choice improves
slightly the performance of all variants of this method. f = 10 internal cross-validation folds
are used in both SSTcv and ERCcv .

Concerning the parameter settings of the competitive methods, in MORF we use an ensem-
ble size of 100 trees and the values suggested by Kocev et al. (2007) for the rest of its
parameters. In RLC, we generate r = 100 new target variables by combining k = 2 of the
original target variables (after bringing them to the [0, 1] interval). As shown in Tsoumakas
et al. (2014), these values lead to near optimal results. In TNR, we minimize the squared loss
function using the accelerated gradient method for trace norm minimization (Ji and Ye 2009).
The regularization parameter is tuned by selecting among the values {10r : r ∈ {−3, . . . , 3}}

with internal 5-fold cross-validation. Before applying TNR, we apply z-score normalization
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and add a bias column as suggested in Zhou et al. (2011b). Finally, Dirty is setup as suggested
in Jalali et al. (2013): Input variables are scaled to the [−1, 1] range by dividing them with
their maximum values. The regularization parameters λb and λs are tuned via internal 5-fold

cross-validation (as in TNR). As suggested in Jalali et al. (2013), we set λb = c

√

m log d
n

,
where c ∈ {10r : r ∈ {−2, . . . , 2}} is a constant. Each distinct value of λb is paired with
five values of λs = λb

1+ m−1
4 i

, i ∈ {0, 1, 2, 3, 4}, thus respecting the λs

λb
∈ [ 1

m
, 1] relationship

dictated by the optimality conditions. In total, 25 different combinations of λb and λs are
evaluated.

All the proposed methods and the evaluation framework were implemented in Java and
integrated in Mulan8 (Tsoumakas et al. 2011) by expanding its functionality to multi-target
regression. The implementation of all single-target regression algorithms that were used
to instantiate problem transformation methods are taken from Weka.9 With respect to the
competing methods, RLC was already integrated in Mulan while for the purposes of this
study we also integrated MORF (via a wrapper of the implementation offered in CLUS10) as
well as TNR and Dirty (via wrappers of the implementations offered in MALSAR (Zhou
et al. 2011b)). Thus, all methods were evaluated under a common framework. In support of
open science, we created a github project11 that contains all our implementations, including
code that facilitates easy replication of our experimental results.

4.2 Evaluation

The proposed methods aim at reducing the prediction error on every single target of a MTR
problem. To measure the performance of a MTR model on each target variable we use Relative
Root Mean Squared Error (RRMSE). The RRMSE of a model h that has been induced from
a train set Dtrain is estimated based on a test set Dtest according to the following equation:

RRMSE(h, Dtest ) =

√

√

√

√

∑

(x,y)∈Dtest
(ŷ j − y j )2

∑

(x,y)∈Dtest
(Ȳ j − y j )2

(1)

where Ȳ j is the mean value of target variable Y j over Dtrain and ŷ j is the estimation of
the MTR model h for Y j . More intuitively, RRMSE for a target is equal to the Root Mean
Squared Error (RMSE) for that target divided by the RMSE of predicting the average value
of that target in the training set. RRMSE is estimated using k-fold cross-validation on all
datasets, i.e. one RRMSE measurement is obtained on each fold and the final RRMSE is
calculated as the average of those measurements. We use k = 10 on all datasets, except those
with more than 9000 examples where for computational reasons we use either k = 5 (rf1
and rf2) or k = 2 (scm1d and scm20d).12

To test the statistical significance of the observed differences between the methods, we
follow the methodology suggested by Demsar (2006). To compare multiple methods on
multiple datasets we use the Friedman test, the non-parametric alternative of the repeated-
measures ANOVA. The Friedman test operates on the average ranks of the methods and

8 http://mulan.sourceforge.net.
9 http://www.cs.waikato.ac.nz/ml/weka.
10 http://dtai.cs.kuleuven.be/clus/.
11 https://github.com/lefman/mulan-extended.
12 The reliability of the estimates obtained using k = 2 and k = 5 has been validated by checking the stability
of the rankings of the methods when repeating the cross-validation experiment with different random seeds.
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checks the validity of the hypothesis (null-hypothesis) that all methods are equivalent. Here,
we use an improved (less conservative) version of the test that uses the F f instead of the
χ2

F statistic (Iman and Davenport 1980). When the null-hypothesis of the Friedman test is
rejected (p < 0.01), we proceed with the Nemenyi post-hoc test that compares all methods
to each other in order to find which methods in particular differ from each other. Instead
of reporting the outcomes of all pairwise comparisons, we employ the simple graphical
presentation of the test’s results introduced by Demsar (2006), i.e. all methods being compared
are placed in a horizontal axis according to their average ranks and groups of methods that
are not significantly different (at a certain significance level) are connected (see Fig. 4 for
an example). To generate such a diagram, a critical difference (CD) should be calculated
that corresponds to the minimum difference in average ranks required for two methods
to be considered significantly different. CD for a given number of methods and datasets,
depends on the desired significance level. Due to the known conservancy of the Nemenyi
test (Demsar 2006), we use a 0.05 significance level for computing the CD throughout the
paper.

As the above methodology requires a single performance measurement for each method
on each dataset, it is not directly applicable to multi-target evaluation where we have mul-
tiple performance measurements (one for each target) for each method on each dataset.
One option is to take the average RRMSE (aRRMSE) across all target variables within a
dataset as a single performance measurement. This choice, however, has the disadvantage
that a very small or large error on a single target might dominate the average, thus obscuring
performance differences on the target level. Another option is to treat the RRMSE of each
method on each target as a different performance measurement. In this case, Friedman test’s
assumption of independence between performance measurements might be violated. In the
absence of a better solution, we perform a two-dimensional analysis (as done e.g. by Aho
et al. 2012) where statistical tests are conducted using both aRRMSE (per dataset analysis)
but also considering RRMSE per target as an independent performance measurement (per

target analysis).

4.3 Datasets

Despite the numerous interesting applications of MTR, there are only few publicly available
datasets of this kind—perhaps because most applications are industrial—and most exper-
imental evaluations of MTR methods are based on a limited amount of datasets. For this
study, much effort was made for the composition of a large and diverse collection of bench-
mark MTR datasets. In addition to 5 datasets that have been used in previous studies and
are publicly available (edm, sf1, sf2, jura, wq), we also used 5 publicly available datasets
(enb, slump, andro, osales, scpf) that have not been used for MTR benchmarking in the
past. We also collected raw MTR data from a variety of interesting application domains and
composed 8 new benchmark datasets (atp1d, atp7d, oes97, oes10, rf1, rf2, scm1d, scm20d).
In total we collected 18 datasets and make them publicly available for future studies.13

To the best of our knowledge, this is the largest collection of benchmark MTR datasets to
date.

Table 3 reports the name (1st column), source (2nd column), number of examples (3rd
column), number of input variables (4th column) and number of target variables (5th column)
of each dataset. Detailed descriptions of all datasets are provided in “Appendix”.

13 http://mulan.sourceforge.net/datasets-mtr.html.
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Table 3 Name, source, number
of examples, number of input
variables (d) and number of
target variables (m) of the
datasets used in the evaluation

The datasets marked with an
asterisk are first used for MTR
benchmarking in this paper to the
best of our knowledge

Dataset Source Examples d m

edm Karalic and Bratko (1997) 154 16 2

sf1 Lichman (2013) 323 10 3

sf2 Lichman (2013) 1066 10 3

jura Goovaerts (1997) 359 15 3

wq Dzeroski et al. (2000) 1060 16 14

*enb Tsanas and Xifara (2012) 768 8 2

*slump Yeh (2007) 103 7 3

*andro Hatzikos et al. (2008) 49 30 6

*osales Kaggle (2012) 639 413 12

*scpf Kaggle (2013) 1137 23 3

*atp1d This paper 337 411 6

*atp7d This paper 296 411 6

*oes97 This paper 334 263 16

*oes10 This paper 403 298 16

*rf1 This paper 9125 64 8

*rf2 This paper 9125 576 8

*scm1d This paper 9803 280 16

*scm20d This paper 8966 61 16

5 Experimental analysis

In this section we present an extensive experimental analysis of the performance of the
proposed methods. Sect. 5.1 is devoted to an exploration of the performance of ST using
various well-known regression algorithms. The purpose of this investigation is to help us
select an algorithm that works well on the studied datasets and use it as base regressor in all
problem transformation methods (ST, SST, ERC and RLC) in subsequent experiments. At the
same time, a challenging baseline performance level will be set for all multi-target methods.
In Sect. 5.2 we evaluate SSTtrain and ERCtrue, the direct adaptations of the corresponding
MLC methods, in order to see whether these variants obtain a competitive performance
compared to ST and state-of-the-art multi-target methods. Next, in Sect. 5.3 all three meta-
input generation variants (true, train, cv) of SST and ERC are evaluated and compared to
ST, shedding light into the impact of the discrepancy problem on each method. After the best
performing variants of each method have been identified, Sect. 5.4 compares them with the
state-of-the-art. The running times of all methods are reported and compared in Sect. 5.5, and
finally, this section ends with a discussion of the main outcomes of the experimental results
(Sect. 5.6).

5.1 Base regressor exploration

In this subsection we explore the performance of ST on the studied domains using a variety of
regression algorithms. The goal of this exploration is to help us identify a regression algorithm
that performs well across many domains, thus setting a challenging baseline performance
level for the multi-target methods that we study next. The algorithm that will emerge as
the best performer will be used to instantiate all problem transformation methods (ST, SST,
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Friedman p=0.00017737
Nemenyi  p=0.05
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Fig. 3 Comparison of different ST instantiations using the Nemenyi test. Groups of methods that are not
significantly different (at p = 0.05) are connected. a Per dataset analysis. b Per target analysis

ERC and RLC) in the rest of the experiments, facilitating a fair comparison between these
methods.

We selected five well-known linear and non-linear regression algorithms to couple ST
with, in particular we use: ridge regression (Hoerl and Kennard 1970) (ridge), regression tree
Breiman et al. (1984) (tree), L2-regularized support vector regression regression (Drucker
et al. 1996) (svr), bagged (Breiman 1996) regression trees (bag) and stochastic gradient
boosting (Friedman 2002) (sgb). In ridge and svr, the regularization parameter was tuned
(separately for each target) by applying internal 5-fold cross-validation and choosing the
value that leads to the lowest root mean squared error among {10r : r ∈ {−4, . . . , 2}}. In
bag we combine the predictions of 100 trees while in sgb we boost trees with four terminal
nodes using a small shrinkage rate (0.1) and a large number of iterations (100), as suggested
by Friedman et al. (2001).

The detailed results obtained by each instantiation on each dataset and target are given
in Appendix “Base regressor exploration results”. We observe that no algorithm is better
in all domains (as dictated by the no free lunch theorems for supervised learning (Wolpert
1996, 2002)). However, ST-bag stands out obtaining the lowest aRRMSE in nine datasets.
ST-sgb follows with five wins while ST-ridge and ST-svr each obtain the lowest error in
two datasets. Figure 3 shows the average ranks of the different instantiations along with the
results of the Friedman and the Nemenyi tests for the analysis per dataset (left) and per target
(right). In both analyses, the lowest average rank is obtained by ST-bag, followed by ST-sgb

and ST-ridge. In the per dataset analysis, the Nemenyi test finds that ST-bag is significantly
better than ST-tree and ST-svr while in the per target analysis, ST-bag is found significantly
better than all the other instantiations. Therefore, we use bag as the base regressor for all
problem transformation methods in the rest of the experiments.

5.2 Evaluation of direct adaptations

In this subsection we focus on SSTtrain and ERCtrue, the versions of SST and ERC that use
the same type of values for the meta-inputs as their MLC counterparts, and compare their
performance to that of ST, MORF, RLC, TNR and Dirty to see where these methods stand
with respect to the state-of-the-art.

Figure 4 shows the average ranks of the methods along with the results of the Friedman and
the Nemenyi tests when the analysis is performed per dataset (left) and per target (right).14

Several interesting remarks can be made based on these results. First, we see that both

14 The detailed results per dataset and target can be found in Appendix “Multi-target regression results”.
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Fig. 4 Comparison of direct adaptations (with bag as base regressor) using the Nemenyi test. Groups of
methods that are not significantly different (at p = 0.05) are connected. a Per dataset analysis. b Per target
analysis

SST train and ERCtrue are competitive with state-of-the-art methods. SSTtrain obtains the
lowest average rank in both the per dataset and the per target analysis. In the per dataset
analysis, it is found significantly better than TNR and Dirty and similar with MORF and
RLC and in the per target analysis it is found better than TNR, Dirty and MORF and similar
with RLC. ERCtrue performs worse than SSTtrain but is still ranked above TNR, Dirty and
MORF in the per dataset analysis and above TNR and Dirty in the per target analysis. In the
per dataset analysis, ERCtrue is found significantly better than TNR and Dirty and similar
with MORF and RLC, while in the per target analysis it is found better than TNR and Dirty,
similar with MORF and only RLC outperforms it significantly.

Interestingly, however, we see that according to both the per dataset and the per target
analysis, SSTtrain and ERCtrue are not significantly better than ST. This is an indication
that the use of targets as meta-input as implemented by these variants of SST and ERC does
not bring significant improvements. Actually, as can be seen from the detailed results, both
SSTtrain and ERCtrue perform worse than ST in several cases. This issue is studied in more
detail in the following subsection.

Perhaps even more interestingly, none of the state-of-the-art multi-target methods partic-

ipating in this comparison manages to significantly improve the performance of ST. In fact,
ST is ranked second after SSTtrain in the per dataset analysis and third after SSTtrain and
RLC in the per target analysis, and is found significantly better than TNR and Dirty in both
types of analyses. This exceptionally good performance of ST might seem a bit surprising
given the results of previous studies (e.g. Kocev et al. 2007; Tsoumakas et al. 2014) but is
in accordance with empirical and theoretical results for Binary Relevance (as discussed in
Sect. 2) and is attributed to the use of a very strong base regressor.

To validate this, we instantiate all problem transformation methods with ridge, a base
regressor that was found to perform worse than bag in Sect. 5.1, and repeat the comparison.
As shown in Fig. 5, the situation is quite different compared to when bag was used as
base regressor. We observe that ST is now ranked below MORF, RLC and ERCtrue in both
the per dataset and the per target analysis and is found significantly worse than MORF
according to the per target analysis. Clearly, as the strength of the base regressor increases, i.e.

when the information provided by the features is well exploited, improving the performance

of ST becomes more difficult. However, it is this challenging setting where performance
improvements matter the most and it is thus interesting to see whether the proposed extensions
of SST and ERC manage to obtain more consistent improvements over ST (compared to
SSTtrain and ERCtrue) under this setting.
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Fig. 5 Comparison of direct adaptations (with ridge as base regressor) using the Nemenyi test. Groups of
methods that are not significantly different (at p = 0.05) are connected. a Per dataset analysis. b Per target
analysis
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Fig. 6 Comparison of SST variants using the Nemenyi test. Groups of methods that are not significantly
different (at p = 0.05) are connected. a SST, per dataset analysis. b SST, per target analysis

5.3 Evaluation of meta-input generation variants

In this subsection we evaluate the performance of SST and ERC when different types of values
are used for the meta-inputs at training time. In particular, each method is evaluated using the
actual target values (true variants), in-sample estimates (train variants) and out-of-sample
estimates (cv variants) generated using the proposed internal cross-validation strategy. We
want to see whether the cv variants (that according to the discussion of Sect. 2.4 are expected
to be less affected by the discrepancy problem) can indeed perform better than the train and
true variants and whether they manage to obtain more consistent improvements over ST. We
also want to see how the SST variants compare to the ERC variants.

Figures 6 and 7 show the average ranks and the results of the Friedman and Nemenyi tests
for the three variants of SST and ERC, respectively, according to the per dataset (left) and
the per target (right) analysis. First, we see that in both SST and ERC and in both types of
analyses, the variants that use the actual values of the targets (true) obtain the worst average
ranks and are found significantly worse than both variants that use estimates (train and cv).
Since the variants of each method differ only with respect to the type of values that they use
for the meta-inputs, it is clear that the discrepancy problem has a significant impact on the

performance of both SST and ERC and that the use of estimates can ameliorate this problem.
With respect to the kind of estimates that should be used (in-sample or out-of-sample) the

situation is slightly different for each method. In the case of SST, the cv variant obtains the
best average rank in both the per dataset and the per target analysis and its difference with
the train variant is found significant in the per target analysis. In the case of ERC, while
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Fig. 7 Comparison of ERC variants using the Nemenyi test. Groups of methods that are not significantly
different (at p = 0.05) are connected. a ERC, per dataset analysis. b ERC, per target analysis
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Fig. 8 Comparison of SSTtrue/train/cv , ERCtrue/train/cv and ST using the Nemenyi test. Groups of methods
that are not significantly different (at p = 0.05) are connected. a Per dataset analysis. b Per target analysis

the cv variant is ranked higher than the train variant in the per target analysis, the train

variant is ranked slightly higher in the per dataset analysis and in both cases the differences
are not found significant. This suggests that using out-of-sample estimates is important for

SST while ERC seems to be less affected by the discrepancy problem and, as a result, the use

of in-sample estimates can be considered as a viable alternative.
A question that has not been answered yet, is how the new variants of SST and ERC

compare to ST and to each other. Figure 8 shows the results of the Friedman and the Nemenyi
tests when all variants of SST and ERC are compared together with ST. We see that in both
the per dataset (left) and the per target (right) analysis, the four variants that use estimates
for the meta-inputs obtain lower average ranks than ST while the true variants obtain worse
average ranks. The differences with ST are not found significant according to the per dataset
analysis but according to the per target analysis ERCtrain and ERCcv are found significantly
better. Comparing the SST variants with the ERC variants, we see that each ERC variant
is always ranked above the corresponding SST variant. This suggests that ERC’s strategy

for leveraging information from target variables is beneficial. Moreover, we see that that
ERCtrain and ERCcv are found significantly better than the rest of the methods according to
the per target analysis.

5.3.1 Cautiousness analysis

So far, our analysis has focused on the average performance of the proposed methods (as
quantified by their average ranks over datasets and targets) and we found that ERCtrain and
ERCcv outperform the independent regressions baseline significantly. However, it is also
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important to see the consistency of these improvements across different datasets and targets.
In particular, we would like to study the degree of cautiousness that each method exhibits, i.e.
how frequently and to what extent are the predictions produced by each method less accurate
than the predictions of ST.

To facilitate a comparison of the methods in this regard, the following measures are
defined:

Rd(M) =
a R RM SE(ST )

a R RM SE(M)
,

Rt (M) =
R RM SE(ST )

R RM SE(M)
.

For each method M and dataset d , Rd quantifies the amount of improvement or degradation
induced by M compared to ST in terms of a R RM SE . Similarly, for each method M and
target t , Rt quantifies the amount of improvement or degradation compared to ST in terms
of R RM SE . Values of Rd(M) and Rt (M) < 1 indicate that the method produces worse
estimates than ST (Rd(ST ) = Rt (ST ) = 1). The upper part of Fig. 9 displays box plots
of the values of Rd over the 18 datasets included in the experimental study, i.e. each box
plot summarizes the distribution of 18 values, while the lower part displays box plots of the
values of Rt over 143 targets, i.e. each box plot summarizes the distribution of 143 values.

We see that that in both the per dataset and the per target analysis, the true variants
are the ones exhibiting the more dispersed distributions with several cases of significant
degradation of ST’s performance. The train and cv variants are clearly more cautious with
much fewer cases of degradation and even fewer cases of significant degradation. Looking at
the distributions of Rt , we could say that the cv variants appear a bit more cautious than the

train variants especially in the case of SST. We also see that the ERC variants are always
more cautious than the corresponding SST variants. Clearly, ERCtrain and ERCcv are the
two most cautious methods since they obtain very similar or better performance than ST on
all datasets and on about 75 % of the targets. Even on targets where the two methods obtain
a lower performance than ST, the reduction is less than about 5 %. This characteristic along
with the fact that they obtain the largest average improvements over ST, make ERCtrain and
ERCcv highly appealing.

5.4 Comparison with the state-of-the-art

In this section we compare the three best performing variants of the proposed methods, i.e.
ERCcv , ERCtrain and SSTcv , with MORF, RLC, TNR and Dirty to see how they compare
to the state-of-the-art. Figure 10 shows the results of the Friedman and Nemenyi tests for the
analysis per dataset (left) and per target (right). The per dataset analysis shows that all our
methods perform significantly better than TNR and Dirty while ERCcv and ERCtrain also
perform significantly better than MORF. Moreover, all our methods obtain a lower average
rank than RLC but according to this analysis the differences are not significant. According
to the per target analysis, all our methods are found significantly better than TNR, Dirty

and MORF, and additionally, ERCcv and ERCtrain are found significantly better than RLC.
In Fig. 11 we compare the performance of the methods from a cautiousness perspective,
as we did in Sect. 5.3. TNR, Dirty and MORF are far less cautious than SSTcv , ERCtrain

and ERCcv with many instances of extreme degradation of ST’s performance. RLC is more
cautious but not as much as SSTcv , ERCtrain and ERCcv , especially according to the per
target analysis.
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Fig. 10 Comparison of the best SST and ERC variants with the state-of-the-art using the Nemenyi test. Groups
of methods that are not significantly different (at p = 0.05) are connected. a Per dataset analysis. b Per target
analysis

5.5 Running times

In this subsection we compare the running times of the studied methods. Experiments were
run on a 64-bit CentOS Linux machine with 80 Intel Xeon E7-4860 processors running at
2.27 GHz and 1 TB of main memory. The detailed results per method and dataset are shown in
Table 4. For ST, RLC, SST and ERC we report times with bag as base regressor. The number
shown in parenthesis next to the name of each dataset corresponds to the maximum number
of processor threads that were available during the experiment. ST, SST, ERC and RLC made
use of multiple threads through Weka’s multi-threaded implementation of Bagging. Thus,
running times are directly comparable for these methods. Multi-threading was also partly
used in TNR for the computation of the gradients. dirty and MORF, on the other hand,
always used a single processor thread.

Looking at the aggregated running times, we see that MORF is by far the most efficient
method, followed by ST, SSTtrue and SSTtrain which have similar running times. On the
other hand, dirty is the least efficient method, followed by ERCcv . The running times of the
rest of the methods lie in between. With respect to the SST and ERC variants, we see that
their running times agree with the complexity analysis of Sect. 2.6. The total running time
of SSTtrue is roughly twice the total running time of ST and similar to the total running time
of SSTtrain . SSTcv is the least efficient among SST variants with a total running time that
is about 5 times larger than that of SSTtrue and SSTtrain . With respect to the ERC variants,
we see that ERCtrue and ERCtrain have similar total running times (which are also roughly
similar to the total running time of SSTcv) while ERCcv is about 7.5 times slower.

Overall, we see that the improvements achieved by ERCcv and ERCtrain over ST come
with an increased computational cost. However, this cost is manageable especially in the case
of ERCtrain . Furthermore, when better efficiency is needed, besides the use of parallelization
one might consider reducing the ensemble size (k) or using a smaller number of folds ( f )
when applying internal cross-validation (in ERCcv).

5.6 Discussion

Several interesting conclusions can be drawn from our experimental results. The experiments
of Sects. 5.2 and 5.3 showed that while the directly adapted versions of SST and ERC have
comparable or better performance than state-of-the-art methods, a careful handling of the
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discrepancy problem is crucial for obtaining consistent improvements over the independent
regressions baseline and the state-of-the-art. In particular, as the experiments of Sect. 5.3
revealed, the use of estimates for the meta-inputs during training should clearly be preferred
over using the actual target values. With regard to using in-sample versus out-of-sample
estimates, the results indicate that while out-of-sample estimates are preferable in SST, ERC
performs almost equally well using either type of estimates for the meta-inputs. As discussed
in Sect. 2.5, ERC’s models are built on input spaces which are expanded with fewer meta-
inputs compared to SST’s models and, as a result, a smaller amount of error accumulation is
risked at prediction time.

Another interesting conclusion is that when a strong base regressor is employed, the
task of improving the performance of ST becomes very difficult. As a result, multi-target
methods which are considered state-of-the-art fail to improve ST’s performance and are even
performing significantly worse. This was particularly the case for the two multi-task methods,
TNR and Dirty, which were consistently found to be the worst performers. One explanation
for their bad performance is the fact that both methods are based on a linear formulation
of the problem that, as revealed by the base regressor exploration experiments, is not the
most suitable hypothesis representation for the studied datasets (ridge and svr performed
worse than sgb and bag that are based on a non-linear hypothesis representation). Moreover,
multi-task methods are expected to work better than single-task methods in cases where there
is a lack of training data for some of the tasks (Alvarez et al. 2011). This is not the case for
most of the datasets that we used in this study as well as many recent multi-target prediction
problems. In fact, the two datasets where TNR and Dirty perform better than ST (sf1 and
slump) are among those with the fewest training examples.

With respect to MORF, although it was found significantly more competitive than TNR
and Dirty, it also performed worse than ST on average. Nevertheless, we should point out
that MORF achieved the best accuracy on three datasets (edm, wq, andro) and is the most
computationally efficient of the compared methods. Similarly to TNR and Dirty, MORF
has the disadvantage of having a fixed hypothesis representation (trees), as opposed to the
proposed methods that have the ability of adapting better to a specific domain by being
instantiated with a more suitable base regressor. This advantage of the proposed methods is
shared with RLC which, however, was not found as accurate.

Overall, our experimental results demonstrate that of the methods proposed in this paper,
ERCtrain and ERCcv and, to a lesser extent, SSTtrain and SSTcv provide increased accuracy
over doing a separate regression per target. In addition, ERCtrain and ERCcv are significantly
more accurate than TNR, Dirty, MORF and RLC (in the per target analysis). If caution is a
further concern, then again ERCtrain and ERCcv compare favorably to the rest of the methods.
With respect to the true variants of SST and ERC, we should stress out that despite having
a worse average performance, they are worthy of being considered by a practitioner as they
obtain the highest performance in datasets (e.g., sf1 and scfp) where the discrepancy problem
is not predominant.

6 Conclusion

Motivated by the similarity between the tasks of multi-label classification and multi-target
regression, this paper introduced SST and ERC, two new multi-target regression techniques
derived through a simple adaptation of two well-known multi-label classification methods.
Both methods are based on the idea of treating other prediction targets as additional input
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variables, and represent a conceptually simple way of exploiting target dependencies in order
to improve prediction accuracy.

A comprehensive experimental analysis that includes a multitude of real-world datasets
and four existing state-of-the-art methods, reveals that, despite being competitive with the
state-of-the-art, the directly adapted versions of SST and ERC do not manage to obtain
significant improvements or even degrade the performance of the independent regressions
baseline. This degradation is attributed to an underestimation (in the original formulations of
the methods) of the impact of the discrepancy of the values used for the additional input vari-
ables between training and prediction. Confirming our hypothesis, extended versions of the
methods that attempt to mitigate the discrepancy using out-of-sample estimates of the targets
during training, manage to obtain consistent and significant improvements over the baseline
approach and are found significantly better than four state-of-the-art methods. The fact that
these impressive results were obtained by applying relatively simple adaptations of exist-
ing multi-label classification methods, highlights the importance of exploiting relationships
between similar machine learning tasks.

Concluding, let us point to some directions for future work. Although a mitigation of the
discrepancy problem leads to significant performance improvements, a different amount of
mitigation is ideal for each target. As a result, the use of in-sample estimates (or even the
actual target values) gives better results for some targets. Thus, a promising direction for future
work would be a deeper theoretical analysis of the different variants and the identification of
problem characteristics that favor the use of one variant over the other. Finally, we should
point out that SST and ERC can be viewed as strategies for leveraging variables that are
available in the training phase but not in the prediction phase. This type of scenario is very
common, for instance, in time series prediction. We believe that adapting SST and ERC for
this type of problems is another valuable opportunity for future work.

Appendix 1: Datasets

Existing datasets

EDM

The Electrical Discharge Machining dataset (Karalic and Bratko 1997) represents a two-target
regression problem. The task is to shorten the machining time by reproducing the behaviour
of a human operator that controls the values of two variables. Each of the target variables
takes 3 distinct numeric values ({−1, 0, 1}) and there are 16 continuous input variables.

SF

The Solar Flare dataset (Lichman 2013) has 3 target variables that correspond to the number
of times 3 types of solar flare (common, moderate, severe) are observed within 24 h. There
are two versions of this dataset. SF1 contains data from year 1969 and SF2 from year 1978.

JURA

The Jura (Goovaerts 1997) dataset consists of measurements of concentrations of seven heavy
metals (cadmium, cobalt, chromium, copper, nickel, lead, and zinc), recorded at 359 locations
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in the topsoil of a region of the Swiss Jura. The type of land use (Forest, Pasture, Meadow,
Tillage) and rock type (Argovian, Kimmeridgian, Sequanian, Portlandian, Quaternary) were
also recorded for each location. In a typical scenario (Goovaerts 1997; Álvarez and Lawrence
2011), we are interested in the prediction of the concentration of metals that are more expen-
sive to measure (primary variables) using measurements of metals that are cheaper to sample
(secondary variables). In this study, cadmium, copper and lead are treated as target variables
while the remaining metals along with land use type, rock type and the coordinates of each
location are used as predictive features.

WQ

The Water Quality dataset (Dzeroski et al. 2000) has 14 target attributes that refer to the
relative representation of plant and animal species in Slovenian rivers and 16 input attributes
that refer to physical and chemical water quality parameters.

New datasets

ENB

The Energy Building dataset (Tsanas and Xifara 2012) concerns the prediction of the heating
load and cooling load requirements of buildings (i.e. energy efficiency) as a function of eight
building parameters such as glazing area, roof area, and overall height, amongst others.

SLUMP

The Concrete Slump dataset (Yeh 2007) concerns the prediction of three properties of con-
crete (slump, flow and compressive strength) as a function of the content of seven concrete
ingredients: cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and
fine aggregate.

ANDRO

The Andromeda dataset (Hatzikos et al. 2008) concerns the prediction of future values for
six water quality variables (temperature, pH, conductivity, salinity, oxygen, turbidity) in
Thermaikos Gulf of Thessaloniki, Greece. Measurements of the target variables are taken
from under-water sensors with a sampling interval of 9 seconds and then averaged to get a
single measurement for each variable over each day. The specific dataset that we use here
corresponds to using a window of 5 days (i.e. features attributes correspond to the values of
the six water quality variables up to 5 days in the past) and a lead of 5 days (i.e. we predict
the values of each variable 6 days ahead).

OSALES

This is a pre-processed version of the dataset used in Kaggle’s “Online Product Sales” com-
petition (Kaggle 2012) that concerns the prediction of the online sales of consumer products.
Each row in the dataset corresponds to a different product that is described by various prod-
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uct features as well as features of an advertising campaign. There are 12 target variables
corresponding to the monthly sales for the first 12 months after the product launches. For the
purposes of this study we removed examples with missing values in any target variable (112
out of 751) and attributes with one distinct value (145 out of 558).

SCPF

This is a pre-processed version of the dataset used in Kaggle’s “See Click Predict Fix”
competition (Kaggle 2013). It concerns the prediction of three target variables that represent
the number of views, clicks and comments that a specific 311 issue will receive. The issues
have been collected from 4 cities (Oakland, Richmond, New Haven, Chicago) in the US and
span a period of 12 months (01/2012–12/2012). The version of the dataset that we use here is
a random 1 % sample of the data. In terms of features we use the number of days that an issues
stayed online, the source from where the issue was created (e.g. android, iphone, remote api,
etc.), the type of the issue (e.g. graffiti, pothole, trash, etc.), the geographical co-ordinates of
the issue, the city it was published from and the distance from the city center. All multi-valued
nominal variables were first transformed to binary and then rare binary variables (being true
for less than 1 % of the cases) were removed.

OES

The Occupational Employment Survey datasets were obtained from years 1997 (OES97)
and 2010 (OES10) of the annual Occupational Employment Survey compiled by the US
Bureau of Labor Statistics. Each row provides the estimated number of full-time equivalent
employees across many employment types for a specific metropolitan area. There are 334 and
403 cities in the 1997 and 2010 datasets, respectively. The input variables in these datasets are
a randomly sequenced subset of employment types (e.g. doctor, dentist, car repair technician,
etc.) observed in at least 50 % of the cities (some categories had no values for particular cities).
The targets for both years are randomly selected from the entire set of categories above the
50 % threshold. Missing values in both the input and the target variables were replaced by
sample means for these results. To our knowledge, this is the first use of the OES dataset for
benchmarking of multi-target prediction algorithms.

ATP

The Airline Ticket Price dataset concerns the prediction of airline ticket prices. The rows
are a sequence of time-ordered observations over several days. Each sample in this dataset
represents a set of observations from a specific observation date and departure date pair. The
input variables for each sample are values that may be useful for prediction of the airline ticket
prices for a specific departure date. The target variables in these datasets are the next day
(ATP1D) price or minimum price observed over the next 7 days (ATP7D) for 6 target flight
preferences: (1) any airline with any number of stops, (2) any airline non-stop only, (3) Delta
Airlines, (4) Continental Airlines, (5) Airtrain Airlines, and (6) United Airlines. The input
variables include the following types: the number of days between the observation date and
the departure date (1 feature), the boolean variables for day-of-the-week of the observation
date (7 features), the complete enumeration of the following 4 values: (1) the minimum price,
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mean price, and number of quotes from (2) all airlines and from each airline quoting more
than 50 % of the observation days (3) for non-stop, one-stop, and two-stop flights, (4) for the
current day, previous day, and two days previous. The result is a feature set of 411 variables.
For specific details on how these datasets are constructed please consult Groves and Gini
(2015). The nature of these datasets is heterogeneous with a mixture of several types of
variables including boolean variables, prices, and counts.

RF

The river flow datasets concern the prediction of river network flows for 48 h in the future
at specific locations. The dataset contains data from hourly flow observations for 8 sites in
the Mississippi River network in the United States and were obtained from the US National
Weather Service. Each row includes the most recent observation for each of the 8 sites as
well as time-lagged observations from 6, 12, 18, 24, 36, 48 and 60 h in the past. In RF1, each
site contributes 8 attribute variables to facilitate prediction. There are a total of 64 variables
plus 8 target variables.The RF2 dataset extends the RF1 data by adding precipitation forecast
information for each of the 8 sites (expected rainfall reported as discrete values: 0.0, 0.01, 0.25,
1.0 inches). For each observation and gauge site, the precipitation forecast for 6 h windows
up to 48 h in the future is added (6, 12, 18, 24, 30, 36, 42, and 48 h). The two datasets both
contain over 1 year of hourly observations (>9000 h) collected from September 2011 to
September 2012. The domain is a natural candidate for multi-target regression because there
are clear physical relationships between readings in the contiguous river network.

SCM

The Supply Chain Management datasets are derived from the Trading Agent Competition in
Supply Chain Management (TAC SCM) tournament from 2010. The precise methods for data
preprocessing and normalization are described in detail by Groves and Gini (2011). Some
benchmark values for prediction accuracy in this domain are available from the TAC SCM
Prediction Challenge (Pardoe and Stone 2008), these datasets correspond only to the “Product
Future” prediction type. Each row corresponds to an observation day in the tournament (there
are 220 days in each game and 18 tournament games in a tournament). The input variables
in this domain are observed prices for a specific tournament day. In addition, 4 time-delayed
observations are included for each observed product and component (1, 2, 4 and 8 days
delayed) to facilitate some anticipation of trends going forward. The datasets contain 16
regression targets, each target corresponds to the next day mean price (SCM1D) or mean
price for 20-days in the future (SCM20D) for each product in the simulation. Days with no
target values are excluded from the datasets (i.e. days with labels that are beyond the end of
the game are excluded).
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Appendix 2: Detailed experimental results

Base regressor exploration results

See Table 5.

Table 5 Detailed results for ST using ridge, tree, svr, bag and sgb as base regressors

Dataset ST-ridge ST-tree ST-svr ST-bag ST-sgb

Target

edm 0.871 0.915 0.860 0.742 0.706

dflow 0.977 1.092 0.961 0.815 0.751

dgap 0.764 0.737 0.760 0.669 0.662

sf1 1.130 1.127 0.930 1.135 1.148

c-class 0.987 1.045 1.001 1.017 1.026

m-class 1.009 1.345 1.084 1.096 1.111

x-class 1.394 0.991 0.705 1.293 1.307

sf2 1.485 1.010 0.912 1.149 1.223

c-class 0.953 0.973 0.943 0.980 0.980

m-class 1.136 1.006 0.961 1.075 1.112

x-class 2.365 1.050 0.833 1.393 1.578

jura 0.607 0.705 0.643 0.589 0.619

cd 0.715 0.854 0.727 0.711 0.750

co 0.626 0.616 0.679 0.543 0.550

cu 0.480 0.645 0.523 0.514 0.558

wq 0.955 0.963 0.959 0.908 0.922

25400 0.950 0.977 0.954 0.925 0.935

29600 0.987 1.011 0.996 0.987 0.983

30400 0.960 0.965 0.966 0.945 0.961

33400 0.950 0.974 0.956 0.912 0.929

17300 0.967 0.969 0.973 0.902 0.931

19400 0.909 0.890 0.910 0.834 0.840

34500 0.971 1.019 0.982 0.969 0.982

38100 0.957 0.963 0.956 0.912 0.924

49700 0.919 0.942 0.939 0.795 0.816

50390 0.966 0.966 0.966 0.892 0.899

55800 0.959 0.974 0.971 0.924 0.935

57500 0.961 0.969 0.962 0.918 0.924

59300 0.992 0.980 0.991 0.947 0.972

37880 0.917 0.888 0.904 0.856 0.878

enb 0.315 0.126 0.607 0.117 0.114

y1 0.293 0.062 0.587 0.053 0.059

y2 0.336 0.189 0.627 0.180 0.168
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Table 5 continued

Dataset ST-ridge ST-tree ST-svr ST-bag ST-sgb

Target

slump 0.679 0.827 0.686 0.688 0.669

slump 0.889 0.974 0.895 0.795 0.744

flow 0.774 0.857 0.755 0.742 0.739

compressi. 0.373 0.650 0.409 0.526 0.523

andro 0.842 0.599 1.109 0.602 0.494

1 0.801 0.663 1.038 0.515 0.454

2 0.799 0.333 0.863 0.340 0.219

3 1.079 0.592 1.386 0.588 0.406

4 1.079 0.522 1.458 0.530 0.466

5 0.676 0.704 0.985 0.809 0.686

6 0.620 0.783 0.921 0.827 0.731

osales 0.900 0.920 0.847 0.748 0.807

m1 0.919 0.829 0.818 0.653 0.944

m2 0.916 0.868 0.824 0.754 0.818

m3 0.884 0.916 0.824 0.786 0.800

m4 0.909 0.812 0.818 0.689 0.732

m5 0.991 0.917 0.848 0.736 0.790

m6 0.819 0.965 0.814 0.696 0.711

m7 0.883 0.960 0.819 0.743 0.825

m8 0.911 0.870 0.841 0.764 0.782

m9 0.872 1.205 0.884 0.812 0.915

m10 0.931 0.881 0.873 0.773 0.785

m11 0.845 0.841 0.872 0.749 0.736

m12 0.919 0.981 0.932 0.821 0.846

scpf 0.853 0.934 0.903 0.837 0.913

views 0.822 0.878 0.820 0.815 0.887

votes 0.752 0.813 0.843 0.720 0.754

comments 0.985 1.111 1.045 0.976 1.099

atp1d 0.412 0.473 0.432 0.374 0.395

allminpa 0.476 0.652 0.491 0.482 0.470

allminp0 0.412 0.567 0.427 0.430 0.468

adlminpa 0.419 0.468 0.433 0.416 0.428

acominpa 0.342 0.274 0.381 0.242 0.273

aflminpa 0.472 0.647 0.466 0.471 0.464

auaminpa 0.349 0.229 0.392 0.200 0.267
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Table 5 continued

Dataset ST-ridge ST-tree ST-svr ST-bag ST-sgb

Target

atp7d 0.579 0.665 0.615 0.525 0.517

allminpa 0.730 0.950 0.764 0.641 0.558

allminp0 0.575 0.811 0.595 0.670 0.635

adlminpa 0.566 0.699 0.577 0.546 0.533

acominpa 0.437 0.355 0.509 0.316 0.321

aflminpa 0.717 0.821 0.730 0.689 0.745

auaminpa 0.448 0.353 0.514 0.286 0.313

oes97 0.477 0.709 0.579 0.525 0.644

58028 0.199 0.562 0.183 0.336 0.462

15014 0.282 0.510 0.292 0.358 0.554

32511 0.746 0.775 1.113 0.717 0.754

15017 0.322 0.454 0.316 0.365 0.380

98502 0.602 0.815 0.896 0.665 0.682

92965 0.595 0.961 0.766 0.648 0.766

32314 0.786 0.827 0.959 0.614 0.837

13008 0.228 0.505 0.217 0.339 0.517

21114 0.210 0.303 0.209 0.307 0.395

85110 0.448 0.754 0.770 0.567 0.669

27311 0.573 0.905 0.652 0.601 0.786

98902 0.457 0.850 0.461 0.536 0.689

65032 0.470 0.754 0.484 0.552 0.580

92998 0.615 0.828 0.617 0.644 0.701

27108 0.544 0.700 0.669 0.580 0.700

53905 0.553 0.839 0.665 0.569 0.825

oes10 0.369 0.621 0.427 0.420 0.569

513021 0.368 0.646 0.481 0.438 0.416

292071 0.367 0.599 0.413 0.385 0.404

392021 0.425 0.559 0.534 0.412 0.492

151131 0.346 0.655 0.363 0.430 0.649

151141 0.355 0.502 0.434 0.436 0.455

291069 0.576 0.971 0.646 0.616 0.876

119032 0.285 0.579 0.280 0.370 0.490

432011 0.321 0.589 0.426 0.392 0.487

419022 0.522 0.858 0.636 0.644 0.686

292037 0.325 0.459 0.376 0.335 0.412

519061 0.333 0.606 0.331 0.395 0.426

291051 0.180 0.347 0.192 0.265 0.404

172141 0.567 0.814 0.836 0.494 0.856

431011 0.150 0.456 0.139 0.269 0.616

291127 0.386 0.674 0.412 0.462 0.564

412021 0.397 0.615 0.338 0.377 0.878
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Table 5 continued

Dataset ST-ridge ST-tree ST-svr ST-bag ST-sgb

Target

rf1 0.541 0.121 0.414 0.097 0.230

chsi2 0.334 0.077 0.214 0.043 0.153

nasi2 1.951 0.376 1.301 0.432 0.653

eadm7 0.399 0.091 0.329 0.055 0.182

sclm7 0.600 0.128 0.367 0.061 0.222

clkm7 0.251 0.079 0.236 0.049 0.161

vali2 0.341 0.089 0.366 0.057 0.216

napm7 0.242 0.053 0.245 0.040 0.102

dldi4 0.211 0.073 0.253 0.039 0.151

rf2 0.469 0.121 0.414 0.102 0.237

chsi2 0.228 0.078 0.214 0.044 0.132

nasi2 1.996 0.384 1.296 0.465 0.780

eadm7 0.253 0.095 0.329 0.055 0.167

sclm7 0.294 0.105 0.367 0.065 0.186

clkm7 0.297 0.082 0.236 0.050 0.162

vali2 0.286 0.090 0.370 0.056 0.213

napm7 0.208 0.055 0.245 0.041 0.105

dldi4 0.190 0.078 0.253 0.040 0.153

scm1d 0.394 0.444 0.457 0.348 0.393

lbl 0.337 0.379 0.409 0.310 0.335

mtlp2 0.350 0.401 0.436 0.323 0.366

mtlp3 0.379 0.431 0.442 0.333 0.388

mtlp4 0.387 0.458 0.461 0.345 0.385

mtlp5 0.454 0.508 0.530 0.377 0.452

mtlp6 0.456 0.506 0.540 0.376 0.437

mtlp7 0.449 0.496 0.526 0.370 0.455

mtlp8 0.451 0.523 0.497 0.377 0.445

mtlp9 0.372 0.421 0.456 0.341 0.378

mtlp10 0.394 0.428 0.456 0.352 0.424

mtlp11 0.377 0.417 0.445 0.342 0.364

mtlp12 0.404 0.447 0.466 0.366 0.411

mtlp13 0.363 0.419 0.409 0.331 0.357

mtlp14 0.394 0.472 0.432 0.369 0.383

mtlp15 0.356 0.406 0.393 0.330 0.352

mtlp16 0.373 0.398 0.407 0.330 0.361
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Table 5 continued

Dataset ST-ridge ST-tree ST-svr ST-bag ST-sgb

Target

scm20d 0.646 0.627 0.763 0.475 0.620

lbl 0.561 0.562 0.678 0.424 0.542

mtlp2a 0.571 0.574 0.688 0.425 0.542

mtlp3a 0.586 0.572 0.683 0.440 0.564

mtlp4a 0.614 0.612 0.730 0.455 0.580

mtlp5a 0.707 0.681 0.846 0.493 0.697

mtlp6a 0.694 0.650 0.843 0.493 0.641

mtlp7a 0.691 0.644 0.833 0.485 0.624

mtlp8a 0.690 0.648 0.851 0.500 0.655

mtlp9a 0.644 0.604 0.737 0.454 0.599

mtlp10a 0.660 0.630 0.753 0.478 0.663

mtlp11a 0.666 0.667 0.769 0.498 0.632

mtlp12a 0.673 0.668 0.787 0.511 0.669

mtlp13a 0.651 0.634 0.751 0.481 0.611

mtlp14a 0.661 0.645 0.779 0.501 0.683

mtlp15a 0.633 0.613 0.727 0.480 0.608

mtlp16a 0.636 0.635 0.754 0.488 0.610

For each dataset, we first report the average R RM SE over all targets (a R RM SE), and then the R RM SE per
target. In each row, the lowest error is typeset in bold

6.1 Multi-target regression results

See Table 6.

Table 6 Detailed results for all methods using bag as base regressor in ST, SST, ERC and RLC (detailed
results with additional base regressors can be found at http://users.auth.gr/espyromi/mtr/results.zip)

Dataset ST SSTtrue SSTtrain SSTcv ERCtrue ERCtrain ERCcv MORF RLC TNR Dirty
Target

edm 0.742 0.747 0.743 0.740 0.743 0.742 0.741 0.734 0.735 0.851 0.830

dflow 0.815 0.824 0.817 0.812 0.818 0.815 0.814 0.775 0.801 0.932 0.900

dgap 0.669 0.671 0.669 0.667 0.669 0.669 0.668 0.692 0.669 0.769 0.759

sf1 1.135 0.997 1.127 1.068 1.050 1.132 1.089 1.282 1.163 1.112 1.115

c-class 1.017 0.991 1.037 1.001 1.000 1.020 1.007 1.035 1.019 0.974 0.973

m-class 1.096 0.918 1.137 1.005 0.992 1.112 1.033 1.212 1.130 0.998 1.016

x-class 1.293 1.083 1.207 1.198 1.158 1.263 1.226 1.601 1.341 1.365 1.356

sf2 1.149 0.980 0.945 1.055 1.053 1.087 1.088 1.425 1.228 1.475 1.372

c-class 0.980 0.968 0.975 0.964 0.973 0.977 0.964 0.996 0.985 0.948 0.944

m-class 1.075 0.983 0.994 0.992 1.022 1.018 1.030 1.160 1.080 1.118 1.103

x-class 1.393 0.988 0.866 1.210 1.165 1.266 1.270 2.119 1.620 2.360 2.069
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Table 6 continued

Dataset ST SSTtrue SSTtrain SSTcv ERCtrue ERCtrain ERCcv MORF RLC TNR Dirty
Target

jura 0.589 0.594 0.592 0.591 0.591 0.590 0.590 0.597 0.596 0.608 0.610

cd 0.711 0.715 0.715 0.713 0.712 0.713 0.712 0.694 0.702 0.715 0.716

co 0.543 0.553 0.544 0.543 0.546 0.542 0.543 0.566 0.558 0.628 0.629

cu 0.514 0.514 0.517 0.515 0.514 0.515 0.514 0.530 0.530 0.481 0.485

wq 0.908 0.914 0.911 0.909 0.910 0.905 0.906 0.899 0.902 0.962 0.961

25400 0.925 0.931 0.930 0.928 0.930 0.921 0.927 0.924 0.922 0.952 0.956

29600 0.987 0.988 0.986 0.984 0.985 0.983 0.983 0.976 0.979 0.994 0.995

30400 0.945 0.945 0.945 0.951 0.944 0.944 0.946 0.942 0.937 0.968 0.964

33400 0.912 0.915 0.904 0.902 0.912 0.904 0.902 0.893 0.904 0.959 0.957

17300 0.902 0.913 0.921 0.914 0.906 0.910 0.908 0.895 0.903 0.974 0.973

19400 0.834 0.839 0.829 0.829 0.835 0.827 0.829 0.828 0.832 0.912 0.907

34500 0.969 0.965 0.961 0.963 0.965 0.958 0.957 0.959 0.957 0.981 0.976

38100 0.912 0.913 0.908 0.908 0.912 0.906 0.911 0.907 0.904 0.967 0.967

49700 0.795 0.809 0.815 0.808 0.799 0.796 0.796 0.793 0.793 0.927 0.936

50390 0.892 0.899 0.901 0.899 0.892 0.892 0.892 0.892 0.884 0.988 0.961

55800 0.924 0.934 0.931 0.929 0.926 0.922 0.924 0.903 0.916 0.963 0.973

57500 0.918 0.920 0.917 0.919 0.918 0.915 0.914 0.896 0.907 0.965 0.964

59300 0.947 0.965 0.957 0.951 0.954 0.946 0.947 0.931 0.941 0.995 0.994

37880 0.856 0.860 0.848 0.847 0.857 0.852 0.849 0.851 0.851 0.923 0.927

enb 0.117 0.145 0.123 0.121 0.125 0.117 0.114 0.121 0.120 0.316 0.319

y1 0.053 0.088 0.059 0.063 0.064 0.053 0.053 0.060 0.053 0.295 0.297

y2 0.180 0.201 0.186 0.178 0.187 0.181 0.174 0.182 0.188 0.337 0.341

slump 0.688 0.722 0.666 0.695 0.701 0.669 0.689 0.694 0.690 0.681 0.684

slump 0.795 0.857 0.742 0.802 0.817 0.757 0.796 0.775 0.792 0.900 0.900

flow 0.742 0.767 0.743 0.764 0.752 0.732 0.749 0.733 0.740 0.769 0.769

compressi. 0.526 0.540 0.514 0.521 0.533 0.519 0.522 0.573 0.539 0.372 0.384

andro 0.602 0.603 0.540 0.579 0.596 0.538 0.567 0.510 0.570 0.803 0.889

1 0.515 0.584 0.487 0.507 0.537 0.485 0.504 0.436 0.452 0.860 0.792

2 0.340 0.349 0.340 0.336 0.344 0.339 0.332 0.403 0.296 1.000 0.934

3 0.588 0.497 0.404 0.518 0.540 0.435 0.475 0.499 0.594 0.833 1.009

4 0.530 0.551 0.500 0.579 0.521 0.483 0.521 0.467 0.587 0.837 1.052

5 0.809 0.843 0.842 0.800 0.819 0.758 0.788 0.632 0.745 0.657 0.761

6 0.827 0.795 0.667 0.736 0.816 0.730 0.781 0.622 0.747 0.629 0.782

osales 0.748 0.751 0.709 0.726 0.728 0.699 0.713 0.753 0.741 1.628 1.507

m1 0.653 0.695 0.604 0.596 0.674 0.590 0.596 0.676 0.657 1.881 1.737

m2 0.754 0.740 0.696 0.756 0.733 0.675 0.732 0.719 0.750 1.551 1.643

m3 0.786 0.809 0.779 0.825 0.760 0.772 0.773 0.778 0.772 1.639 1.630

m4 0.689 0.728 0.636 0.660 0.696 0.643 0.659 0.736 0.676 1.598 1.640

m5 0.736 0.668 0.669 0.652 0.692 0.653 0.647 0.738 0.703 2.319 1.810

m6 0.696 0.763 0.725 0.735 0.704 0.671 0.699 0.753 0.710 1.562 1.555

m7 0.743 0.726 0.682 0.691 0.712 0.673 0.679 0.768 0.738 1.572 1.322
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Table 6 continued

Dataset ST SSTtrue SSTtrain SSTcv ERCtrue ERCtrain ERCcv MORF RLC TNR Dirty
Target

m8 0.764 0.760 0.729 0.726 0.746 0.730 0.733 0.789 0.759 1.359 1.293

m9 0.812 0.767 0.755 0.803 0.747 0.741 0.778 0.746 0.793 1.401 1.394

m10 0.773 0.763 0.729 0.733 0.738 0.726 0.732 0.770 0.776 1.905 1.471

m11 0.749 0.756 0.708 0.734 0.737 0.710 0.729 0.760 0.736 1.278 1.202

m12 0.821 0.843 0.799 0.801 0.797 0.798 0.801 0.806 0.818 1.471 1.384

scpf 0.837 0.830 0.855 0.831 0.812 0.821 0.830 0.833 0.835 0.899 0.877

views 0.815 0.795 0.811 0.815 0.787 0.789 0.810 0.808 0.814 0.855 0.857

votes 0.720 0.750 0.759 0.718 0.718 0.724 0.719 0.704 0.724 0.825 0.752

comments 0.976 0.945 0.996 0.960 0.931 0.950 0.961 0.988 0.966 1.015 1.020

atp1d 0.374 0.376 0.372 0.372 0.371 0.367 0.372 0.422 0.378 0.595 0.552

allminpa 0.482 0.506 0.485 0.482 0.485 0.481 0.482 0.474 0.475 0.687 0.644

allminp0 0.430 0.428 0.420 0.422 0.426 0.416 0.428 0.436 0.434 0.687 0.628

adlminpa 0.416 0.397 0.405 0.410 0.398 0.402 0.412 0.424 0.419 0.564 0.519

acominpa 0.242 0.245 0.233 0.242 0.242 0.234 0.239 0.356 0.248 0.481 0.441

aflminpa 0.471 0.468 0.480 0.473 0.470 0.470 0.473 0.487 0.461 0.654 0.627

auaminpa 0.200 0.210 0.207 0.202 0.205 0.201 0.200 0.356 0.232 0.497 0.453

atp7d 0.525 0.561 0.514 0.507 0.534 0.509 0.512 0.551 0.529 0.786 0.668

allminpa 0.641 0.765 0.619 0.629 0.696 0.619 0.626 0.636 0.673 0.828 0.761

allminp0 0.670 0.698 0.672 0.653 0.675 0.666 0.660 0.602 0.644 0.827 0.738

adlminpa 0.546 0.588 0.533 0.537 0.553 0.530 0.542 0.524 0.555 0.784 0.624

acominpa 0.316 0.301 0.269 0.278 0.294 0.283 0.291 0.437 0.328 0.705 0.561

aflminpa 0.689 0.727 0.728 0.700 0.707 0.692 0.694 0.674 0.669 0.852 0.745

auaminpa 0.286 0.288 0.264 0.246 0.281 0.267 0.262 0.432 0.304 0.721 0.577

oes97 0.525 0.526 0.526 0.524 0.525 0.525 0.524 0.549 0.523 0.818 1.049

58028 0.336 0.337 0.335 0.337 0.337 0.335 0.336 0.265 0.312 0.354 0.389

15014 0.358 0.359 0.365 0.352 0.359 0.361 0.352 0.465 0.367 0.446 0.560

32511 0.717 0.715 0.715 0.714 0.716 0.716 0.714 0.752 0.733 1.398 2.077

15017 0.365 0.365 0.370 0.368 0.365 0.367 0.366 0.403 0.373 0.505 0.743

98502 0.665 0.675 0.666 0.665 0.671 0.666 0.665 0.715 0.659 1.219 1.653

92965 0.648 0.651 0.648 0.647 0.649 0.647 0.647 0.698 0.640 0.970 1.626

32314 0.614 0.611 0.615 0.617 0.613 0.614 0.615 0.704 0.633 0.915 1.137

13008 0.339 0.339 0.340 0.337 0.339 0.340 0.338 0.272 0.321 0.318 0.460

21114 0.307 0.307 0.307 0.308 0.307 0.307 0.307 0.291 0.283 0.419 0.458

85110 0.567 0.567 0.575 0.568 0.567 0.569 0.566 0.636 0.566 0.902 1.186

27311 0.601 0.598 0.595 0.595 0.599 0.598 0.598 0.566 0.584 0.952 1.108

98902 0.536 0.537 0.537 0.536 0.536 0.536 0.535 0.543 0.513 0.704 0.743

65032 0.552 0.552 0.554 0.550 0.552 0.553 0.551 0.535 0.542 0.877 0.956

92998 0.644 0.653 0.642 0.644 0.647 0.643 0.642 0.703 0.659 1.198 1.252

27108 0.580 0.582 0.576 0.577 0.581 0.578 0.577 0.636 0.596 0.842 1.256

53905 0.569 0.572 0.574 0.572 0.570 0.571 0.570 0.602 0.591 1.064 1.173
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Table 6 continued

Dataset ST SSTtrue SSTtrain SSTcv ERCtrue ERCtrain ERCcv MORF RLC TNR Dirty
Target

oes10 0.420 0.421 0.420 0.421 0.420 0.420 0.420 0.452 0.419 0.532 0.664

513021 0.438 0.436 0.438 0.437 0.436 0.438 0.438 0.453 0.443 0.587 0.824

292071 0.385 0.387 0.383 0.382 0.387 0.383 0.383 0.393 0.388 0.548 0.733

392021 0.412 0.413 0.413 0.414 0.413 0.412 0.412 0.397 0.415 0.605 0.807

151131 0.430 0.431 0.431 0.431 0.431 0.431 0.430 0.457 0.423 0.511 0.515

151141 0.436 0.440 0.439 0.441 0.438 0.437 0.438 0.496 0.446 0.508 0.770

291069 0.616 0.618 0.617 0.616 0.617 0.617 0.616 0.650 0.589 0.834 0.874

119032 0.370 0.370 0.369 0.371 0.370 0.368 0.370 0.402 0.384 0.332 0.509

432011 0.392 0.393 0.392 0.392 0.392 0.392 0.392 0.397 0.391 0.471 0.661

419022 0.644 0.644 0.644 0.644 0.644 0.645 0.644 0.654 0.610 0.779 0.914

292037 0.335 0.336 0.337 0.337 0.335 0.336 0.335 0.382 0.352 0.432 0.606

519061 0.395 0.396 0.397 0.397 0.395 0.396 0.396 0.557 0.404 0.558 0.608

291051 0.265 0.266 0.267 0.266 0.265 0.265 0.264 0.266 0.262 0.220 0.297

172141 0.494 0.495 0.496 0.496 0.495 0.496 0.494 0.593 0.520 1.067 1.080

431011 0.269 0.268 0.267 0.271 0.268 0.268 0.269 0.227 0.240 0.166 0.165

291127 0.462 0.460 0.453 0.456 0.461 0.456 0.458 0.442 0.456 0.449 0.794

412021 0.377 0.375 0.378 0.379 0.376 0.377 0.378 0.461 0.378 0.437 0.474

rf1 0.097 0.113 0.094 0.094 0.101 0.091 0.091 0.123 0.121 0.983 0.676

chsi2 0.043 0.069 0.047 0.046 0.050 0.035 0.034 0.035 0.033 0.797 0.387

nasi2 0.432 0.498 0.431 0.431 0.454 0.430 0.430 0.650 0.684 1.946 2.610

eadm7 0.055 0.050 0.043 0.040 0.047 0.041 0.040 0.039 0.042 1.019 0.524

sclm7 0.061 0.069 0.049 0.048 0.060 0.048 0.047 0.068 0.048 1.503 0.834

clkm7 0.049 0.048 0.041 0.041 0.045 0.040 0.041 0.031 0.041 0.587 0.256

vali2 0.057 0.074 0.056 0.057 0.069 0.055 0.055 0.037 0.046 0.571 0.320

napm7 0.040 0.051 0.044 0.047 0.045 0.039 0.041 0.097 0.038 0.909 0.270

dldi4 0.039 0.046 0.038 0.038 0.041 0.037 0.038 0.029 0.031 0.534 0.208

rf2 0.102 0.123 0.100 0.097 0.109 0.096 0.095 0.148 0.130 1.103 0.586

chsi2 0.044 0.077 0.042 0.046 0.059 0.035 0.034 0.066 0.038 0.737 0.258

nasi2 0.465 0.534 0.470 0.456 0.482 0.461 0.461 0.587 0.747 3.143 2.597

eadm7 0.055 0.055 0.047 0.040 0.052 0.043 0.041 0.071 0.046 0.737 0.319

sclm7 0.065 0.089 0.056 0.050 0.074 0.053 0.049 0.119 0.051 0.970 0.370

clkm7 0.050 0.049 0.041 0.041 0.048 0.042 0.042 0.054 0.042 0.891 0.420

vali2 0.056 0.074 0.056 0.054 0.069 0.054 0.053 0.067 0.047 0.956 0.270

napm7 0.041 0.055 0.051 0.049 0.047 0.044 0.043 0.166 0.039 0.617 0.273

dldi4 0.040 0.049 0.039 0.039 0.042 0.039 0.039 0.053 0.032 0.770 0.180

scm1d 0.348 0.360 0.340 0.336 0.353 0.332 0.330 0.352 0.345 0.437 0.399

lbl 0.310 0.312 0.300 0.296 0.310 0.294 0.294 0.308 0.306 0.378 0.341

mtlp2 0.323 0.334 0.317 0.313 0.329 0.309 0.308 0.327 0.317 0.408 0.353

mtlp3 0.333 0.351 0.325 0.322 0.342 0.319 0.315 0.328 0.327 0.429 0.384

mtlp4 0.345 0.362 0.338 0.334 0.359 0.330 0.325 0.343 0.342 0.442 0.393
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Table 6 continued

Dataset ST SSTtrue SSTtrain SSTcv ERCtrue ERCtrain ERCcv MORF RLC TNR Dirty
Target

mtlp5 0.377 0.404 0.366 0.365 0.395 0.357 0.349 0.391 0.377 0.502 0.461

mtlp6 0.376 0.392 0.357 0.350 0.381 0.356 0.347 0.399 0.382 0.509 0.462

mtlp7 0.370 0.380 0.350 0.343 0.376 0.346 0.338 0.383 0.369 0.497 0.459

mtlp8 0.377 0.393 0.362 0.356 0.390 0.353 0.345 0.391 0.378 0.504 0.459

mtlp9 0.341 0.349 0.333 0.330 0.344 0.323 0.325 0.340 0.332 0.411 0.376

mtlp10 0.352 0.359 0.350 0.344 0.351 0.339 0.341 0.348 0.348 0.434 0.398

mtlp11 0.342 0.348 0.331 0.329 0.342 0.327 0.329 0.346 0.336 0.410 0.384

mtlp12 0.366 0.366 0.355 0.355 0.362 0.350 0.354 0.363 0.364 0.441 0.412

mtlp13 0.331 0.348 0.334 0.326 0.337 0.323 0.322 0.345 0.326 0.399 0.367

mtlp14 0.369 0.374 0.363 0.360 0.367 0.356 0.358 0.361 0.358 0.438 0.398

mtlp15 0.330 0.337 0.321 0.319 0.327 0.314 0.315 0.330 0.322 0.389 0.361

mtlp16 0.330 0.346 0.333 0.329 0.334 0.322 0.322 0.335 0.332 0.405 0.380

scm20d 0.475 0.493 0.431 0.413 0.497 0.415 0.394 0.443 0.472 0.655 0.658

lbl 0.424 0.441 0.386 0.368 0.448 0.372 0.356 0.393 0.423 0.569 0.561

mtlp2a 0.425 0.442 0.384 0.365 0.455 0.369 0.352 0.402 0.429 0.581 0.573

mtlp3a 0.440 0.453 0.402 0.387 0.464 0.385 0.363 0.415 0.437 0.593 0.587

mtlp4a 0.455 0.471 0.410 0.396 0.485 0.397 0.374 0.426 0.453 0.622 0.618

mtlp5a 0.493 0.535 0.459 0.441 0.532 0.432 0.413 0.467 0.489 0.711 0.737

mtlp6a 0.493 0.512 0.450 0.430 0.504 0.438 0.424 0.466 0.488 0.701 0.728

mtlp7a 0.485 0.499 0.440 0.422 0.502 0.422 0.404 0.450 0.482 0.698 0.718

mtlp8a 0.500 0.504 0.447 0.431 0.513 0.426 0.407 0.454 0.493 0.696 0.725

mtlp9a 0.454 0.481 0.421 0.402 0.489 0.404 0.382 0.437 0.458 0.650 0.647

mtlp10a 0.478 0.497 0.436 0.413 0.498 0.435 0.418 0.454 0.489 0.668 0.666

mtlp11a 0.498 0.502 0.428 0.407 0.505 0.426 0.402 0.449 0.490 0.671 0.670

mtlp12a 0.511 0.525 0.458 0.444 0.520 0.449 0.429 0.473 0.511 0.680 0.681

mtlp13a 0.481 0.515 0.453 0.431 0.516 0.426 0.400 0.450 0.471 0.663 0.658

mtlp14a 0.501 0.517 0.455 0.440 0.520 0.436 0.411 0.465 0.492 0.675 0.668

mtlp15a 0.480 0.496 0.432 0.411 0.503 0.409 0.384 0.439 0.472 0.648 0.638

mtlp16a 0.488 0.496 0.434 0.414 0.504 0.411 0.386 0.445 0.481 0.647 0.646

For each dataset, we first report the average R RM SE over all targets (a R RM SE), and then the R RM SE per
target. In each row, the lowest error is typeset in bold
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