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ABSTRACT The Cardinality Balanced MeMBer (CBMeMBer) filter is a single sensor multi-target tracking

method based on the random finite set. Compared with the single sensor system, the multi-sensor system can

achievemore stable and better performance in tracking targets. However, some problems exist inmulti-sensor

system based on the CBMeMBer filter. Tracks in the CBMeMBer filter are described by parameter sets

which may be generated by miss-detection, targets and clutters. It is difficult to associate the parameter sets

correctly because of their complex forms and various types. Moreover, the filter reacts slowly to disappeared

targets, which leads to a cardinality overestimation. This problem may be more serious in the multi-sensor

system. To deal with the above problems, the parameter sets association and fusion methods are presented

in this paper. By three association processes with the adaptive thresholds selection approaches, parameter

sets corresponding to the same target are grouped into one parameter set partition. Parameter sets have

different association thresholds because of their different accuracies. The fusion method considers the types

and relationships of parameter sets in the partition simultaneously and uses a joint credibility to accelerate

changes in existence probability. The cardinality estimation decreases rapidlywhen the target disappears. The

theoretical analysis and experiment results of different tracking scenarios show that the proposed methods

perform well in both state estimation and cardinality estimation.

INDEX TERMS Multi-sensor fusion, multi-target tracking, random finite set, multi-Bernoulli filter.

I. INTRODUCTION

Target tracking aims to estimate the target states by the

measurements of sensors, such as the number, position,

velocity, acceleration, and track. According to the number of

targets, target tracking can be divided into two types, Single

Target Tracking (STT) and Multiple Target Tracking (MTT).

STT is an early and well-developed research in this field.

But STT approaches do not achieve well performance for

the real tracking scenarios because the number of targets is

time-varying and unknown. Regarding this issue, many MTT

methods have been proposed, such as Nearest Neighbor [1],

Global Nearest Neighbor [2], Probabilistic Data Associa-

tion [3], Joint Probabilistic Data Association [4] andMultiple

Hypothesis Tracking [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Rui-Jun Yan .

All these classical MTT methods mentioned above are

based on data association, and their computation burden

increases rapidly with the increasing numbers of targets and

measurements. To address this issue, several MTT methods

[7]–[18] without data association are proposed by combin-

ing the Random Finite Set (RFS) theory [6] and Bayesian

filtering framework, such as the Probability Hypothesis

Density (PHD) filter [7], the Cardinalized Probability

Hypothesis Density (CPHD) filter [8], and the Multi-target

Multi-Bernoulli (MeMBer) filter [6]. In the PHD filter,

the integral of the probability hypothesis density function in

each region is the expectation of target numbers in the region.

Since only the first moment of the multi-target posterior

probability density is propagated in the PHD filter, the car-

dinality estimation is unstable when there is a miss-detection

or a high false alarm. To deal with this problem, the CPHD

filter is proposed by propagating the posterior intensity and

cardinality distribution simultaneously. Compared with the
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PHD filter, the CPHD filter performs better in cardinality

estimation, but it has a larger computational burden. The

computational complexities of the PHD filter and the CPHD

filter are O (n · m) and O
(

n · m3
)

, respectively. Here, n and

m are the numbers of targets and measurements, respec-

tively. The number of measurements is the number of echoes

received by the sensor within one sampling time step. These

echoes may originate from targets or clutters. Unlike the PHD

filter which propagates the first-order moment, the MeMBer

filter propagates parameters of the multi-Bernoulli RFS,

and it is applied for a low clutter density condition. The

cardinality overestimation problem of the MeMBer filter

is proved, and a modified version is presented named as

the Cardinality Balanced MeMBer (CBMeMBer) filter [9].

Besides these commonly used RFS filters, some improved

methods have been proposed to track targets in real tracking

scenarios. In [10] and [11], the Student’s t-distribution is

used to handle the problems of observation noise of the PHD

filter and the CBMeMBer filter, respectively. Some solutions

to the adaptive target birth are described in [12] and [13].

To track maneuvering targets, a PHD filter with multiple

models is presented in [14]. In [15], the PHD filter is used

to track extended targets. The miss-detection problems of

the CPHD filter are discussed in [16]. To implement these

filters, the Gaussian Mixture (GM) implementation and the

Sequential Monte Carlo (SMC) implementation are given

in [17] and [18], respectively. In Bayesian probability theory,

conjugate prior is important which means that the prior dis-

tribution has the same form as the posterior distribution. The

generalized labeled multi-Bernoulli (GLMB) filter [19], [20]

is based on conjugate prior using labeled RFSs. Different

from the PHD, CPHD and CBMeMBer filters, the GLMB

has a mixture representation, where each component in

the mixture corresponds to one possible data association

history. Although the GLMB filter has better performance

in challenging scenarios, it is computationally expensive.

A computationally efficient approximation is the Labeled

Multi-Bernoulli (LMB) filter [21], which approximates the

GLMB density with a labeled multi-Bernoulli density.

The classical tracking methods and the RFS filters men-

tioned above are mainly used for a single sensor tracking

system. To increase tracking accuracy and tracking system

stability, multi-sensor tracking methods have been gaining

significant attention. The Iterated Corrector PHD (IC-PHD)

filter, an approximation for the multi-sensor case, is pro-

posed by Mahler in [7]. This filter is easily implemented

and wildly used in many applications, such as registration

errors compensation [22], radiation source localization [23]

and tracking multiple speakers [24]. However, the IC-PHD

filter is sensitive to the sensor order and the probability

of detection. Detailed discussions can be found in [25].

To deal with this problem, a joint miss-detection proba-

bility and joint detection probability calculation method is

described in [26]. As an improved version of the IC-PHD

filter, the Product Multi-sensor PHD (PM-PHD) is proposed

in [27]. The PM-PHD filter can overcome the drawbacks

of the IC-PHD filter, but some problems still exist. It is

difficult to calculate or approximate the infinite sums in

the update formulation. Furthermore, the PM-PHD filter is

overly concerned with the variation of cardinality estimation,

and it results in an inaccurate state estimation sometimes.

In [28], an approximation method of infinite sums is pre-

sented, where the computation can be reduced effectively.

An improved PM-PHD filter presented in [29] separates the

state estimation process and cardinality estimation process,

and it weakens the influence of cardinality estimation on state

estimation. Besides the IC-PHD filter and the PM-PHD fil-

ter, Mahler proposed another multi-sensor RFS filter, named

as the General two-sensor PHD filter [30]. A summation

overall binary partitions of the measurement sets makes the

computation of this filter high. In [31], D. Clark gave the

multi-sensor version of the General two sensor PHD filter,

and Nannuru gave its Gaussian implementation in [32]. The

computational complexity of the general multi-sensor PHD

filter is O (m! · n) approximately, which leads to a limitation

of application.

In the above-mentioned multi-sensor RFS filters, fusion

center needs to divide measurements of sensors into different

measurement partitions and fuse the multi-target state estima-

tions of all partitions. It leads to a high computation burden

of the fusion center. A feasible solution to this problem is to

fuse the states of targets estimated by each sensor in the fusion

center. Since the results of the RFS filters are in the form

of probability hypothesis density, much useful information is

missed in the process of extracting the state of targets. It may

result in an inaccurate target state estimation. In this paper,

a heuristic multi-sensor multi-target tracking method based

on the CBMeMBer filter is proposed to fuse the filter results

without extracting the states of targets. This approach consists

of two parts, parameter sets association and parameter sets

fusion. Its main contributions are given below:

(1) Through an association framework consisting of

three association processes, parameter sets of miss-detection

and measurement update belonging to the same target

can be accurately associated to the same parameter set

partition.

(2) The threshold used by each association process has its

corresponding adaptive selection method. These thresholds

can improve the efficiency and accuracy of the association

processes.

(3) To deal with the cardinality overestimation problem

caused by the excessive dependence of the CBMeMBer filter

on the miss-detection parameter sets at a low probability of

detection, the credibility of existence probability is intro-

duced to modify the fused existence probability.

The rest of this paper is organized as follows. The

CBMeMBer filter and the Gaussian mixture implementation

are introduced in Section II. The framework of a multi-sensor

association method is described in Section III. The numerical

solutions to the multi-sensor association method are given in

Section IV. Themulti-sensor parameter set estimationmethod

and theoretical analysis are given in SectionV and SectionVI,
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separately. Simulation results are shown in Section VII.

Finally, Section VIII gives conclusions and future works.

II. BACKGROUND

A. THE CBMEMBER FILTER

The Bernoulli RFS is a binary distribution. The probability

that it is an empty set is 1 − r , and the probability that it is a

single state x is r . The probability density distribution of x is

p (x). Thus, the probability density of a Bernoulli RFS can be

expressed by

π (X) =

{

1 − r X = ∅

r · p (x) X = {x}
(1)

TheMulti-Bernoulli RFS consists of several Bernoulli RFS

and can be expressed as

X̄ =
⋃M

i=1
X
(i) (2)

The probability density of X̄ is

π
(

X̄
)

=
{(

r (i), p(i)
)}M

i=1
(3)

Here, the parameter set
(

r (i), p(i)
)

is corresponding to the

Bernoulli RFS X (i).

The CBMeMBer filter consists of two parts, the prediction

and the update.

1) THE CBMeMBer PREDICTION

Given the multi-target posterior probability density at time

k − 1,

πk−1 =
{(

r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
(4)

The predicted probability density at time k can be

expressed by

πk|k−1 =
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
∪
{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1

(5)

r
(i)
P,k|k−1 = r

(i)
k−1

〈

p
(i)
k−1, pS,k

〉

(6)

p
(i)
P,k|k−1(x)=

〈

fk|k−1 (x|ξ), p
(i)
k−1pS,k

〉

〈

p
(i)
k−1, pS,k

〉 (7)

Here,
{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
are the parameter sets of

targets that still survive at time k .
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
are the

parameter sets of new targets that appear instantly at time

k . fk|k−1 (x |ξ) is the state transition function. pS,k (x) is the

probability of survival.

In Eq. (5), the number of the predicted Bernoulli RFS is

Mk|k−1 = Mk−1 +MŴ,k , and πk|k−1 can be rewritten as

πk|k−1 =
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk|k−1

i=1
(8)

2) THE CBMeMBer UPDATE

Given the multi-target predicted probability density πk|k−1 at

time k , the multi-target posterior probability density at time k

can be expressed by

πk|k =
{(

r
(i)
L,k , p

(i)
L,k

)}Mk|k−1

i=1
∪
{(

rU ,k (z), pU ,k(x; z)
)}

z∈Z

(9)

r
(i)
L,k = r

(i)
k|k−1

1 −
〈

p
(i)
k|k−1, pD,k

〉

1 − r
(i)
k|k−1

〈

p
(i)
k|k−1, pD,k

〉 (10)

p
(i)
L,k (x) = p

(i)
k|k−1 (x)

1 − pD,k (x)

1 −
〈

p
(i)
k|k−1, pD,k

〉 (11)

rU ,k =

Mk|k−1∑

i=1

r
(i)
k|k−1

(

1−r
(i)
k|k−1

)〈

p
(i)
k|k−1,ψk,z

〉

(

1−r
(i)
k|k−1

〈

p
(i)
k|k−1,pD,k

〉)2

κk (z)+
Mk|k−1∑

i=1

r
(i)
k|k−1

〈

p
(i)
k|k−1,ψk,z

〉

1−r
(i)
k|k−1

〈

p
(i)
k|k−1,pD,k

〉

(12)

pU ,k (x) =

Mk|k−1∑

i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

p
(i)
k|k−1 (x) ψk,z (x)

Mk|k−1∑

i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

〈

p
(i)
k|k−1, ψk,z

〉
(13)

ψk,z (x) = gk (z|x) pD,k (x) (14)

Here, subscripts L and U denote the miss-detection and mea-

surement update. κk (z) denotes the clutter intensity. pD,k (x)

is the probability of detection. gk (z | x) is the observation

likelihood function.Z denotes themeasurement set. z denotes

the measurement in Z. Note that the echo received by sen-

sor is processed signal detection process and generate the

measurement z. The form of z can be the planar position in

the Cartesian coordinate or the range and azimuth in Polar

coordinate.

B. THE GAUSSIAN MIXTURE IMPLEMENTATION

The GM implementation of the CBMeMBer filter obeys the

following assumptions [9],

1) fk|k−1 (x |ξ)and gk (z| x) of each target follow a linear

Gaussian model,

fk|k−1 (x|ξ) = N (x;Fk−1ξ ,Qk−1) (15)

gk (z|x) = N (z;Hkx,Rk) (16)

Here, Fk−1 and Hk represent the state transition matrix

and the observation matrix, respectively. Qk−1 and Rk are

the state noise covariance matrix and the observation noise

covariance matrix for the state x.

2) The probabilities of survival and detection are indepen-

dent to state,

pS,k (x) = pS,k , pD,k (x) = pD,k (17)

3) The probability density p
(i)
Ŵ,k , i = 1, . . . ,MŴ,k−1

in
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
can be represented in the form of
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Gaussian mixture,

p
(i)
Ŵ,k (x) =

J
(i)
Ŵ,k
∑

j=1

w
(i,j)
Ŵ,kN

(

x;m
(i,j)
Ŵ,k ,P

(i,j)
Ŵ,k

)

(18)

Here, J
(i)
γ,k is the number of Gaussian components corre-

sponding to the ith birth target at time k . w
(i,j)
Ŵ,k , m

(i,j)
Ŵ,k , P

(i,j)
Ŵ,k ,

j = 1, 2, . . . , JŴ,k denote the weight, the state mean vector

and the covariance matrix of the jth Gaussian component,

respectively.

Based on these assumptions, the GM implementation of

the CBMeMBer filter is given as follows,

(1) The Prediction

The probability density p
(i)
k−1, i = 1, . . . ,Mk−1 in Eq. (4)

can be represented in the form of Gaussian mixture,

p
(i)
k−1 (x) =

J
(i)
k−1∑

j=1

w
(i,j)
k−1N

(

x;m
(i,j)
k−1,P

(i,j)
k−1

)

(19)

and Eq. (6) and (7) can be expressed by

r
(i)
k|k−1 = r

(i)
k−1pS,k (20)

p
(i)
k|k−1 (x) =

J
(i)
k−1∑

j=1

w
(i,j)
k−1N

(

x;m
(i,j)
k|k−1,P

(i,j)
k|k−1

)

(21)

m
(i,j)
k|k−1 = Fk−1m

(i,j)
k−1 (22)

P
(i,j)
k|k−1 = Qk−1 + Fk−1P

(i,j)
k−1F

T
k−1 (23)

The probability density p
(i)
k|k−1 (x), i = 1, . . . ,Mk−1 in

Eq. (8) can be expressed by

p
(i)
k|k−1 (x) =

J
(i)
k−1∑

j=1

w
(i,j)
k|k−1N

(

x;m
(i,j)
k|k−1,P

(i,j)
k|k−1

)

(24)

(2) The Update

Eq. (10)-(13) can be expressed by

r
(i)
L,k = r

(i)
k|k−1

1 − pD,k

1 − r
(i)
k|k−1pD,k

(25)

p
(i)
L,k (x) = p

(i)
k|k−1 (x) (26)

rU ,k =

Mk|k−1∑

i=1

r
(i)
k|k−1

(

1−r
(i)
k|k−1

)

ρ
(i)
U ,k (z)

(

1−r
(i)
k|k−1pD,k

)2

κk (z)+
Mk|k−1∑

i=1

r
(i)
k|k−1ρ

(i)
U ,k (z)

1−r
(i)
k|k−1pD,k

(27)

pU ,k (x) =

Mk|k−1∑

i=1

J
(i)
k−1∑

j=1

w
(i,j)
U ,kN

(

x;m
(i,j)
U ,k ,P

(i,j)
U ,k

)

Mk|k−1∑

i=1

J
(i)
k−1∑

j=1

w
(i,j)
U ,k

(28)

ρ
(i)
U ,k (z) = pD,k

J
(i)
k−1∑

j=1

w
(i,j)
k|k−1q

(i,j)
k (z) (29)

q
(i,j)
k (z) = N

(

z;Hkm
(i,j)
k|k−1,HkP

(i,j)
k|k−1H

T
k + Rk

)

(30)

w
(i,j)
U ,k =

r
(i)
k|k−1

1 − r
(i)
k|k−1

pD,kw
(i,j)
k|k−1q

(i,j)
k (z) (31)

mU ,k (z) = m
(i,j)
k|k−1 + K

(i,j)
U ,k

(

z − Hkm
(i,j)
k|k−1

)

(32)

P
(i,j)
U ,k =

[

I − K
(i,j)
U ,kHk

]

P
(i,j)
k|k−1 (33)

K
(i,j)
U ,k = P

(i,j)
k|k−1H

T
k

[

HkP
(i,j)
k|k−1H

T
k + Rk

]−1
(34)

III. THE FRAMEWORK OF MULTI-SENSOR PARAMETER

SETS ASSOCIATION

Assume that there is a homogeneous sensor network with

S sensors, such as a radar network composed of multiple

active radars. The sensor network has been calibrated in time

and space. The filtering result of the ℓth, ℓ = 1, . . . , S sensor

at time k is

πℓ,k|k =
{(

r
(i)
ℓ,k , p

(i)
ℓ,k

)}Nℓ

i=1
(35)

Here, Nℓ is the number of parameter sets of the ℓth sensor,

and Nℓ = Mk|k−1 +
∣
∣Zℓ,k

∣
∣. Zℓ,k denotes the measurement

set of the ℓth sensor at time k .
∣
∣Zℓ,k

∣
∣ denotes the number of

measurements.

It can be seen from Eq. (9) that the parameter sets in

Eq. (35) can be divided into two parts, the miss-detection

parameter sets, and the measurement update parameter sets.

Therefore, the multi-sensor parameter sets association con-

sists of three parts, the association of miss-detection param-

eter sets, the association of measurement update parame-

ter sets, and the association between the parameter sets of

miss-detection and measurement update.

A. THE ASSOCIATION OF MISS-DETECTION PARAMETER

SETS

From Eqs. (10) and (11), it can be seen that a miss-detection

parameter set is only determined by one predicted parameter

set. Thus, the predicted parameter set can be used to associate

the parameter sets generated by it.

According to [33], the probability hypothesis density of
(

r (i), p(i)
)

is

D(i) (x) = r (i) · p(i) (x) (36)

Assume that
(

r
(i)
ℓ,k , p

(i)
ℓ,k

)

is a parameter set of the

ℓth sensor,
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

is a predicted parameter set,

D
(i)
ℓ,k (x) and D

(i′)
k|k−1 (x) are the probability hypothesis den-

sities of
(

r
(i)
ℓ,k , p

(i)
ℓ,k

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

, respectively. Then,

the Kullback Leibler divergence (KLD) [34] betweenD
(i)
ℓ,k (x)

andD
(i′)
k|k−1 (x) can be used to measure the difference between

(

r
(i)
ℓ,k , p

(i)
ℓ,k

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

.

Q
(

D
(i)
ℓ,k

∥
∥
∥D
(i′)
k|k−1

)

=

∫

D
(i)
ℓ,k (ξ) log

D
(i)
ℓ,k (ξ)

D
(i′)
k|k−1 (ξ)

dξ (37)
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Note that Q
(

D
(i)
ℓ,k

∥
∥
∥D
(i′)
k|k−1

)

6= Q
(

D
(i′)
k|k−1

∥
∥
∥D

(i)
ℓ,k

)

when

D
(i)
ℓ,k (x) 6= D

(i′)
k|k−1 (x). Thus, the difference is calculated by

Q̃
((

r
(i)
ℓ,k , p

(i)
ℓ,k

)

,

(

r
(i′)
k|k−1, p

(i′)
k|k−1

))

=
1

2

[

Q
(

D
(i)
ℓ,k

∥
∥
∥D
(i′)
k|k−1

)

+ Q
(

D
(i′)
k|k−1

∥
∥
∥D

(i)
ℓ,k

)]

(38)

When Q̃
((

r
(i)
ℓ,k , p

(i)
ℓ,k

)

,

(

r
(i′)
k|k−1, p

(i′)
k|k−1

))

> γ ,
(

r
(i)
ℓ,k , p

(i)
ℓ,k

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

cannot be associated. Here, threshold γ

is a constant.

After the association between themiss-detection parameter

sets of each sensor and the predicted parameter sets, the miss-

detection parameter sets associated with the same predicted

parameter set are grouped into one parameter set partition.

For example, assume that there are two sensors,

the predicted parameter sets are
(

r
(1)
k|k−1, p

(1)
k|k−1

)

and
(

r
(2)
k|k−1, p

(2)
k|k−1

)

. The parameter sets of the first sensor and

the second sensor are
{(

r
(1)
1,k , p

(1)
1,k

)

,

(

r
(2)
1,k , p

(2)
1,k

)

,

(

r
(3)
1,k , p

(3)
1,k

)}

and
{(

r
(1)
2,k , p

(1)
2,k

)

,

(

r
(2)
2,k , p

(2)
2,k

)

,

(

r
(3)
2,k , p

(3)
2,k

)}

, respectively.

Here,
(

r
(1)
1,k , p

(1)
1,k

)

and
(

r
(2)
2,k , p

(2)
2,k

)

are generated by
(

r
(1)
k|k−1, p

(1)
k|k−1

)

.
(

r
(2)
1,k , p

(2)
1,k

)

and
(

r
(1)
2,k , p

(1)
2,k

)

are generated

by
(

r
(2)
k|k−1, p

(2)
k|k−1

)

. Then, the miss-detection parameter sets

partitions are

P
(1)
L,k =

{(

r
(1)
1,k , p

(1)
1,k

)

,

(

r
(2)
2,k , p

(2)
2,k

)}

P
(2)
L,k =

{(

r
(2)
1,k , p

(2)
1,k

)

,

(

r
(1)
2,k , p

(1)
2,k

)}

(39)

B. THE ASSOCIATION OF MEASUREMENT UPDATE

PARAMETER SETS

After the association of miss-detection parameter sets, the

associated parameter sets are removed from
{(

r
(i)
ℓ,k , p

(i)
ℓ,k

)}Nℓ

i=1
,

ℓ = 1, . . . , S. The rest parameter sets are the mea-

surement update parameter sets. In this sub-section,
{(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)}|Zℓ,k |

i=1
are used to denote the measurement

update parameter sets of the ℓth sensor.

The difference between two measurement update parame-

ter sets can be calculated by Eq. (38). For the measurement

update parameter sets of all sensors, their difference matrix1

is given by

1=


















Q̃
1,1
1,1 · · · Q̃

1,i
1,ℓ · · · Q̃

1,i′

1,ν · · · Q̃
1,|ZS |
1,S

...
. . .

...
...

...

Q̃
i,1
ℓ,1 · · · Q̃

i,i
ℓ,ℓ · · · Q̃

i,i′

ℓ,ℓ′
· · · Q̃

i,|ZS |
ℓ,S

...
...

. . .
...

...

Q̃
i′,1
ℓ′,1

· · · Q̃
i′,i
ℓ′,ℓ

· · · Q̃
i′,i′

ℓ′,ℓ′
· · · Q̃

i′,|ZS |
ℓ′,S

...
...

...
. . .

...

Q̃
|ZS |,1
S,1 · · · Q̃

|ZS |,i
S,ℓ · · · Q̃

|ZS |,i
′

S,ℓ′
· · · Q̃

|ZS |,|ZS |
S,S


















(40)

Here, Q̃
i,i′

ℓ,ℓ′
is the difference between

(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

. Q̃
i,i′

ℓ,ℓ′
is computed by Eq. (41).

Q̃
i,i′

ℓ,ℓ′
=











1

2

[

Q
(

D
(i)
ℓ,U ,k

∥
∥
∥D
(i′)
ℓ′,U ,k

)

+ Q
(

D
(i′)
ℓ′,U ,k

∥
∥
∥D

(i)
ℓ,U ,k

)]

ℓ 6= ℓ′

∞ ℓ = ℓ′

(41)

Generally, the difference between two parameter sets

can be effectively measured by the KLD, but some details

between them may be ignored. In the situation shown

in Fig. 1, Q̃
(

(r, p),
(

r1, p1
))

is equal to Q̃
(

(r, p),
(

r2, p2
))

.

It is difficult to use KLD to determine whether (r, p) should

be associated with
(

r1, p1
)

or
(

r2, p2
)

. If we consider the

processes of parameter set generating, state extracting and

state merging, (r, p) should be associated with
(

r1, p1
)

. The

explanations are given as follows.

FIGURE 1. The difference between two parameter sets.

1) In Eq. (13), measurement z is used to update all the

predicted probability densities p
(i)
k|k−1 (x), i = 1, . . . ,Mk|k−1.

The updated probability density pU ,k (x; z) of z is a sum-

mation of the updated probability densities corresponding to

p
(i)
k|k−1 (x), i = 1, . . . ,Mk|k−1. If z and p

(i′)
k|k−1 (x) are the

measurement and predicted probability density of a target,

the updated probability density generated by them consists of

a component with a large amplitude and several components

with small amplitudes. Moreover, the updated probability

densities generated by z and other predicted probability den-

sities consist of several components with tiny amplitudes.

2) The state extraction is mainly depended on the com-

ponent with a large amplitude. Furthermore, the components

with small and tiny amplitudes have a negative effect on state

extraction.

3) If the difference between two probability densities is big,

these two probability densities may generate an inaccurate

merged state, or cannot even merge.

To deal with the above problem, another difference

matrix 9 given in Eq. (42) is used to describe the difference
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between the components with large amplitudes of

two parameter sets.

9 =




















R̃
1,1
1,1 · · · R̃

1,i
1,ℓ · · · R̃

1,i′

1,ν · · · R̃
1,|ZS |
1,S

...
. . .

...
...

...

R̃
i,1
ℓ,1 · · · R̃

i,i
ℓ,ℓ · · · R̃

i,i′

ℓ,ℓ′
· · · R̃

i,|ZS |
ℓ,S

...
...

. . .
...

...

R̃
i′,1
ℓ′,1

· · · R̃
i′,i
ℓ′,ℓ

· · · R̃
i′,i′

ℓ′,ℓ′
· · · R̃

i′,|ZS |
ℓ′,S

...
...

...
. . .

...

R̃
|ZS |,1
S,1 · · · R̃

|ZS |,i
S,ℓ · · · R̃

|ZS |,i
′

S,ℓ′
· · · R̃

|ZS |,|ZS |
S,S




















(42)

Here, R̃
i,i′

ℓ,ℓ′
is the KLD between the components with large

amplitudes of
(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

.

In Eq. (42), if R̃
i,i′

ℓ,ℓ′
is larger than a threshold ϕ,

(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

cannot be associated.

C. THE ASSOCIATION BETWEEN THE PARTITIONS OF

MISS-DETECTION AND MEASUREMENT UPDATE

After the above two associations, there are miss-detection

parameter set partitionsPL,k and several measurement update

parameter set partitions PU ,k , where the number of PL,k is

Mk|k−1. PU ,k can be divided into two categories, complete

partitions PCom
U ,k and incomplete partitions P Im

U ,k .

PCom
U ,k : the number of parameter sets in this partition equals

to the number of sensors S.

P Im
U ,k : the number of parameter sets in this partition is less

than the number of sensors S.

There are many reasons for having incomplete partitions.

For example, targets are undetected by some sensor; the

parameter sets of the same target cannot be grouped into one

partition because a large observation noise; the parameter sets

of clutters are divided into separate partitions.

It is easy to compute the difference betweenPL,k andP
Com
U ,k

by Eq. (43).

Q̃
(

PL,k ,P
Com
U ,k

)

=
∑

(rℓ,L,k ,pℓ,L,k)⊂PL,k ,
(

rℓ′,U ,k ,pℓ′,U ,k
)

⊂PCom
U ,k

Q̃
((

rℓ,L,k , pℓ,L,k
)

,

(

rℓ′,U ,k , pℓ′,U ,k
))

· δ
(

ℓ, ℓ′
)

(43)

δ
(

ℓ, ℓ′
)

=

{

0 ℓ 6= ℓ′

1 ℓ = ℓ′
(44)

However, Eq. (44) is not suitable to calculate the difference

between PL,k and P
Im
U ,k , because

∣
∣PL,k

∣
∣−

∣
∣
∣P

Im
U ,k

∣
∣
∣ 6= 0. Here,

|P| denotes the number of parameter sets in P . Inspired by

the optimal sub-pattern assignment (OSPA) [35] distance,

the difference of the numbers of parameter sets is computed

by

E
(

PL,k ,P
Im
U ,k

)

=
(∣
∣PL,k

∣
∣−

∣
∣
∣P

Im
U ,k

∣
∣
∣

)

· φ (45)

Here, φ is the cost.

Then, the difference between PL,k and PU ,k is calculated

by Eq. (46), as shown at the bottom of this page.

If the target is undetected by all sensors, Eq. (46) can be

rewritten as

Q̃
(

PL,k ,PU ,k
)

= S · φ (47)

When Q̃
(

PL,k ,PU ,k
)

> S · φ, PL,k and PU ,k cannot be

associated. It indicates that PU ,k does not correspond to the

target.

IV. THE NUMERICAL SOLUTION TO THE MULTI-SENSOR

ASSOCIATION METHOD

Section III mainly gives the framework of the multi-sensor

association method. However, some problems still exist and

need to be handled by the numerical methods, such as the

solutions of each association and threshold selection. Based

on the GM implementation of the CBMeMBer filter, solu-

tions to these problems are given in this section.

A. SOLUTION (1): THE ASSOCIATION OF MISS-DETECTION

PARAMETER SETS

According to Eqs. (24) and (26), p
(i)
ℓ,L,k (x) in

(

r
(i)
ℓ,L,k , p

(i)
ℓ,L,k

)

and p
(i′)
k|k−1 (x) in

(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

can be given as the form of

Gaussian mixture,

p
(i)
ℓ,L,k (x) =

J
(i)
k−1∑

j=1

w
(i,j)
k|k−1N

(

x;m
(i,j)
k|k−1,P

(i,j)
k|k−1

)

(48)

p
(i′)
k|k−1 (x) =

J
(i′)
k−1∑

j′=1

w
(i′,j′)
k|k−1N

(

x;m
(i′,j′)
k|k−1,P

(i′,j′)
k|k−1

)

(49)

Then, D
(i)
ℓ,L,k (x) and D

(i′)
k|k−1 (x) can be expressed by

D
(i)
ℓ,L,k (x) =

J
(i)
k−1∑

j=1

r
(i)
ℓ,L,k · w

(i,j)
k|k−1N

(

x;m
(i,j)
k|k−1,P

(i,j)
k|k−1

)

=

J
(i)
k−1∑

j=1

w̃
(i,j)
k|k−1N

(

x;m
(i,j)
k|k−1,P

(i,j)
k|k−1

)

(50)

Q̃
(

PL,k ,PU ,k
)

=
∑

(rℓ,L,k ,pℓ,L,k)⊂PL,k ,
(

rℓ′,U ,k ,pℓ′,U ,k
)

⊂PU ,k

Q̃
((

rℓ,L,k , pℓ,L,k
)

,
(

rℓ′,U ,k , pℓ′,U ,k
))

· δ
(

ℓ, ℓ′
)

+
(∣
∣PL,k

∣
∣−

∣
∣
∣P

Im
U ,k

∣
∣
∣

)

· φ (46)
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D
(i′)
k|k−1 (x) =

J
(i′)
k−1∑

j′=1

r
(i′)
k|k−1 · w

(i′,j′)
k|k−1N

(

x;m
(i′,j′)
k|k−1,P

(i′,j′)
k|k−1

)

=

J
(i′)
k−1∑

j′=1

w̃
(i′,j′)
k|k−1N

(

x;m
(i′,j′)
k|k−1,P

(i′,j′)
k|k−1

)

(51)

Then, the KLD in Eq. (37) can be computed by

Eq. (52) [34].

Q
(

D
(i)
ℓ,L,k

∥
∥
∥D
(i′)
k|k−1

)

==

J
(i)
k−1∑

j=1

w̃
(i,j)
k|k−1 log

J
(i)
k−1∑

j=1

w̃
(i,j)
k|k−1e

−Q
(

N (i)‖Ñ (i)
)

J
(i′)
k−1∑

j′=1

w̃
(i′,j′)
k|k−1e

−Q
(

N (i)‖N (i′)
)

(52)

Here, N (i) and Ñ (i) are the Gaussian components of

D
(i)
ℓ,L,k (x). N

(i′) is the Gaussian component of D
(i′)
k|k−1 (x).

Q (Na‖Nb) is the KLD between Na (x;ma,Pa) and

Nb (x;mb,Pb), and its closed-form expression is Eq. (53),

as shown at the bottom of this page.

Furthermore, assume that
(

r
(i)
ℓ,L,k , p

(i)
ℓ,L,k

)

is generated by
(

r
(i)
k|k−1, p

(i)
k|k−1

)

. Then, r
(i)
k|k−1 can be obtained by rewriting

Eq. (25), and we have

r
(i)
k|k−1 =

r
(i)
L,k

1 −
(

1 − r
(i)
k|k−1

)

pD,k

(54)

Eqs. (54) and (26) indicate that
(

r
(i)
k|k−1, p

(i)
k|k−1

)

can be

obtained by
(

r
(i)
ℓ,L,k , p

(i)
ℓ,L,k

)

. Thus, the difference between
(

r
(i)
ℓ,L,k , p

(i)
ℓ,L,k

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

is replaced by the differ-

ence between
(

r
(i)
k|k−1, p

(i)
k|k−1

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

, which is

described by Eq. (55).

Q̃
((

r
(i)
k|k−1, p

(i)
k|k−1

)

,

(

r
(i′)
k|k−1, p

(i′)
k|k−1

))

=
1

2

[

Q
(

D
(i)
k|k−1

∥
∥
∥D
(i′)
k|k−1

)

+ Q
(

D
(i′)
k|k−1

∥
∥
∥D

(i)
k|k−1

)]

(55)

When
(

r
(i)
k|k−1, p

(i)
k|k−1

)

and
(

r
(i′)
k|k−1, p

(i′)
k|k−1

)

are same,

we have

Q̃
((

r
(i)
k|k−1, p

(i)
k|k−1

)

,

(

r
(i′)
k|k−1, p

(i′)
k|k−1

))

= 0 (56)

Thus, the threshold γ is set as zero.

By Eqs. (52) and (53), there is a difference matrix ϒ

of the parameter sets in
{(

r
(i)
ℓ,k , p

(i)
ℓ,k

)}Nℓ

i=1
, ℓ = 1, . . . , S

and the predicted parameter sets
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk−1

i=1
.

ϒ is a Mk|k−1 ×

(

Mk|k−1 ·
S∑

ℓ=1

Nℓ

)

matrix. The row and

column of ϒ correspond to
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk−1

i=1
and

{(

r
(i)
ℓ,k , p

(i)
ℓ,k

)}Nℓ

i=1
, ℓ = 1, . . . , S, respectively.

The process of associating the miss-detection parameter

sets is given in Table 1.

ϒ =













L̃
1,1
1 · · · L̃

1,i
Nℓ

· · · L̃
1,Mk|k−1

NS
...

. . .
...

. . .
...

L̃
i′,1
1 · · · L̃

i′,i
Nℓ

· · · L̃
i′,Mk|k−1

NS
...

. . .
...

. . .
...

L̃
Mk|k−1,1

1 · · · L̃
Mk|k−1,i

Nℓ
· · · L̃

Mk|k−1,Mk|k−1

NS













(57)

Here,

L̃
i,i′

ℓ = Q̃
((

r
(i)
ℓ,k , p

(i)
ℓ,k

)

,

(

r
(i′)
k|k−1, p

(i′)
k|k−1

))

(58)

TABLE 1. The process of associating the miss-detection parameter sets.

B. SOLUTION (2): THE ASSOCIATION OF MEASUREMENT

UPDATE PARAMETER SETS

By Eqs. (28) and (36), D
(i)
ℓ,U ,k (x) of

(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

can be

expressed as Eq. (59).

D
(i)
ℓ,U ,k (x) =

Mk|k−1·
∑

j=1

J
(j′)
k−1∑

j′=1

w̃
(j,j′)
ℓ,U ,kN

(

x;m
(j,j′)
ℓ,U ,k ,P

(j,j′)
ℓ,U ,k

)

(59)

w̃
(j,j′)
ℓ,U ,k = r

(i)
ℓ,U ,k ·

w
(j,j′)
ℓ,U ,k

Mk|k−1∑

j=1

J
(j)
k−1∑

j′=1

w
(j,j′)
ℓ,U ,k

(60)

Thus, the difference Q̃
i,i′

ℓ,ℓ′
between

(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

can be calculated by Eq. (52).

Q (Na ‖Nb ) =
1

2

[

log
|Pb|

|Pa|
+ Tr

[(

P−1
b − P−1

a

)

Pa

]

+ (ma − mb)
T P−1

b (ma − mb)

]

(53)
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The difference R̃
i,i′

ℓ,ℓ′
between the components with large

amplitudes of
(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

is dis-

cussed as follows.

If z ∈ Zℓ is the measurement of a true target,

a Gaussian component has the weight which is much larger

than the others’ in Eq. (59). Generally, the Gaussian com-

ponent with the largest weight can be used to describe the

target, and it is the linear Gaussian form of the compo-

nent with a large amplitude. In the rest of this sub-section,

the Gaussian component with the largest weight is abbrevi-

ated as the main Gaussian component. If
(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

correspond to the same target, the difference

between their main Gaussian components should be as small

as possible. Thus, the main Gaussian component can be used

to compute the difference R̃
i,i′

ℓ,ℓ′
between the components with

large amplitudes. Assume that N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

and

N

(

x;m
(i′)
ℓ,U ,k ,P

(i′)
ℓ,U ,k

)

are the main Gaussian components

of
(

r
(i)
ℓ,U ,k , p

(i)
ℓ,U ,k

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

, respectively. Their

weights are w̃
(i)
ℓ,U ,k and w̃

(i′)
ℓ,U ,k , respectively. An example is

illustrated in Fig. 2.

FIGURE 2. The difference between two main Gaussian components.

In Fig. 2, N
(

µ, σ 2
)

is the projection of

N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

in the direction of ϕ, where µ, σ

denote the mean and the standard deviation. �
(i)
ℓ,U ,k and

�
(i′)
ℓ,U ,k denote the 3σ region of N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

and

N

(

x;m
(i′)
ℓ,U ,k ,P

(i′)
ℓ,U ,k

)

, respectively.

According to the Three-sigma (3σ ) rule, targets have high

probabilities that exist in the 3σ region. If

N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

and N

(

x;m
(i′)
ℓ,U ,k ,P

(i′)
ℓ,U ,k

)

corre-

spond to the same target, �
(i)
ℓ,U ,k and �

(i′)
ℓ,U ,k meet �

(i)
ℓ,U ,k ∩

�
(i′)
ℓ,U ,k 6= ∅. The difference between N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

andN
(

x;m
(i′)
ℓ,U ,k ,P

(i′)
ℓ,U ,k

)

can be obtained by computing the

averageMahalanobis distance betweenm
(i)
3σ andm

(i′)
3σ , which

is given by Eq. (61), as shown at the bottom of this page.

In Eq. (61),m
(i)
3σ andm

(i′)
3σ are the states on the 3σ bound-

ary, which are denoted by red dots. M̃
(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

denotes

the biggest difference between the target states estimated by

them.

An extreme situation is�
(i)
ℓ,U ,k∩�

(i′)
ℓ,U ,k =

{

m
(i,i′)
ℓ,U ,k

}

. Here,

m
(i,i′)
ℓ,U ,k is denoted by a blue dot. In this situation, m

(i)
3σ and

m
(i′)
3σ have the largest distance. Furthermore, when �

(i′)
ℓ,U ,k =

�ℓ,U ,k , m
(i′)
3σ = m3σ , and m

(i,i′)
ℓ,U ,k = mℓ,U ,k , Eq. (61) can

achieve the upper limit. Thus, the threshold ϕ is themaximum

value of Eq. (62).

ϕ = max
(

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

))

= M̃

(

m3σ

∥
∥
∥m
(i′)
3σ

)

(62)

The proof of Eq. (62) is given in Appendix A.

For N

(

x;m
(i)
ℓ,U ,k ,P

(i)
ℓ,U ,k

)

and N

(

x;m
(i′)
ℓ,U ,k ,P

(i′)
ℓ,U ,k

)

,

there is a threshold ϕ
i′,i
ℓ′,ℓ

. Thus, we have a threshold matrix Ŵ.

Ŵ =


















ϕ
1,1
1,1 · · · ϕ

1,i
1,ℓ · · · ϕ

1,i′

1,ν · · · ϕ
1,|ZS |
1,S

...
. . .

...
...

...

ϕ
i,1
ℓ,1 · · · ϕ

i,i
ℓ,ℓ · · · ϕ

i,i′

ℓ,ℓ′
· · · ϕ

i,|ZS |
ℓ,S

...
...

. . .
...

...

ϕ
i′,1
ℓ′,1

· · · ϕ
i′,i
ℓ′,ℓ

· · · ϕ
i′,i′

ℓ′,ℓ′
· · · ϕ

i′,|ZS |
ℓ′,S

...
...

...
. . .

...

ϕ
|ZS |,1
S,1 · · · ϕ

|ZS |,i
S,ℓ · · · ϕ

|ZS |,i
′

S,ℓ′
· · · ϕ

|ZS |,|ZS |
S,S


















(63)

The process of associating the measurement update param-

eter sets is given in Table 2.

C. SOLUTION (3): THE ASSOCIATION BETWEEN THE

PARTITIONS OF MISS-DETECTION AND

MEASUREMENT UPDATE

Assume that PL,k and PU ,k are the parameter sets of

miss-detection and measurement update, respectively. From

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

= M

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

+ M

(

m
(i′)
3σ

∥
∥
∥m

(i)
3σ

)

=
(

m
(i)
3σ − m

(i′)
3σ

)T (

P
(i)
ℓ,U ,k

)−1 (

m
(i)
3σ − m

(i′)
3σ

)

+
(

m
(i′)
3σ − m

(i)
3σ

)T (

P
(i′)
ℓ,U ,k

)−1 (

m
(i′)
3σ − m

(i)
3σ

)

(61)
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TABLE 2. The process of associating the measurement update parameter
sets.

Solution (1) in this sub-section, it is observed that PL,k can

be replaced by its corresponding Pk|k−1.

Pk|k−1 = {

S
︷ ︸︸ ︷

(rk|k−1, pk|k−1), . . . , (rk|k−1, pk|k−1)} (64)

Then, the association of PL,k and PU ,k is changed to asso-

ciate Pk|k−1 and PU ,k . Q̃
(

PL,k ,PU ,k
)

in Eq. (46) is replaced

by Q̃
(

Pk|k−1,PU ,k
)

. However, PU ,k may be an incomplete

partition P Im
U ,k . In Eq. (45), φ is introduced to describe the

difference between the numbers of parameter sets in two

partitions. The selection of φ is discussed as follows.

Suppose that Dk|k−1 (x) is the probability hypothesis

of
(

rk|k−1, pk|k−1

)

, and N
(

x;mk|k−1,Pk|k−1

)

is the main

Gaussian component of Dk|k−1 (x). The measurement updat-

ing process is illustrated in Fig. 3.

In Fig. 3,N
(

x;Hkmk|k−1,HkPk|k−1H
T
k

)

is the projection

ofN
(

x;mk|k−1,Pk|k−1

)

in x− y plane. Here, x and y denote

the position components of target states. �k|k−1 denotes the

3σ region of N
(

x;Hkmk|k−1,HkPk|k−1H
T
k

)

. zℓ,T , zℓ,C and

zℓ,B are the measurements of the ℓth sensor.Nzℓ,T

(

µ, σ 2
)

and

Nzℓ,C

(

µ, σ 2
)

are the projections of the Gaussian components

generated by zℓ,T and zℓ,C , respectively. In the measurement

updating process (refers to Eqs. (27) and (28)), the measure-

ment zℓ,T ∈ �k|k−1 has a large measurement likelihood

(refers to Eq. (30)), because zℓ,T is likely to be the measure-

ment of targets. Thus, Nzℓ,T

(

µ, σ 2
)

has a large weight. For

zℓ,C /∈ �k|k−1, it likely to be the measurement of clutters

FIGURE 3. The measurement updating process.

or other targets. Thus, the measurement likelihood of zℓ,C is

very small, andNzℓ,C

(

µ, σ 2
)

has a tiny weight. If there is no

measurement in �k|k−1, which means that the target related

to Pk|k−1 is undetected by the ℓth sensor, PU ,k becomes an

incomplete partition P Im
U ,k .

Considering an extreme situation, there is a measure-

ment zℓ,B on the boundary of �k|k−1. Compared with the

difference between N
(

x;mk|k−1,Pk|k−1

)

and the Gaussian

components generated by the measurements in �k|k−1, the

difference between N
(

x;mk|k−1,Pk|k−1

)

and the Gaussian

component generated by measurements in �k|k−1 (such as

zℓ,B) is larger. Thus, the difference corresponding to zℓ,B can

be used to judge whether there is a measurement of targets or

not. Therefore, φ can be obtained by Eq. (65).

φ = max
{

Q̃
(

N
(

x;mk|k−1,Pk|k−1

)

,Nzℓ,B

)

,

zℓ,B ∩�k|k−1 = zℓ,B

}

(65)

Here,Nzℓ,B is the Gaussian component generated by zℓ,B and

N
(

x;mk|k−1,Pk|k−1

)

.

The analytical solution for Eq. (65) can be obtained by

the Lagrangian multiplier method. The solution of Eq. (65)

is given in Appendix B.

For
(

r
(i)
k|k−1, p

(i)
k|k−1

)

and
(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

)

, there is a cost

φ
(i,i′)
ℓ . Taking the probability of detection pℓ,D,k of the l

th sen-

sor into consideration, Eq. (46) can be rewritten by Eq. (66),

as shown at the bottom of the next page.

Note that
(

r
(i)
ℓ,k|k−1, p

(i)
ℓ,k|k−1

)

in Eq. (66) equals to
(

r
(i)
k|k−1, p

(i)
k|k−1

)

.

The difference matrix is given by Eq. (67)

2 =











F̃1,1 · · · F̃1,i · · · F̃1,|ZS |

...
. . .

...
. . .

...

F̃ i,1 · · · F̃ i,i′ · · · F̃ i′,|ZS |

...
. . .

...
. . .

...

F̃Mk|k−1,1 · · · F̃Mk|k−1,i
′
· · · F̃Mk|k−1,|ZS |











(67)
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In Eq. (67), we have

F̃
i,i′ = Q̃

(

P
(i)
L,k ,P

(i′)
U ,k

)

(68)

Then, the threshold of P
(i)
L,k and P

(i′)
U ,k in Eq. (47) is given

by

θ(i,i
′) =

S
∑

ℓ=1

pℓ,D,k · φ
(i,i′)
ℓ (69)

Thus, we have a threshold matrix 8, which is given in

Eq. (70).

8 =












θ1,1 · · · θ1,i · · · θ
1,MPU ,k

...
. . .

...
. . .

...

Pθ i,1 · · · θ i,i
′

· · · θ
i′,MPU ,k

...
. . .

...
. . .

...

θMk|k−1,1 · · · θMk|k−1,i
′
· · · θ

Mk|k−1,MPU ,k












(70)

Here,MPU ,k
is the number of measurement update partitions.

The process of associating the parameter sets of

miss-detection and measurement update is given in Table 3.

TABLE 3. The process of associating the parameter sets of miss-detection
and measurement update.

In Table 3, the initial value of C
(i)
k is P

(i)
L,k .

V. THE MULTI-SENSOR PARAMETER SET ESTIMATION

METHOD

After the association between the partition of miss-detection

and measurement update, there are many combinations of

PL,k and PU ,k . These combinations can be divided into four

categories:

Category (1):PL,k associates with aP
Com
U ,k . It indicates that

the target corresponding to PL,k is detected by all sensors.

Category (2): PL,k associates with a P
Im
U ,k . It indicates that

the target corresponding to PL,k is detected by some sensors.

Category (3): There is no PU ,k associate withPL,k . It indi-

cates that the target corresponding to PL,k is undetected by

all sensors, or has been dead.

Category (4): There is no PL,k associate withPU ,k . It indi-

cates that PU ,k corresponds to clutters.

Thus, the parameter sets in Category (4) will be deleted.

Combinations in Category (1) can be expressed by

Eq. (71), as shown at the bottom of this page. Similarly, com-

binations in Category (2) and Category (3) can be expressed

by Eqs. (72) and (73), as shown at the bottom of this page,

respectively. In Eq. (72) and Eq. (73), ∅ denotes the missing

measurement update parameter set.

Given
{(

rℓ,L,k , pℓ,L,k
)

,
(

rℓ,U ,k , pℓ,U ,k
)}

of the ℓth sensor,
(

rℓ,L,k , pℓ,L,k
)

and
(

rℓ,U ,k , pℓ,U ,k
)

are the miss-detection part

and measurement update part of one target, respectively.

If
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅, the existence probability of the

target estimated by the ℓth sensor is

rℓ = rℓ,L,k + rℓ,U ,k (74)

The probability density distribution of the target estimated

by the ℓth sensor is

pℓ = pℓ,U ,k (75)

If
(

rℓ,U ,k , pℓ,U ,k
)

= ∅, we have

(rℓ, pℓ) =
(

rℓ,L,k , pℓ,L,k
)

(76)

Thus, Eqs. (71)-(73) can be rewritten as

{(r1, p1), (r2, p2), . . . , (rS , pS)} (77)

Here,

rℓ =













rℓ,L,k
(

rℓ,U ,k , pℓ,U ,k
)

= ∅

or rℓ,L,k + rℓ,U ,k > 1

rℓ,L,k + rℓ,U ,k
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅

and rℓ,L,k + rℓ,U ,k ≤ 1

(78)

Q̃
(

P
(i)
L,k ,P

(i′)
U ,k

)

= Q̃
(

P
(i)
k|k−1,P

(i′)
U ,k

)

=
∑

(

r
(i)
ℓ,k|k−1,p

(i)
ℓ,k|k−1

)

⊂P
(i)
k|k−1,

(

r
(i′)
ℓ′,U ,k

,p
(i′)
ℓ′,U ,k

)

⊂P
(i′)
U ,k

(

Q̃
((

r
(i)
ℓ,k|k−1, p

(i)
ℓ,k|k−1

)

,

(

r
(i′)
ℓ′,U ,k

, p
(i′)
ℓ′,U ,k

))

· δ
(

ℓ, ℓ′
)

+pℓ,D,k · φ
(i,i′)
ℓ ·

(

1−δ
(

ℓ, ℓ′
))
)

(66)

{{(

r1,L,k , p1,L,k
)

,
(

r1,U ,k , p1,U ,k
)}

,
{(

r2,L,k , p2,L,k
)

,
(

r2,U ,k , p2,U ,k
)}

, . . . ,
{(

rS,L,k , pS,L,k
)

,
(

rS,U ,k , pS,U ,k
)}}

(71)
{{(

r1,L,k , p1,L,k
)

,∅
}

,
{(

r2,L,k , p2,L,k
)

,
(

r2,U ,k , p2,U ,k
)}

, . . . ,
{(

rS,L,k , pS,L,k
)

,
(

rS,U ,k , pS,U ,k
)}}

(72)
{{(

r1,L,k , p1,L,k
)

,∅
}

,
{(

r2,L,k , p2,L,k
)

,∅
}

, . . . ,
{(

rS,L,k , pS,L,k
)

,∅
}}

(73)
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pℓ =

{

pℓ,L,k
(

rℓ,U ,k , pℓ,U ,k
)

= ∅ or rℓ,L,k + rℓ,U ,k > 1

pℓ,U ,k
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅ and rℓ,L,k + rℓ,U ,k ≤ 1

(79)

From Eq. (78) and Eq. (79), it can be seen that the param-

eter set combination uses the existence probability and prob-

ability density distribution when
(

rℓ,U ,k , pℓ,U ,k
)

= ∅ or

rℓ,L,k + rℓ,U ,k > 1. This is because the target is represented

by the existence probability and probability density distribu-

tion of miss-detection parameter set when it is undetected

by the ℓth sensor. Moreover, rℓ,L,k + rℓ,U ,k > 1 indicates

that combination
{(

rℓ,L,k , pℓ,L,k
)

,
(

rℓ,U ,k , pℓ,U ,k
)}

is incor-

rect. Since a miss-detection parameter set must correspond

to one target and the measurement update parameter set may

correspond to clutters, the former is more reliable than the

latter.
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅ and rℓ,L,k + rℓ,U ,k ≤ 1 indicates

that
(

rℓ,L,k , pℓ,L,k
)

and
(

rℓ,U ,k , pℓ,U ,k
)

may belong to the

same target. However, when the probability of detection is

low, even if the target is detected by the ℓth sensor, rℓ,L,k
is larger than the normal value and rℓ,U ,k is small than the

normal value. Thus, rℓ,U ,k cannot accurately represent the

existence probability of the target. It can be seen fromEq. (25)

and Eq. (27) that rℓ,L,k + rℓ,U ,k ≈ 1 when rℓ,L,k and rℓ,U ,k
belong to the same target. Compared to rℓ,U ,k , rℓ,L,k + rℓ,U ,k
can represent the existence probability of the target more

accurately.

Based on Eqs. (77)-(79), the existence probability and

probability density distribution of the combinations in

Categories (1)-(3) are calculated by the following

approaches.

A. ESTIMATING THE EXISTENCE PROBABILITY

Assume that X (i), i = 1, . . . ,NX are the Bernoulli RFSs, and

they are independent of each other.
(

r (i), p(i)
)

is the parameter

set of X (i). The joint probability of X (i), i = 1, . . . ,NX is

given by Eq. (80).

P
{

X (1), . . . ,X (NX )
}

=

NX∏

i=1

P
{

X (i)
}

=

NX∏

i=1

(

r (i)
)
(

1−δ
(

X (i),∅
))

·
(

1−r (i)
)δ
(

X (i),∅
)

(80)

If parameter sets
(

r (i), p(i)
)

, i = 1, . . . ,NX are in the

same combination, the same target can be described by the

Bernoulli RFSs X (i), i = 1, . . . ,NX . Then, Eq. (80) can be

rewritten as Eq. (81).

P
{

X (1), . . . ,X (NX )
}

= P
{

X (1), . . . ,X (NX )
∣
∣
∣X
(i) = X , i = 1, . . . ,NX

}

(81)

Here, X is a Bernoulli RFS.

When X = ∅, Eq. (82) is the probability that there is no

target.

P {There is no target}

= P
{

X (1), . . . ,X (NX )
∣
∣
∣X
(i) = ∅, i = 1, . . . ,NX

}

=

NX∏

i=1

(

1 − r (i)
)

(82)

When X = {x}, Eq. (83) is the probability that there is a

target.

P {There is a target}

= P
{

X (1), . . . ,X (NX )
∣
∣
∣X
(i) = {x}, i = 1, . . . ,NX

}

=

NX∏

i=1

r (i) (83)

Thus, the existence probability of X is

r =
P {There is a target}

P {There is a target} + P {There is no target}
(84)

Given a combination C = {(rℓ, pℓ)}
S
ℓ=1, the existence

probability of C can be computed by Eq. (85).

rC =
P {There is a target}

P {There is a target} + P {There is no target}

=

S∏

ℓ=1

rℓ

S∏

ℓ=1

rℓ +
S∏

ℓ=1

(1 − rℓ)

(85)

In some situations, Eq. (85) overestimates the cardinality.

For example, a target survivals at time k − 1 with existence

probability r
target
k−1 . Then, the predicted existence probability

r
target
k|k−1 of this target is computed by Eq. (20). At time k , this

target is undetected by the ℓth sensor or has been dead, and

its existence probability r
target
ℓ,L,k is computed by Eq. (25). The

curves of r
target
ℓ,L,k are illustrated in Fig. 4.

FIGURE 4. The curves of r
target
ℓ,L,k

.

In the situation discussed above, r
target
k−1 and r

target
k|k−1 have a

large value. When the target is undetected by the ℓth sensor,
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it can be seen as Fig. 4 that r
target
ℓ,L,k is large. Then, the target

still can be estimated. If the target has been dead since time

k , r
target
ℓ,L,k should be very small or even equals to zero. However,

as shown in Fig. 4, if r
target
k|k−1 is large, r

target
ℓ,L,k has a very small

value only when pℓ,D,k is very large, such as pℓ,D,k = 0.99.

It may lead to cardinality overestimation and false alarms.

Fortunately, this negative effect will disappear after one or

two time steps in the CBMeMBer filter. But in Eq. (85), this

problem becomes worse.

Assume that the probabilities of detention of all sensors are

the same, and pℓ,D,k = pD,k , ℓ = 1, . . . , S. Thus, r
target
ℓ,L,k =

r
target
L,k , ℓ = 1, . . . , S. If the target is undetected by all sensors

(Category (3)), Fig. 5 illustrates the curves of rC computed by

Eq. (85).

FIGURE 5. The curves of rC .

Fig. 5 shows that rC increases rapidly with the increasing

of r
target
L,k and the sensor numbers S. It indicates that the target

has a large existence probability, even it is undetected by all

sensors. To deal with this problem, the joint credibility of rC
is introduced.

For a parameter sets partition
{ (

rℓ,L,k , pℓ,L,k
)

,
(

rℓ,U ,k , pℓ,U ,k
) }

, if there is a target corresponding

to
{(

rℓ,L,k , pℓ,L,k
)

,
(

rℓ,U ,k , pℓ,U ,k
)}

, the probability of
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅ is 1−pℓ,D,k . Therefore, it is inferred that

if
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅ and there is a target, the credibility

can be approximated as pℓ,D,k . If
(

rℓ,U ,k , pℓ,U ,k
)

6= ∅ and

there is no target, the credibility can be approximated as

1 − pℓ,D,k . Moreover, if
(

rℓ,U ,k , pℓ,U ,k
)

= ∅ and there is

a target, the credibility can be approximated as 1 − pℓ,D,k .

If
(

rℓ,U ,k , pℓ,U ,k
)

= ∅ and there is no target, the credibility

can be approximated as pℓ,D,k . Then, the joint credibility of

that there is no target is given by Eq. (86), as shown at the

bottom of this page. The joint credibility of that there is a

target is given by Eq. (87), as shown at the bottom of this

page.

Then, the joint credibility of rC is given by

QrC =
Q {There is a target}

Q {There is a target} + Q {There is no target}
(88)

Based on Eqs. (85) and (88), the corrected rC is given by

r̃C = QrC · rC (89)

B. ESTIMATING THE PROBABILITY DENSITY

DISTRIBUTION ESTIMATING THE PROBABILITY

DENSITY DISTRIBUTION

The probability hypothesis density DCL,U (x) of C can be

obtained by

DC (x) =
∑

(rℓ·pℓ)⊂C

rℓ · pℓ (x) (90)

By Eqs. (50) and (59), DC (x) can be expressed by the

linear Gaussian model in Eq. (91), as shown at the bottom

of the next page.

Then, the Gaussian components in Eq. (91) can be merged

by the merging method in [18]. The merging threshold of two

Gaussian components given in [18] is constant. In this sub-

section, the merging threshold is obtained by Eq. (62). After

the merging process, the probability density distribution of

pC (x) is obtained by removing the cardinality of DC (x),

pC (x) =
DC (x)

∫

DC (ξ) dξ
(92)

The flowchart of the proposed algorithm, the Parameter

Sets Association CBMeMBer (PSA-CBMeMBer) filter is

given in Fig. 6.

VI. THE THEORETICAL ANALYSIS

Assume that the probabilities of detention of all sensors are

the same, and pℓ,D,k = pD,k , ℓ = 1, . . . , S. Then, Eq. (89)

can be expressed by

r̃C = QrC · rC (93)

QrC =

(

1−pD,k
)nL

(

pD,k
)nD

(

1−pD,k
)nL

(

pD,k
)nD +

(

pD,k
)nL

(

1 − pD,k
)nD

(94)

rC =
1

1+
S∏

ℓ=1

(1−rℓ)
rℓ

=
1

1+
(

1
rL,k

− 1
)nL

·
(

1
rL,k+rU ,k

− 1
)nD

(95)

Q {There is no target} =

S
∏

ℓ=1

p
δ
((

rℓ,prℓ

)

,(rℓ,U ,k ,pℓ,U ,k)
)

ℓ,D,k ·
(

1 − pℓ,D,k
)
(

1−δ
((

rℓ,prℓ

)

,(rℓ,U ,k ,pℓ,U ,k)
))

(86)

Q {There is a target} =

S
∏

ℓ=1

(

1 − pℓ,D,k
)δ
((

rℓ,prℓ

)

,(rℓ,U ,k ,pℓ,U ,k)
)

· p

(

1−δ
((

rℓ,prℓ

)

,(rℓ,U ,k ,pℓ,U ,k)
))

ℓ,D,k (87)
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FIGURE 6. The flowchart of the PSA-CBMeMBer filter.

Here, nL and nD are the number of sensors that miss detect or

detect a target, and nL + nD = S.

Eq. (94) and Eq. (95) can be rewritten by

QrC =
1

1 +
(

pD,k
1−pD,k

)(2nL−S)
=

1

1 +
(

pD,k
1−pD,k

)(2α−1)·S
(96)

rC =
1

1 +
(

1
rL,k

− 1
)αS

·
(

1
rL,k+rU ,k

− 1
)(1−α)S

(97)

Here,

rL,k =
r
target
k−1 ·

(

1 − pD,k
)

1 − r
target
k−1 · pD,k

(98)

rU ,k =
1 − r

target
k−1

1 − r
target
k−1 · pD,k

·1 (99)

1 =
1

1 + κk (z)

(

1−r
target
k−1 ·pD,k

)

r
target
k−1 ·ρU ,k (z)

(100)

Here, α ∈ [0, 1]. A smaller α means that more sensors detect

the target, and α = 0 means that the target is detected by

all sensors. Moreover, a larger α means that more sensors

miss-detect the target, and α = 1 means that the target is

undetected by all sensors.

When 1 → 1, which means that the target is detected by

a sensor and it has an accurate measurement. Thus, rC → 1,

and Eq. (93) can be rewritten by

r̃C = QrC =
1

1 +
(

pD,k
1−pD,k

)(2α−1)·S
(101)

When 0 < 1 < 1, which means the target is detected by

a sensor, but it has an inaccurate measurement. A smaller 1

indicates that themeasurement is less accurate. Thus, Eq. (93)

can be rewritten by Eq. (102), as shown at the bottom of this

page.

When 1 → 0, rU ,k → 0, which means that the target is

undetected by all sensors. Thus, Eq. (93) can be rewritten by

r̃C =
1

1 +
(

pD,k
1−pD,k

)S
·

1

1 +

(

1−r
target
k−1

r
target
k−1 ·(1−pD,k)

)S
(103)

Fig. 7-Fig. 9 show the curves of r̃C with different 1.

Fig. 7 shows that when pD,k ≥ 0.5, the associated param-

eter sets have a large r̃C as long as the target is detected by

half of the sensors. Then, the target can be estimated by the

PSA-CBMeMBer filter. When pD,k < 0.5 and α < 0.5,

the PSA-CBMeMBer filter considers that QrC of the associ-

ated parameter sets corresponding to the target is small, and

thus r̃C is also small. The larger pD,k and α indicate that the

target is disappear. Therefore, when α > 0.5 and pD,k > 0.5,

r̃C is small. In addition, when α > 0.5 and pD,k < 0.5,

the target is likely to be undetected due to a low detection

DC (x)=
∑

(rℓ·pℓ)⊂C

rℓ · pℓ (x)=
∑

Pℓ,L,k⊂C,Pℓ′,U ,k⊂C

(rℓ,L,k ,pℓ,L,k)⊂Pℓ,L,k ,
(

rℓ′,U ,k ,pℓ′,U ,k
)

⊂Pℓ′,U ,k ,












J
(i)
k−1∑

j=1

w̃
(j)
ℓ,L,kN

(

x;m
(j)
ℓ,L,k ,P

(j)
ℓ,L,k

)

· δ
((

rℓ,U ,k , pℓ,U ,k
)

,∅
)

+

Mk|k−1·
∑

j=1

J
(j′)
k−1∑

j′=1

w̃
(j,j′)
ℓ,U ,kN

(

x;m
(j,j′)
ℓ,U ,k ,P

(j,j′)
ℓ,U ,k

)

·
(

1−δ
((

rℓ,U ,k , pℓ,U ,k
)

,∅
))












(91)

r̃C =
1

1 +
(

pD,k
1−pD,k

)(2α−1)·S
·

1

1 +

(

1−r
target
k−1

r
target
k−1 ·(1−pD,k)

)α·S

·






1

1−r
target
k−1

·pD,k

1−r
target
k−1

· 1
1−1−1






(1−α)·S
(102)
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FIGURE 7. The curves of r̃C(1 → 1).

probability. Thus, r̃C is large. It seems that the algorithm loses

some information, but it can avoid the impact of inaccurate

information on the results.

Except for the existence probability that α ≤ 0.5 and

pD,k ≥ 0.5, the other parts in Fig. 7 and Fig. 8 are the

same. This is because these parts mainly depend on the

miss-detection. It can be seen from Figs. 8(a)-(c) that r̃C
becomes large with an increasing1. Besides, r̃C is very small

when the pD,k is large. The reason is that the CBMeMBer

filter considers that the target is likely to be detected with a

large pD,k , and thus rL,k is small. Meanwhile, because the

measurement is inaccurate (1 is small), rU ,k is small. Then,

the existence probabilities estimated by all sensors are small,

and the PSA-CBMeMBer filter considers that the target may

not exist. Because the parameter sets with a small 1 have

large errors, and it cannot be associated with other parameter

sets. Therefore, when1 is small, the PSA-CBMeMBer filter

considers that the target is undetected by sensors.

Fig.9 shows that the target only exists with a small pD,k ,

if it is undetected by all sensors. Therefore, the target

can be estimated by the PSA-CBMeMBer filter only when

pD,k ≤ 0.5 and r
target
k−1 is high.

VII. SIMULATION RESULTS

In this section, the simulation experiments are studied to

analyze the proposed method. The state transition model is

described as

xk = Fxk−1 + Ŵwk (104)

Here, xk = [xk , ẋk , yk , ẏk ]
T is the target state vector, xk and

yk represent the planar position coordinates of the ẋk and ẏk
represent their velocities, and we have

F =







1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1






, Ŵ =







T 2
/

2 0

T 0

0 T 2
/

2

0 T






,

wk ∼ N

(

0,

[

σ 2
w 0

0 σ 2
w

])

FIGURE 8. The curves of r̃C. (a) 1 = 0.1 (b) 1 = 0.5 (c) 1 = 0.9.

FIGURE 9. The curves of r̃C (1 → 0).

Here, T = 1s is the sampling period, and σw is the standard

deviation of wk .
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The measurement obtained by each sensor is given in

Cartesian coordinates as follow

zℓ,k =
[

xk yk
]T

+ vℓ,k , ℓ = 1, 2, 3, 4 (105)

Here, the covariance matrix of observation noise vℓ,k is

Rℓ,k = diag

{
[

δ2ℓ,k , δ
2
ℓ,k

]T
}

, ℓ = 1, 2, 3, 4.

To reduce the amount of calculation, the Gaussian com-

ponents with negligible weights will be pruned. Moreover,

the number of Gaussian components is limited. Based on

experience gained from simulations [17], the pruning thresh-

old is selected as Tp = 1 × 10−5, respectively, and the

maximum number of Gaussian components is Jmax = 100.

The OSPA distance is employed to evaluate the

multi-target tracking performance,

d̄ (c)p (X,Y)=

(

1

n

(

min
π∈
∏

n

m
∑

i=1

d (c)
(

xi, yπ(i)
)p

+cp (n−m)

))1/p

(106)

Here, X = {x1, · · · , xm} and Y = {y1, · · · , yn} are

arbitrary finite subsets, 1 ≤ p < ∞, c > 0 (see [35] for

the meanings of these parameters). If m > n, d̄
(c)
p (X,Y) =

d̄
(c)
p (Y,X). In our simulations, two parameters are set as

p = 2 and c = 1000, respectively. The simulation results are

obtained by averaging the results of 200 Monte Carlo runs.

EXPERIMENT 1

Considering that four targets with different initial posi-

tions move in the surveillance region [−500, 500] ×

[−500, 500]
(

m2
)

. Target 2 and Target 4 died at time k = 16s.

The parameters are σw = 0.5m/s, δℓ,k = 1m, pS,k = 0.97,

and pℓ,D,k = 0.8. The setting of targets is shown in Table 4.

The target trajectories are shown in Fig. 10.

TABLE 4. Initial position and moving duration.

The intensity of the clutter RFS is assumed to be

κℓ,k = λℓ,kU
(

zℓ,k
)

, ℓ = 1, . . . , 4 (107)

Here, λℓ,k = 10 is the clutter rate of the ℓth sensor, and U (·)

is the uniform density over the surveillance region.

In this experiment, the PSA-CBMeMBer filter is com-

pared with the uncorrected PSA-CBMeMBer filter. The esti-

mated number of targets, OSPA distance and mean squared

error (MSE) of target numbers are shown in Fig. 11(a)-(c),

respectively.

In Fig. 11(a), the numbers of targets of the uncor-

rected PSA-CBMeMBer filter and the PSA-CBMeMBer fil-

ter are obtained by summing the existence probabilities in

FIGURE 10. True target trajectory. ‘1’ — locations at which targets are
born; ‘�’ — locations at which targets die.

Eqs. (85) and (89), respectively. As shown in Fig. 11(a),

the PSA-CBMeMBer filter has a correct estimation of tar-

get numbers, but the number of targets estimated by the

uncorrected PSA-CBMeMBer filter still equals to 4 after

time k = 16. Moreover, the number of targets estimated

by the PSA-CBMeMBer filter is slightly smaller than the

true numbers of targets at each time step. By Fig. 11(b) and

Fig. 11(c), it can be seen that the OSPA distance and MSE

of the PSA-CBMeMBer filter are worse than those of the

uncorrected PSA-CBMeMBer filter before time k = 16s.

The reason is given as follows.

The curves ofQrC is illustrated in Fig. 7.QrC can be divided

into four situations, (1) Large pD,k with small α. (2) Large

pD,k with large α. (3) Small pD,k with large α. (4) Small pD,k
with large α. When α = 0 and pD,k > 0.5, or α = 1 and

pD,k < 0.5, there is QrC ≈ 1. When α = 0 and pD,k < 0.5,

or α = 1 and pD,k > 0.5, there is QrC ≈ 0. However,

it is difficult to obtain above extreme situations. Usually,

0 < QrC < 1. Thus, r̃C < rC . Furthermore, in either case, the

uncorrected PSA-CBMeMBer filter considers there is always

a target. When the target is only detected by very few sensors,

such as Situation (4), these sensors are likely to detect clutters.

Therefore, the PSA-CBMeMBer filter has a small QrC , and

the target cannot be estimated correctly because the existence

probability is small. However, this problem has a low prob-

ability of occurrence and little influence on the performance

of the PSA-CBMeMBer filter.

EXPERIMENT 2

Considering that six targets with different initial posi-

tions move in the surveillance region [−8000, 8000] ×

[−8000, 8000]
(

m2
)

. The setting of targets is shown

in Table 5.

The target trajectories, measurement and estimated trajec-

tory of targets are shown in Fig. 12. The probability density

of birth multi-Bernoulli RFS is described as Eq. (108).

πŴ,k =
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}5

i=1
(108)
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FIGURE 11. Tracking results with different probabilities of detection
(a) OSPA distance (b) MSE.

Here, r
(i)
Ŵ,k = 0.1, i = 1, . . . , 5, and

p
(i)
Ŵ,k = N

(

x;m
(i)
Ŵ,k ,P

(i)
Ŵ,k

)

(109)

Here, P
(i)
Ŵ,k = diag

{
[

104, 104, 104, 104
]T
}

, i = 1, . . . , 5,

m
(1)
γ = [−4000, 0,−5000, 0]T ,m

(2)
γ =

[

−2000, 0,−2000,

0
]T
, m

(3)
γ = [4000, 0,−3500, 0]T ,m

(4)
γ = [0, 0, 6000, 0]T

and m
(5)
γ = [−5000, 0,−1500, 0]T .

In this experiment, the PSA-CBMeMBer filter is com-

pared with the IC-PHD filter [7], the Iterated Corrector

(IC-CBMeMber) filter, the IIC-GM-PHD filter [26], the

PM-PHD filter [27], the CM-PM-PHD filter [28], and the

TS-PM-PHD filter [29]. Different parameters are used to

TABLE 5. Initial position and moving duration.

FIGURE 12. True target trajectory, measurement and estimated trajectory
of targets.

verify the effectiveness of the PSA-CBMeMBer filter, such as

the observation noise, clutter rate and probability of detection.

The setting of these parameters is given in Table 6.

TABLE 6. The setting of different parameters.

The simulation results of different observation noises, clut-

ter rates and probabilities of detection are shown in Fig. 13,

Fig. 14 and Fig. 15, respectively. The running time of different

filters is given in Table 7.

In Fig. 13 and Fig. 14, it can be seen that OSPA distances

and MSEs of the IC-PHD filter, IC-CBMeMber filter, the

IIC-GM-PHD filter, the PM-PHD filter, the CM-PM-PHD

filter and the TS-PM-PHD filter become worse when obser-

vation noise and clutter rate become larger. These two param-

eters have little effect on the PSA-CBMeMBer filter. It is

mainly because the PSA-CBMeMBer filter handles the filter

results of sensors. The negative effects of observation noise

and clutter rate have been weakened by the filters, such as the

CBMeMBer filter.

Fig. 15 shows that the IC-PHD filter and the

IC-CBMeMBer filer based on iterated corrector are affected

seriously by the probability of detection. The stated esti-

mation of the IC-PHD filter is improved effectively by the

IIC-GM-PHD filter, but it still has a large bias of cardinality

estimation. In Fig. 15(b), it can be observed that the PM-PHD
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TABLE 7. The average running time (s) of different clutter rates.

FIGURE 13. Tracking results with different observation noises (a) OSPA
distance (b) MSE.

filter and the CM-PM-PHD filter perform better than the

iterated corrector filters in cardinality estimation. However,

the state estimation of the PM-PHD filter becomes worse

because of false alarms. Both the PSA-CBMeMBer filter and

the TS-PM-PHD filter perform well when the probability of

detection changes. Compared with the TS-PM-PHD filter,

the PSA-CBMeMBer filter has more accurate cardinality

estimation.

In Table 7, the running time of the CM-PM-PHD filter

and the TS-PM-PHD filter are larger than the ones of others.

Although the PSA-CBMeMBer filter includes three associa-

tion processes, the running time of the PSA-CBMeMBer fil-

ter is similar to those of the IC-PHDfilter, the IC-CBMeMBer

filter and the IIC-GM-PHD filter. To better analyze the

running time, the computation complexities of these filters

are given below.

The computation complexities of the IC-PHD filter,

the IC-CBMeMber filter and the IIC-GM-PHD filter

are O

(

n ·
S∏

ℓ−1

mℓ

)

. The computation complexities of the

FIGURE 14. Tracking results with different clutter rates (a) OSPA distance
(b) MSE.

PM-PHD filter, the CM-PM-PHD filter and the TS-PM-PHD

areO

(

n ·
S∏

ℓ−1

(mℓ)
3

)

. Since the CM-PM-PHD filter consists

of the PM-PHD filter and a cardinality modified method with

computation complexity O

(

n ·
S∑

ℓ−1

mℓ

)

, its running time is

higher than the PM-PHD filter. Moreover, the TS-PM-PHD

filter includes two parts, and the computation complexity of

each part is O

(

n ·
S∏

ℓ−1

(mℓ)
3

)

. Thus, the running time of the

TS-PM-PHD filter is the highest one. The PSA-CBMeMBer

filter contains three association processes and one fusion

process. The computation complexity of these processes

are O

(

n2 · S + n ·
S∑

ℓ−1

mℓ

)

,O





(

S∑

ℓ−1

mℓ

)2


, O

(

S∑

ℓ−1

mℓ

)

and O (n), respectively. Usually, the number of measure-

ments is bigger than the number of targets. Then, The

computation complexity of the PSA-CBMeMBer filter is
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FIGURE 15. Tracking results with different probabilities of detection
(a) OSPA distance (b) MSE.

O





(

S∑

ℓ−1

mℓ

)2


. Since O





(

S∑

ℓ−1

mℓ

)2


 is smaller than

O

(

n ·
S∏

ℓ−1

mℓ

)

, the increasing rate of the running time of the

PSA-CBMeMBer filter is lower than that of iterated multi-

sensor filters.

EXPERIMENT 3

Considering that two manoeuvring targets with different ini-

tial positions move in the surveillance region and they cross

at (0, 0) (m). The setting of targets is shown in Table 8.

The target trajectories, measurement and estimated trajectory

of targets are shown in Fig. 16. The estimated number of

targets, OSPA distance and MSE are shown in Figs 17(a)-(c),

respectively.

In this experiment, the state transition matrix in Eq. (109)

is replaced by Eq. (110).

F =










1
sinωT

ω
0 −

1 − cosωT

ω
0 cosωT 0 − sinωT

0
1 − cosωT

ω
1

sinωT

ω
0 sinωT 0 cosωT










(110)

Here, ω is the turning rate, and ω = ±3 rad/s.

In Fig. 17(a), there is a slight cardinality underestimation

of the IC-PHD filter and the IC-CBMeMBer filter, which is

TABLE 8. Initial position and moving duration.

FIGURE 16. True target trajectory, measurement and estimated trajectory
of targets.

caused by miss-detection. Moreover, the IIC-GM-PHD can

reduce the impact of miss-detection on the IC-PHD filter.

For the PSA-CBMeMBer filter, its parameter set estimation

method ensures that targets undetected by some sensors can

still be estimated correctly. From Fig. 17(b) and Fig. 17(c),

it can be seen that the PM-PHD filter has accurate cardinality

estimation, but the accuracy of its state estimation is lower

than that of the IC-PHD filter. This problem is solved by

the CM-PM-PHD filter and the TS-PM-PHD filter. Thus,

these two filters perform well in both state estimation and

cardinality estimation. Furthermore, when two targets cross,

all filters can estimate them correctly.

Furthermore, when two targets cross, all filters can esti-

mate them correctly. This is because all these filters are

based on the PHD filter and the CBMeMBer filter. From the

measurement updating processes of these two single sensor

filters, it can be seen that one target can be estimated as

long as there is a measurement of the target. In the mea-

surement updating process of the PHD filter, measurements

are used to update the predicted probability hypothesis den-

sity. If measurements are generated by targets, the updated

probability hypothesis density has some peaks at the states

of targets. Multiple peaks will be superimposed into one

peak when targets close or cross. In the state extraction,

these targets are estimated at the peak and have the same

states. For the CBMeMBer filter, each measurement is used

to all predicted parameter sets in the measurement updating

process. One measurement only generates one parameter set.

If the measurement is generated by targets, the parameter

set generated by it will have a large existence probability.

Thus, targets can be estimated by the CBMeMBer filter even

they close or cross. The IC-PHD filter consists of multiple

PHD filters, it has the same measurement updating process

as the PHD filter. The IIC-GM-PHD filter, the PM-PHD

82726 VOLUME 8, 2020



L. Liu et al.: Multi-Target Tracking by Associating and Fusing the Multi-Bernoulli Parameter Sets

FIGURE 17. Tracking results of two maneuvering targets (a) Estimated
target numbers (b) OSPA distance (c) MSE.

filter, the CM- PM-PHDfilter and the TS-PM-PHDfilter only

improve the method of calculating the cardinality, they are

still essentially an IC-PHD filter. The IC-CBMeMBer filter

is similar to the IC-PHD filter. In the PSA-CBMeMBer filter,

all the parameter sets associated and fused are obtained by

multiple CBMeMBer filters. Thus, these multi-sensor filters

can accurately estimate targets in this tracking scenario.

EXPERIMENT 4

Considering that one target move in the surveillance region

[0, 350] × [0, 350]
(

km2
)

. There are four sensors located at

(0, 0), (0, 50), (50, 0), (50, 50) (km), respectively. The max-

imum and minimum distance between the target and each

TABLE 9. The maximum and minimum distance (km).

FIGURE 18. True target trajectory, measurement and estimated trajectory
of targets, and sensor positions.

sensor is given in Table 9. The target trajectory, measurement

and estimated trajectory of targets, and sensor positions are

shown in Fig. 18. The estimated number of targets, OSPA

distance and MSE are shown in Figs 19(a)-(c), respectively.

The measurement obtained by each sensor is given in polar

coordinates as follow

zℓ,k =

[ √

x2k + y2k
arctan

(

xk
/

yk
)

]

+ vℓ,k , ℓ = 1, 2, 3, 4 (111)

Here, the covariance matrix of observation noise vℓ,k is

Rℓ,k = diag

{
[

δ2ℓ,r , δ
2
ℓ,θ

]T
}

, ℓ = 1, 2, 3, 4. δℓ,r = 100m

and δℓ,θ = π
180

rad are the standard deviation of range and

azimuth, respectively.

Fig. 19 shows that the number of targets is significantly

underestimated by the IC-PHD filter and the IC-CBMeMBer

filter when the target is far from sensors. It is because that

the tracking results mainly depend on the measurements of

the last updating sensor in the iterated corrector structure.

When the target is farther away from sensors, measurements

received by sensors are less accurate. Therefore, the tracking

performance is not goodwith only one sensor’s measurement.

The other multi-sensor filters use the measurements of all

sensors when estimating the number of targets. Therefore,

their cardinality estimations are much better than IC-PHD

filter. Note that the OSPA distance of the PM-PHD filter is

small Fig. 19(b), but its OSPA distance is higher than that

of the IC-PHD filter in Fig. 17(b). In multi-target tracking,

some targets are missed by the IC-PHD filter. To estimate

the number of targets correctly, the PM-PHD filter increases

the cardinality of the detected targets. Some false targets are

estimated which have the same states as the detected targets.

Thus, the OSPA distance of the PM-PHD filter is large.

Since there is only one target in this tracking scenario, the

PM-PHD filter can ensure that the number of targets is one.
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FIGURE 19. Tracking results with different observation noises
(a) Estimated target numbers (b) OSPA distance (c) MSE.

Then, the state of the target is estimated from the pre-

dicted state. In this experiment, the performance of the

PSA-CBMeMBer filter is slightly worse than that of the

PM-PHD filer and its improved versions. The reason is that

the coefficient of measurement likelihood is calculated dif-

ferently in the CBMeMBer filter and the PHD filter. This

coefficient plays an important role in determining whether

the measurement is generated by the target or clutter. For

one measurement, its coefficient obtained by the CBMeM-

Ber filter is smaller than that obtained by the PHD filter.

Therefore, the measurement is easier to be determined as

the measurement of clutter by the CBMeMBer filter. This

situation will become worse as the accuracy of measurement

decreases. Thus, when the target is far from sensors and the

accuracy of the measurements decrease, the performance of

IC-CBMeMBer filter is worse than that of the IC-PHD filter.

Meanwhile, this problem also affects the tracking perfor-

mance of the PSA-CBMeMBer filter.

VIII. CONCLUSION

This paper presents a tracks association and fusion meth-

ods based on the CBMeMBer filter. The tracks can be dis-

tinguished and associated by the tracks association method

with three association processes. The tracks corresponding

to the same target can be grouped into one partition by the

adaptive association thresholds under the assumptions of the

linear Gaussian mixture model. Considering the relationships

among different types of tracks, the cardinality overestima-

tion problem of the CBMeMBer can be avoided effectively.

Simulation results validate that the PSA-CBMeMBer filter is

insensitive to the observation noise and the clutter rate, and it

is little affected by the probability of detection.

This paper assumes that the state of birth targets is known

as a priori. However, the state of new born targets is unknown

in real tracking scenarios. In the second association process,

only the information of measurements is used in the measure-

ment update parameter sets association method. In our future

works, we will extend this approach to deal with the problem

of target birth in the multi-sensor tracking system.

APPENDIX A

The proof of Eq. (62) consists of three parts,

Part (1): m
(i)
3σ and m

(i′)
3σ on the boundary of �

(i)
ℓ,U ,k and

�
(i′)
ℓ,U ,k .

Part (2): m
(i)
3σ and m

(i′)
3σ are the endpoints of long axis of

�
(i)
ℓ,U ,k and �

(i′)
ℓ,U ,k .

Part (3): The distance between m
(i)
3σ and m3σ is the upper

limit of M̃
(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

.

The proofs of Parts (1)-(3) are given as follows.

Proof (1): �
(i)
ℓ,U ,k ∈ Rn, �

(i′)
ℓ,U ,k ∈ Rn are the closed sets.

Assume m
(i)
3σ ∈ �

(i)
ℓ,U ,k and m

(i′)
3σ ∈ �

(i′)
ℓ,U ,k , and

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

= max

(

M̃

(

m
�
(i)
ℓ,U ,k

∥
∥
∥
∥
m
�
(i′)
ℓ,U ,k

))

(112)

Here, m
�
(i)
ℓ,U ,k

∈ �
(i)
ℓ,U ,k , and ,m�

(i′)
ℓ,U ,k

∈ �
(i′)
ℓ,U ,k .

If m
(i′)
3σ is the inner point of �

(i′)
ℓ,U ,k , there is a set

O
(

m
(i′)
3σ , ε

)

and O
(

m
(i′)
3σ , ε

)

∈ �
(i′)
ℓ,U ,k . Thus, O

[

m
(i′)
3σ ,

ε
2

]

is a closed set in Rn, and O
[

m
(i′)
3σ ,

ε
2

]

⊆ �
(i′)
ℓ,U ,k .

Assume m̂
(i′)
3σ is the extension point in the direction from

m
(i′)
3σ to m

(i)
3σ , and m̂

(i′)
3σ = m

(i′)
3σ + ε

2
. Then, we have

M̃

(

m
(i)
3σ

∥
∥
∥m̂
(i′)
3σ

)

=M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

+ M̃

(

m
(i′)
3σ

∥
∥
∥m̂
(i′)
3σ

)

> M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

(113)
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Since Eq. (112) and Eq. (113) contradict each other, m
(i)
3σ

and m
(i′)
3σ on the boundary of �

(i)
ℓ,U ,k and �

(i′)
ℓ,U ,k .

Proof (2): Assume m̂
(i)
3σ is the intersection of �

(i)
ℓ,U ,k and

L
m
(i)
3σ ,m

(i′)
3σ

. m̂
(i′)
3σ is the intersection of �

(i′)
ℓ,U ,k and L

m
(i)
3σ ,m

(i′)
3σ

.

Here, L
m
(i)
3σ ,m

(i′)
3σ

is the line betweenm
(i)
3σ and m

(i′)
3σ .

According to the triangle inequalities in Mahalanobis dis-

tance, we have

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

≤ M̃

(

m
(i)
3σ

∥
∥
∥m̂

(i)
3σ

)

+ M̃

(

m
(i)
3σ

∥
∥
∥m̂
(i′)
3σ

)

(114)

and

M̃

(

m
(i)
3σ

∥
∥
∥m̂

(i)
3σ

)

≤ r
�
(i)
ℓ,U ,k

(115)

M̃

(

m
(i)
3σ

∥
∥
∥m̂
(i′)
3σ

)

≤ r
�
(i′)
ℓ,U ,k

(116)

Here, r
�
(i)
ℓ,U ,k

and r
�
(i′)
ℓ,U ,k

are the length of the long axis of

�
(i)
ℓ,U ,k and �

(i′)
ℓ,U ,k , respectively.

Then, we have

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

≤ r
�
(i)
ℓ,U ,k

+ r
�
(i′)
ℓ,U ,k

(117)

Thus, when m
(i)
3σ and m

(i′)
3σ are the endpoints of the long

axis of �
(i)
ℓ,U ,k and �

(i′)
ℓ,U ,k , M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

has the largest

value.

Proof (3):Assumem
(i)
3σ andm

(i,i′)
ℓ,U ,k are the endpoints of the

long axis of �
(i)
ℓ,U ,k , m

(i′)
3σ is the endpoint of the long axis of

�
(i′)
ℓ,U ,k . Here, m

(i,i′)
ℓ,U ,k may not be the intersection of �

(i)
ℓ,U ,k

and �
(i′)
ℓ,U ,k . Then, we have

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

≤M̃

(

m
(i)
3σ

∥
∥
∥m
(i,i′)
ℓ,U ,k

)

+M̃

(

m
(i′)
3σ

∥
∥
∥m
(i,i′)
ℓ,U ,k

)

= M̃

(

m
(i)
3σ

∥
∥
∥m
(i,i′)
ℓ,U ,k

)

+ r
�
(i′)
ℓ,U ,k

(118)

and

M̃

(

m
(i)
3σ

∥
∥
∥m
(i,i′)
ℓ,U ,k

)

≤ r
�
(i)
ℓ,U ,k

(119)

Then, Eq. (44) can be written as

M̃

(

m
(i)
3σ

∥
∥
∥m
(i′)
3σ

)

≤ r
�
(i)
ℓ,U ,k

+ r
�
(i′)
ℓ,U ,k

(120)

Thus, when�
(i′)
ℓ,U ,k = �ℓ,U ,k ,m

(i′)
3σ = m3σ , andm

(i,i′)
ℓ,U ,k =

mℓ,U ,k , Eq. (46) has the largest value.

Based on Proofs (1)-(3), the threshold ϕ is given by

Eq. (121).

ϕ = M̃

(

m3σ

∥
∥
∥m
(i′)
3σ

)

(121)

APPENDIX B

The solution for Eq. (65) is given as follows.

By Eqs. (32) and (33), the state mean vector and the

covariance matrix of Nzℓ,B are given by

mzℓ,B == mk|k−1 + Kk|k−1

(

zzℓ,B − Hkmk|k−1

)

(122)

Pzℓ,B =
[

I − Kk|k−1Hk

]

Pk|k−1 (123)

Kk|k−1 = Pk|k−1H
T
k

[

HkPk|k−1H
T
k + Rk

]−1
(124)

By Eqs. (38), (53), (122) and (123), Q̃
(

Nk|k−1,Nzℓ,B

)

is

given by Eq. (125), as shown at the bottom of this page.

In Eq. (125), Nk|k−1 denotes N
(

x;mk|k−1,Pk|k−1

)

.

Thus, Eq. (65) is equivalent to Eq. (126)

φ = max
(

vTz,mVK,Pvz,m

)

s.t. vTz,mVH,Pvz,m = ζ (126)

Here, ζ is a threshold of the chi-square distribution. The

degree of freedom is 2 and the confidence is 0.995 (3σ rule).

Moreover, we have

vz,m =
[

zNzℓ,B
− HmNk|k−1

]

2×1
=

[

v
(1,1)
z,m

v
(2,1)
z,m

]

(127)

VK,P =
[
(

Kk|k−1

)T
(

P−1
Nk|k−1

+ P−1
Nzℓ,B

)

Kk|k−1

]

2×2

=

[

V
(1,1)
K,P V

(1,2)
K,P

V
(2,1)
K,P V

(2,2)
K,P

]

(128)

VH,P =
[
(

Hk|k−1

)T
(

P−1
Nk|k−1

+ P−1
Nzℓ,B

)

Hk|k−1

]

2×2

=

[

V
(1,1)
H,P V

(1,2)
H,P

V
(2,1)
H,P V

(2,2)
H,P

]

(129)

By the Lagrangian multiplier method [36], Eq. (52) is

written by

φ=
(

vz,m
)T

VK,Pvz,m+λ ·
(
(

vz,m
)T

VH,Pvz,m−ζ
)2

(130)

To solve Eq. (56), we have








∂φ

∂vz,m
= 2vz,mVK,P + λ ·

(
(

vz,m
)T

VH,Pvz,m − ζ

)2
= 0

∂φ

∂λ
=
(
(

vz,m
)T

VH,Pvz,m − ζ

)2
= 0

(131)

Q̃
(

Nk|k−1,Nzℓ,B

)

=
1

4






Tr
[(

P−1
Nk|k−1

− P−1
Nzℓ,B

) (

PNzℓ,B
− PNk|k−1

)]

+
(

zNzℓ,B
− HmNk|k−1

)T (
Kk|k−1

)T
(

P−1
Nk|k−1

+ P−1
Nzℓ,B

)

Kk|k−1

(

zNzℓ,B
− HmNk|k−1

)




 (125)
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φ = V
(1,1)
K,P ·

(

v(1,1)z,m

)2
+ V

(2,2)
K,P ·

(

v(2,1)z,m

)2
+
(

V
(2,1)
K,P + V

(1,2)
K,P

)

· v(2,1)z,m · v(2,1)z,m (132)

Then, φ is computed by Eq. (132), as shown at the top of

this page.

In Eq. (133), we have

v(1,1)z,m =




h2 · ζ

V
(1,1)
H,P ·h2+

(

V
(1,2)
H,P +V

(2,1)
H,P

)

· h+V
(2,2)
H,P





1
2

(133)

v(1,1)z,m =




ζ

V
(1,1)
H,P ·h2+

(

V
(1,2)
H,P +V

(2,1)
H,P

)

·h+V
(2,2)
H,P





1
2

(134)

h= −
V
(1,2)
K,P + V

(2,1)
K,P

2 · V
(1,1)
K,P

. (135)
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