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1 Introduction

 Respiratory and heartbeat signals are important biosignals, which not only 

provide the physical health status of patients, but also facilitates the daily manage-

ment of some public health systems [1]. Moreover, research shows that both respira-

tion and heart rate are essential forecasters of sudden illnesses such as cardiac arrest 

[2]. Currently, the respiratory and heartbeat detection approaches are conventional 

contacted (ECG, optics, airflow sensing, chest wall mechanical displacement sensing 

and blood pressure sensing) and radar-based non-contact detection [3–10]. Although 

the contact vital signs detection has a high accuracy and stability [11]. However, it 

is not friendly for patients with burns and skin infections, etc. In contrast, the radar 

sensors are used to extract respiratory and heartbeat signals using various signal pro-

cessing methods by detecting millimeter-scale displacement of the thoracic surface. 
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�is makes the radar detection system providing great potential and promise for 

development.

Up to now, most of the efforts have focused on the study of single target with known 

location. However, there is an urgent need for emergency rescue [12], ward monitor-

ing [13, 14], and many other scenarios that require simultaneous monitoring of mul-

tiple targets. �e frequency-modulated continuous wave (FMCW) radar can detect 

both absolute and relative displacements of the human thoracic surface, and it has 

greater advantages especially in the field of multi-target vital signs signals detection 

[15]. Various solutions have been developed using FMCW radar, in which the dis-

tance difference and spatially distributed beams of multiple targets are widely used 

[16–25]. Ref. [16] uses advanced signal processing method with adaptive boundaries 

to improve the distance resolution and achieve short-range multi-target vital sign 

detection. A mixed radar system combining FMCW mode and interferometry mode 

is proposed in [17]. Specifically, the FMCW mode is responsible for range detection 

and interferometry mode is responsible for vital activity (respiration, heartbeat and 

body movement) detection. Lee et al. [18] also apply a 24 GHz FMCW radar for heart 

rate estimation. �ey use the phase change information caused by distance and Dop-

pler to eliminate the noise in the environment and reduce the interference between 

multiple targets. �e separation of multi-target vital signs at a minimum distance 

interval of 40 cm is finally achieved. However, the human targets in these cases are 

often at different distance ranges, without considering the pattern of different tar-

gets at the same distance. �e authors in [19–21] combine the multiple signal clas-

sification (Music) and rotation invariant technique to improve the resolution of DOA 

estimation by using the orthogonality of signal and noise subspaces. However, the 

resolution performance of these methods is largely affected by the number of targets, 

signal-to-noise ratio (SNR) and data length, making the stability and efficiency of the 

system a great challenge. In [22, 23, 25], a mechanical scanning (MS) method is pro-

posed to achieve beam scanning by rotating the radar antenna as a way to achieve 

multi-target detection. However, the simultaneous detection of multiple targets is 

impossible due to the limitation of turntable speed. Fang et  al. [24] design a radio 

frequency (RF) conversion radar system by adding RF switches as multi-plexers to 

achieve simultaneous detection of two targets’ vital signals from different distances of 

the antenna within the resolution limitation. However, the authors continue to ignore 

the case where different targets are at the same distance. Moreover, the authors do 

not extend the two to multiple targets.

In this paper, we propose to use the FMCW radar to achieve multi-target vital signs 

detection system. �e main contributions of this paper are as follows.

Firstly, the echo signal of the FMCW radar array antenna is modeled, and the princi-

ple of the FMCW radar is described. �rough the theoretical derivation of the virtual 

antenna expansion technology, the multi-target detection expression form of the inter-

mediate frequency (IF) signal is completely given, and the echo modeling of the vital 

sign is successfully realized.

Secondly, we propose to apply the three-dimensional fast Fourier transform (3D-

FFT) method to estimate the number and angle of the target automatically. �en, the 

ADBF method based on linearly constrained minimum variance (LCMV) is adopted 
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to weaken the interference between targets and enhance the target signal. Finally, the 

constant false alarm rate (CFAR) method is used to successfully separate different 

human targets.

Finally, we build up the multi-target vital signs detection system and carry out a series 

of experiments to verify the effectiveness and feasibility of the CS-OMP and RA-DWT 

methods. �e measured results show that the level of agreement for respiration and 

heartbeat obtained by two methods and connect devices (respiratory sensor and Apple 

Watch6) are more than 89% and 87%, respectively, for two human targets. Moreover, the 

level of agreement for respiration and heartbeat are 87% and 85%, respectively, for three 

human targets,

�e remainder of the paper is organized as follows. Section II introduces the mod-

eling of the FMCW radar-based vital signs. Section III describes the principle of multi-

ple-input-multiple-output (MIMO) radar. �e fundamentals of multi-target extraction 

based on 3D-FFT and LCMV-ADBF methods are introduced. Section IV introduces the 

extraction method of respiratory and heartbeat signals based on the CS-OMP and RA-

DWT methods. Section V presents the experimental results of multi-target vital sign 

extraction, followed by concluding remarks drawn in Section VI.

2  IF signal model of FMCW radar

�e multi-target vital signs detection system based on FMCW radar mainly extracts the 

phase information of respiration and heartbeat in the IF signal. �e IF signal is obtained 

by mixing the transmitted signal and the echo signal, and then filtering out the high fre-

quency components.

�e transmit signal of FMCW radar can be expressed as

where ATX is the amplitude of the transmitted signal, fc is the initial frequency of the 

transmitted signal, B is the bandwidth, Tc is the chirp pulse width, and n(t) is the phase 

noise. Assuming that the distance between the human target and the radar is r0 , and the 

human chest is accompanied by a small amplitude of vibration with time. �erefore, the 

distance between the human chest and the radar is

where x(t) = Ar sin
(

2π frt
)

+ Ah sin
(

2π fht
)

 is an expression for the human chest vibra-

tion, where Ar and Ah are the amplitudes of respiration and heartbeat, respectively. fr 

and fh are the frequencies of respiration and heartbeat, respectively. �e received signal 

is

where tr =
2R(t)
c

 is the time delay of the received signal. �e received signal and the 

transmitted signal are mixed and then passed through a low-pass filter to obtain the IF 

signal. �en, the IF signal is expressed as

(1)sT (t) = ATX cos

[

2π fct + π
B

Tc

t2 + n(t)

]

,

(2)R(t) = r0 + x(t),

(3)sR(t) = ARX cos

[

2π fc(t − tr) + π
B

Tc

(t − tr)
2
+ n(t − tr)

]

,
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where AIF is the amplitude of the IF signal, c is the speed of light, � is the signal wave-

length, fb is the frequency of the IF signal, and ψ(t) is the phase of the IF signal, which 

changes with the displacement of the human chest. In order to observe the change of 

the human chest displacement, it is necessary to sequentially transmit multiple chirps to 

obtain the phase change information and ensure that the phase change occurs between 

two chirps or between two frames, which is equivalent to sampling. After analog-to-dig-

ital converter (ADC) sampling, the IF signal is expressed as

where m is the number of chirps, n is the number of sampling points for each chirp, and 

Tn is the sampling period.

3  Proposed multi‑target separation scheme

�e structure of the proposed method is shown in Fig. 1. It consists of three steps: angle 

estimation, target separation and signal extraction. After performing analog-to-digital con-

version on the IF signal, we measure the range and angle of multiple targets in the radar 

field of view. �e range-angle map is constructed according to the distance and angle 

(4)
SIF ≈ AIF exp
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Fig. 1 Multi-human targets vital signal detection
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information. �en, the interference between multiple targets is weakened and the target 

signal is enhanced by ADBF technology. Afterward, multiple human target signals are sepa-

rated on RAM by CFAR method. Finally, the separated individuals are detected for vital 

signals.

In order to show the multi-target signal processing theory of the array antennas, the signal 

model of the array antenna is shown in Fig. 2. �e radar platform uses a two transmit and 

four receive antennas which can be virtually expanded into eight receiving antennas (RX5∼

RX8 are the expanded antennas), effectively improving the angle estimation accuracy.

3.1  Virtual antenna extension technology

Assuming that the distance between two adjacent receiving antennas is d, and the reflected 

signal arrival angle is θ , the phase difference between different antennas is

�erefore, the expression form of the i-th antenna receiving system is

If there are multiple targets in the radar’s field of view, the received signal is cumulative. 

�e L targets at (Rl , θl) are expressed as

(6)�φ =

2πd sin θ

�
.

(7)SIF = AIF exp

{

j

[

2π fbnTn + ψm +
2π

�
di sin θ

]}

.

(8)SIF =

L
∑

l=1

AIF exp

{

j

[

2π fblnTn + ψml
+

2π

�
di sin θl

]}

.

Fig. 2 Signal receiving model of array antenna
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Based on the above equation, the phase change of the i-th receiving antenna is

When the targets are at the same distance unit Rl,o , the above formula will become

where ψc,i(Rl,o, θl) is a constant term in the same distance-angle unit and it is not con-

sidered. �e relative displacement 4πRl(mTc)/� caused by respiration and heartbeat 

should be detected in the vital signs measurement.

MIMO radar multiplexing technology is the core of realizing the expansion of virtual 

array antennas. In this paper, the time-division multiplexing (TDM) mode is used, where 

TX1 and TX2 alternately transmit FM pulses using time slot interval. As shown in Fig. 3, 

in one chirp cycle, the 8-way virtual expansion receive antenna array receives the echo 

signal S1 or S2 , respectively, to realize the virtual array expansion.

Figure 4 shows the beam direction obtained using the 8-way virtual antenna expansion 

technique for different numbers of receiving array elements, where N is the number of 

receive arrays. It can be seen that the beam direction map of the 8-way antenna array 

after virtual expansion has a narrower beam width, which improves the angular estima-

tion resolution.

3.2  3D-FFT-based distance-angle map construction

Limited by the distance resolution, it is difficult to distinguish two targets at almost 

the same distance through Range-FFT. �us, it is necessary to construct a range-angle 

map (RAM) to separate the multiple human targets. �e echo reflected by the target at 

(9)ψml
=

4πRl(mTc + nTn)

�
+

2π

�
di sin θl .

(10)

ψml
=

4πRl,o

�
+

4πRl(mTc)

�
+

2π

�
di sin θl

= ψc,i(Rl,o, θl) +
4πRl(mTc)

�
,

Fig. 3 TDM
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different angles has its own unique law of phase change. As a result, it is possible to sep-

arate targets with different frequencies by performing Fourier analysis on multiple echo 

signals. We propose a 3D-FFT estimation approach and construct RAM to separate the 

multiple targets. �e detailed operation procedure of 3D-FFT is shown as in Fig. 5.

�e 3D-FFT is performed for each pair of TX-RX antennas. First, the first FFT (Range-

FFT) is performed for each chirp fast sampling point, and its output is stored in the 

matrix as a continuous row. �en, a second FFT (Doppler-FFT) is performed between 

the chirps (columns in the matrix). According to the principle of angle estimation, the 

different wave range differences from the object to each antenna cause a phase change 

in the 2D-FFT peak, and this phase change can be used to estimate the angle of arrival. 

�erefore, a third FFT (Angle-FFT) is performed for the phase sequence corresponding 

to the 2D-FFT peak.

�e 3D-FFT can effectively estimate the angle of the target and construct the RAM to 

achieve multi-target separation. However, it is found that the angle estimated by 3D-FFT 

is not exactly the same as the actual angle when multi-target vital sign detection is per-

formed in the actual process. Because in reality the human body is not a point target but 

(11)θ = sin
−1

(

��φ

2πdi

)

.
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Fig. 4 Beam patterns corresponding to different receiving array elements

Fig. 5 3D-FFT process
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has a certain width, and the angle estimation is not an angle peak but an angle interval. 

In reality, the human target is not a point target, but it has a certain width. �erefore, the 

angle estimate of the target is not a peak, but an angle interval.

3.3  LCMV-ADBF-based multi-human target separation

ADBF is a beamforming technique that shifts RF complex weighting to the digital 

baseband, which directly performs weighting operations on digital signals. �e weight 

can be updated according to the sampled data using a certain adaptive algorithm. �is 

results in a narrow main beam direction map, which adaptively enhances the useful 

signal. At the same time, null steering is formed in the interference direction to sup-

press unwanted interference and extract useful signal features and information [26]. 

�e ADBF method is applied in the RAM map to improve the angular estimation 

accuracy and to separate the multiple vital signs. Digital beamforming is achieved 

digitally by using phase shift, scaling and summation, which in turn can be defined as 

spatial filtering of the received signal [27]. In this paper, ADBF combined with MIMO 

extension technology are used at the antenna receiving end to suppress strong inter-

ference and directional interference, and effectively extract the vital signs of multiple 

human.

Each receiving antenna has its own processing chain, and Fig. 6 shows the LCMV-

ADBF processing of the FMCW radar system. For the selection of the adaptive 

method, the LCMV adaptive method is chosen for the weight update in this paper. In 

Fig. 6, the signals received by the linear antenna array are used to generate the adap-

tive weights for each channel by the LCMV method, while the weighted accumulation 

is used to complete the spatial filtering of the signals.

Beamforming weights w are calculated for each identified angular position k and 

applied to the ADC sampling data to obtain the output signal yk(m, n).

Fig. 6 LCMV-ADBF processing of FMCW radar system
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where IRx is the number of receiving antenna channels. In time t, the simplified expres-

sion is

�e LCMV principle is used to ensure that the desired signal direction gain minimizes 

the total output power.

where C is the constraint matrix, F is the constrained response vector, and RSS is the 

sampling covariance matrix. According to the beamforming requirements, the maxi-

mum gain constraint is usually in the desired signal direction, while the zero constraint 

is set in the other interference directions. �en, it is obtained that

In practical applications, the Optimal estimation R̂SS is composed of n sampling signal 

vectors RSS.

Finally, the optimal weight vector w is calculated as

�e digital adaptive beamforming technique is applied to the RAM constructed by 

3D-FFT. It can effectively decrease the negative impact in the direction of interference 

and mutual interference between multiple human targets, resulting in the effective sepa-

ration of multiple human targets. Finally, the presence of targets is determined in the 

distance-angle plane using the target detection CFAR algorithm [28]. �e parameters 

used in this paper are two-dimensional matrix, and the target signal can be extracted by 

traditional CFAR algorithm. We calculate the energy threshold of the matrix and filter 

out the clutter below the threshold, so as to retain all target signals. �e general process-

ing of CFAR is shown in Fig. 7.

3.4  Vital signs separation and reconstruction

For each detected object in the RAM, we extract the phase at a specific distance-angle 

range. First, we need to apply a circular dynamic tracking algorithm [29] to solve the DC 

offset problem that occurs during the phase acquisition. At the same time, the negative 

(12)yk(m, n) =

IRx∑

i=1

SIFw
i
k ,

(13)y(t) = wHS(t).

(14)

{

min P = E
{

∣

∣y(t)
∣

∣

2
}

= wHRSSw

s.t.wHC = F
,

(15)C =[1, ej
2π
�
d sin(θl), . . . , ej[(IRx−1) 2π

�
d sin(θl)]],

(16)F =[ 1 0 · · · 0 ]
T
.

(17)R̂SS =
1

n

n∑

t=1

S(t)SH (t)

(18)w =
R̂

−1
C

CH R̂−1C
F
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effect caused by the low amplitude motion of the human target and the limited value 

domain problem of the inverse tangent demodulation method itself. We use an extended 

differential cross-multiply (DACM) algorithm to solve the phase ambiguity [30] and 

extract the phase signal of the target efficiently. After that, we use an inverse tangent 

demodulation technique to obtain the phase information of the target. �en, the CS-

OMP and RA-DWT algorithms [31] are applied to separate and reconstruct our desired 

respiration and heartbeat signals. Finally, we select data over a period of time for the cal-

culation of respiration and heart rates by the peak detection algorithm [32]. In the range 

of sampling rates and frequencies, we calculate the inter-peak distance of the signal. We 

denote the minimum inter-peak distance by Pmin , and the maximum inter-peak distance 

by Pmax . �e first peak in the waveform is selected as the valid peak, and the next valid 

peak is selected such that the distance between the current peak and the previous valid 

peak is within the interval [ Pmin , Pmax ]. In addition, if the amplitude of the signal peak is 

too high or too low, it can be treated as an invalid peak. After separating the valid peaks, 

the signal period is based on the average of the inter-peak distances of all valid peaks, 

and the frequency is regarded as the reciprocal of the period.

4  Experimental results and analysis

�e experimental platform used in this paper is the AWR1642 radar and DCA1000 data 

acquisition card, as shown in Fig. 8. �e time-division-multiplexing multiple-input-mul-

tiple-output (TDM-MIMO) mode of the radar is used, and the two transmitting anten-

nas send FM pulses alternately according to the time gap and obtain the vital signs data 

of the human targets. In the experiment, the human targets are sitting in front of the 

radar in a relatively stable posture to verify the effectiveness of the proposed method. 

Table  1 shows the specification of the radar parameters for multi-target vital signs 

detection.

4.1  Vital signs detection of two human targets

Firstly, we investigate the case of two human targets sitting in the same radial range and 

the experimental scene in a real environment is shown in Fig. 9a. We use a window of 

T ≈ 30 s to estimate the vital signs. �e corresponding schematic diagram of Fig. 9a is 

shown in Fig. 9b. �e range-angle results of 3D-FFT are shown in Fig. 9c. We find that 

the 3D-FFT method cannot separate the two human targets at the same distance. �is is 

mainly due to the swaying of the right arm of target 2 that causes a large interference for 

target extraction. �e interference between the targets is suppressed using the proposed 

LCWV-ADBF method, and the obtained beam direction is shown in Fig. 9d. A gap can 

be seen at the 0 ◦ , and this trap makes the interference power between the two targets 

reduced, successfully suppressing the undesired signal. �e range-angle information of 

LCMV-ADBF is shown in Fig. 9e. �e position information of the two subjects can be 

Fig. 7 CFAR processing
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clearly determined, and the two human target signals are successfully separated. �e 

CFAR technique can be used to determine the target location adaptively and filter out 

static target interference, and the results are given in Fig. 9e.

Before the estimation of respiration and heartbeat rates, we need to solve the problem 

of DC offset. We take the real part of the radar data as the horizontal axis and the imagi-

nary part as the vertical axis. �e results obtained by applying the circle center tracking 

algorithm to DC offset correction are shown in Fig. 10. �e green point is the experi-

mental data, and the purple point is the data after DC offset correction. We can clearly 

see that the center of the green circle is offset from the center of the purple circle.

After separating the human targets, the CS-OMP algorithm is applied to detect the 

vital signs of the two human targets, and the vital signs signals are given in Fig. 11. Fig-

ure 11a, c shows the time domain waveform of the respiratory and heartbeat signals of 

target 1 and 2, respectively, which are presented as quasi-periodic. Figure 11b, d shows 

the frequency domain waveforms of respiratory and heartbeat signals of target 1 and 2, 

respectively. �e respiratory rates of target 1 and 2 are 0.72 Hz and 0.56 Hz, respectively. 

�e heartbeat rates are 1.34 Hz and 1.20 Hz, respectively, and the results are in accord-

ance with the human respiratory and heartbeat frequencies.

4.2  The level of agreement for respiration and heartbeat rates

Moreover, a special experimental requirement is imposed on the two subjects in order 

to validate the effectiveness of the method proposed. �e subjects 1 and 2 are made to 

Table 1 Parameters setting for multi-human target vital sign detection

Parameters Speci�cations

Start frequency 77 GHz

Sample rate 2 Msps

Chirp duration 50 us

Sampling points 100

Range resolution 4.3 cm

Bandwidth 4 GHz

Angular resolution 17.5◦

Transmitting power 12.5 dBm

Fig. 8 Experimental platform
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alternate between normal breathing and hold breathing, and each breathing pattern is 

continued for 10 s. �e phase unfolding signals of the vital characteristics of the two 

individuals are obtained in Fig.  12. During breathing, the small-amplitude heartbeat 

waveform is attached to the respiratory waveform. When the tester holds breath, only 

the small-amplitude heartbeat waveform is presented. �is proves the effectiveness of 

the proposed method for two target vital signs detections. During breathing, a small-

amplitude heartbeat waveform is attached to the respiratory waveform. When breath-

ing is held, small-amplitude heartbeat waveforms are presented. Moreover, it is also 

(a) Experimental scene. (b) Schematic.
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Fig. 9 Two human targets detection
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Fig. 11 Time and spectrum of two human targets
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observed from the figure that the two human targets complete the respiratory pat-

tern shift at almost the same moment, which validate the effectiveness of the proposed 

method.

4.3  Vital sign detection for three human targets

In order to verify the scalability of the system, experiments are carried out considering 

three human targets, and the scenario in real environment is given in Fig. 13a. Similar 

to Figs. 9, 13c shows the experimental results obtained by using the proposed method 

at different angles for three subjects at a distance of 1 m. �e use of LCMV-ADBF tech-

nology can not only suppress the influence of the interference on angle of arrival (AOA) 

direction, but also reduce the mutual influence among multiple targets. As shown in 

Fig. 13c, without LCMV-ADBF, the SNR of human target 2 is greater than that of human 

targets 1 and 3, resulting in the inability to distinguish multiple targets in the RAM. As 

in Fig. 13d, the ADBF is used to generate trapped waves around 0 ◦ of human target 2 to 

reduce the effect of human target 2 on the remaining human targets. Figure 13e shows 

that when combines ADBF with CFAR, multiple targets can be clearly distinguished in 

RAM. It should be noted that since the human targets occupy a certain angle, only three 

human targets can be occupied in the radar field of view, we will verify more human tar-

gets in the future.

In the experiment, eight males and seven females are invited to perform multi-target 

vital signs of radar data acquisition in two-person and three-person groups, respectively. 

�e length of 1-min radar data is intercepted, and the proposed LCMV-ADBF algo-

rithm is applied to the separated the human targets to separate and reconstruct using 

the wavelet transform and CS-OMP method. �e peak detection method was used for 

respiration and heartbeat rates estimation, and the Pearson coefficient [33] is used to 

calculate the degree of agreement between the results obtained by proposed method and 

the reference sensors, and the results are shown in Tables 2 and 3.

From the experimental results, it can be seen that in the case of two human tar-

gets, the level of agreement of the respiratory obtained by CS-OMP and RA-DWT 

methods and the contact devices are 89% and 90%, respectively, and the correspond-

ing degree of agreement of heartbeat are 87%. In the case of three human targets, 

the degree of agreement of the respiratory obtained by two methods and the contact 
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Fig. 12 Two human targets with alternate breathing
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devices are both 87%, respectively, and the degree of agreement heartbeat are both 

87%. The accuracy of respiratory and heartbeat rates will be further reduced. Com-

pared with [31], the single human respiration and heart rates obtained by the same 

algorithm are 96% and 94%, respectively. It is obvious that there is a small decrease 

in the accuracy of detection of multiple human target vital signals. It is possible 

because by increasing the number of human targets, the motion artifacts such as 

hand gestures or small movements like shaking of legs will introduce interference. 

Moreover, when the human bodies are too close together, the signal overlap will be 

caused between multiple targets, and the human bodies with strong vital signals will 

cover up the weak vital signals between neighboring human target, which in turn 

(a) Experimental scene. (b) Schematic.
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Fig. 13 Three-human target detection
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affects the detection matching rate. Nevertheless, the above experiments show our 

contributions in the field of multi-target vital signs extraction and prove the feasibil-

ity of multi-target vital signs detection.

Table 2 Comparison of the respiration and heartbeat rates between two targets

Category Groups Targets Air�ow sensor AWR1642 radar sensor

CS-OMP RA-DWT

Respiration 1 Male 1 21 18 21

Male 2 23 21 22

2 Female 1 24 26 26

Female 2 26 25 28

3 Male 3 20 18 22

Female 3 24 25 25

PCC – – 89% 90%

Heartbeat 1 Male 1 70 75 68

Male 2 77 74 79

2 Female 1 63 66 67

Female 2 84 80 80

3 Male 3 71 76 76

Female 3 68 71 72

PCC – – 87% 87%

Table 3 Comparison of the respiration and heartbeat rates between three targets

Category Groups Targets Air�ow sensor AWR1642 radar sensor

CS-OMP RA-DWT

Respiration 4 Male 4 21 20 20

Male 5 22 24 21

Male 6 27 25 24

5 Female 4 19 18 19

Female 5 24 22 21

Female 6 21 23 17

6 Male7 18 16 19

Male8 25 23 22

Female7 27 29 24

PCC – – 87% 87%

Heartbeat 4 Male 4 68 65 64

Male 5 88 82 84

Male 6 73 69 76

5 Female 4 72 68 75

Female 5 70 74 66

Female 6 85 79 80

6 Male7 70 73 76

Male8 85 81 81

Female7 71 75 67

PCC – – 85% 85%
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5  Conclusion

In this paper, we estimated the range and angle of multiple targets using 3D-FFT-

based method. �en, the LCMV-ADBF technique was proposed for interference sup-

pression to enhance the desired respiratory and heartbeat signal. �e CS-OMP and 

RA-DWT methods were applied to separate and construct the respiration and heart-

beat signals of the separated human target. �e experimental results were compared 

with the reference ones of contact sensors (Airflow sensors and Apple Watch 6). �e 

results showed that the proposed method could effectively extract the respiration and 

heartbeat signals from multiple human targets. Compared with the contacted sen-

sors, the degree of agreement for respiration and heartbeat rates are more than 87% 

for two human targets and 85% for three human targets. In the following study, we 

will make more efforts on the detection of vital signals under target movement.
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