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Abstract This paper presents results on the guidance and control of fleets of co-
operating Unmanned Aerial Vehicles (UAVs). A key challenge for these
systems is to develop an overall control system architecture that can
perform optimal coordination of the fleet, evaluate the overall fleet per-
formance in real-time, and quickly reconfigure to account for changes in
the environment or the fleet. The optimal fleet coordination problem in-
cludes team composition and goal assignment, resource allocation, and
trajectory optimization. These are complicated optimization problems
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for scenarios with many vehicles, obstacles, and targets. Furthermore,
these problems are strongly coupled, and optimal coordination plans
cannot be achieved if this coupling is ignored. This paper presents
an approach to the combined resource allocation and trajectory opti-
mization aspects of the fleet coordination problem which calculates and
communicates the key information that couples the two. Also, this ap-
proach permits some steps to be distributed between parallel processing
platforms for faster solution. This algorithm estimates the cost of var-
ious trajectory options using the distributed platforms and then solves
a centralized assignment problem to minimize the mission completion
time. The detailed trajectory planning for this assignment can then be
distributed back to the platforms. During execution, the coordination
and control system reacts to changes in the fleet or the environment.
The overall approach is demonstrated on several example scenarios to
show multi-task allocation and cooperative path planning prior to the
mission and to show dynamic re-planning to account for changes in the
environment during execution.

Keywords: Distributed coordination, Unmanned aerial vehicles, Task allocation,
Trajectory design, Mixed-integer linear programming.

1. Introduction
The capabilities and roles of Unmanned Aerial Vehicles (UAVs) are

evolving, and require new concepts for their control. Today’s UAVs
typically require several operators for control, but future UAVs will be
designed to make their own tactical decisions autonomously and will
be integrated into teams that coordinate to achieve high-level goals,
thereby allowing one operator to control a fleet of UAVs [1]. This level
of autonomy will require new methods in planning and execution to
coordinate the achievement of goals between the UAVs in the fleet.

The simplest form of a mission for a fleet of UAVs (e.g. a Suppression
of Enemy Air Defenses (SEAD) mission) can be generalized as visiting
a set of NW waypoints, while avoiding the “No Fly Zones”. Further
constraints can be added to this problem, including waypoint types that
only a subset of the fleet is capable of visiting; simultaneous, delayed
or ordered arrival at waypoints; and collision avoidance between UAVs.
Numerous changes can also occur during the mission execution, such as
movement, addition, or removal of waypoints and No Fly Zones, and the
addition or loss of members of the fleet. An example of a fleet coordi-
nation scenario including capability constraints is shown in Fig. 1.1.

Designing a coordinated mission plan that satisfies these constraints
can be viewed as three coupled decisions: (i) Teams are formed and
group goals are assigned to each team; (ii) Tasks that achieve the group
goals are assigned to each team member; and (iii) A path is designed
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for each team member that achieves their tasks while adhering to spa-
tial constraints, timing constraints, and the dynamic capabilities of the
aircraft. The coordination plan is designed to minimize some cost, such
as the completion time or the probability of mission failure. The over-
all control system then monitors the execution of the coordinated plan,
and reacts to changes in the fleet, the environment, or the goals. This
work assumes that lower-level controllers are present on each vehicle that
are capable of following the planned path and performing the activities
required at each waypoint.

Even if each of the three fleet coordination decisions is considered
in isolation, it is clear that they are computationally demanding tasks.
For even moderately sized problems, the number of combinations of
possible teams, task allocations, and waypoint orderings that must be
considered for the team formation and task assignment decisions is very
large, growing at a non-polynomial rate that is at least the number
of permutations of NW elements taken NW at a time. The problem
of planning kinematically and dynamically constrained optimal paths,
even for one aircraft, is also a very high dimension nonlinear optimization
problem [2]. The optimal path planning problem requires a trajectory
of control inputs to be designed that guide the UAV to its destination in
minimum time, subject to control input limits, the differential equations
representing the aircraft dynamics, and kinematic constraints presented
by the No Fly Zones.

As difficult as each of these three decisions is to make in isolation,
they are in fact strongly coupled because the optimality of the overall
coordination plan is strongly limited by the team partitioning and task
allocation. However, it is not clear how to make these decisions opti-
mally until detailed trajectories have been planned, because the cost to
be minimized by these decisions is a function of the resulting detailed
trajectories. This coupling has been handled in one approach [3] by form-
ing a large optimization problem that simultaneously assigns the tasks
to vehicles and plans corresponding detailed trajectories. This method
is computationally intensive, but it is guaranteed to find the globally-
optimal solution to the problem and thus can be used as a benchmark
against which the techniques presented in this paper can be compared [3].

Another approach to this problem is to decouple the decisions to some
degree in order to make the problem computationally tractable, while
maintaining the essential aspects of the coupling in order to approach op-
timality. This paper presents such a partially-decoupled approach to the
task allocation and trajectory optimization problems which calculates
and communicates the key information that couples the two problems,
and distributes the computational effort of some steps between paral-
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Figure 1.1. Schematic of a typical mission scenario for a UAV fleet with numerous
waypoints, No Fly Zones and capabilities

lel processing platforms to improve the solution time. This partially-
decoupled approach is shown to yield coordinated mission plans that
are very close to the optimal solution [3].

Several previous studies have investigated methods of trajectory plan-
ning for coordination and control. Trajectory generation methods in-
clude the use of Voronoi diagrams [4], adaptive random search algo-
rithms [5], model predictive control [6], and mixed-integer linear pro-
gramming [3, 7]. However most of these methods are too computation-
ally expensive for the multi-vehicle, multi-waypoint scenarios considered
in this work. Thus, this paper investigates an approximate method that
yields a fast estimate of the finishing times for the UAV trajectories
which can then be used in the task allocation problem. It performs this
estimation by using straight line path approximations. This method
takes advantage of the fact that, for typical missions, the shortest paths
for the UAVs tend to resemble straight lines that connect the UAVs’
starting position, the vertices of obstacle polygons, and the waypoints.
A more detailed trajectory generator is used to plan the UAV paths once
the waypoints have been assigned.

The task allocation problem has also been considered in various ap-
plications. One method of determining the task allocation is through
a network flow analogy [8]. This leads to a linear assignment problem
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that can be solved using integer linear programming. The task allocation
problem has also been studied using a market based approach [9, 10].
In this approach, vehicles bid on each possible task presented. A central
auction receives the bids and sends out the current price quote for each
task. A decision is reached when no new bids arrive. The approaches
discussed above handle some aspects of the task assignment, but they
cannot easily include more detailed constraints such as selecting the se-
quence of the tasks and the timing of when tasks must be completed.

This paper presents a mathematical approach to solve the task allo-
cation problem with the flexibility to include more detailed constraints
through the use of mixed-integer linear programming (MILP). The re-
sulting MILP problems can be readily solved using commercially avail-
able software such as CPLEX [11]. The combination of the approximate
cost algorithm and task allocation formulation presented in this paper
provides a flexible and efficient means of assigning multiple objectives
to multiple vehicles under various detailed constraints.

2. Problem Formulation
The algorithms described here assume that the team partitioning has

already been performed, and that a set of tasks has been identified which
must be performed by the team. This paper presents algorithms that
assign the tasks to team members and design a detailed trajectory for
each member to achieve its tasks. The team is made up of NV UAVs
with known starting states and maximum velocities. The starting state
of UAV p is given by the pth row [ x0p y0p ẋ0p ẏ0p ] of the matrix
S0, and the maximum velocity of UAV p is given vmax,p. The waypoint
locations are assumed to be known, and the position of waypoint i is
given by the ith row [ Wix Wiy ] of the matrix W. The application of
the algorithms presented in this paper to No Fly Zones that are bounded
by polygons is straightforward, but the case where the polygons are
rectangles will be presented here for simplicity. The location of the
lower-left corner is given by (Zj1, Zj2), and the upper-right corner by
(Zj3, Zj4). Together, these two pairs make up the jth row of the matrix
Z. Finally, the UAV capabilities are represented by a binary capability
matrix K. The entry Kpi is 1 if vehicle p is capable of performing the
tasks associate with waypoint i, and 0 if not.

This algorithm produces a trajectory for each vehicle, represented for
the pth vehicle by a series of states stp = [ xtp ytp ẋtp ẏtp ], t ∈ [1, tp],
where tp is the time at which aircraft p reaches its final waypoint. The
finishing times of all vehicles make up the vector t.
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This work is concerned with coordination and control problems in
which the cost is a function of the resulting trajectories. This is a broad
category of coordination and control problems, and includes costs that
involve completion time or radar exposure, and constraints on coordi-
nated arrival or maximum range. While a cost function has been chosen
that penalizes both the maximum completion time and the average com-
pletion times over all UAVs, the approach presented here can be gener-
alized to costs that involve other properties of the trajectories. The cost
used in this paper can be written as

t̄ = max
p

tp (1)

J1(t̄, t) = t̄ +
α

NV

NV∑

p=1

tp (2)

where α� 1 weights the average completion time compared to the max-
imum completion time. If the penalty on average completion time were
omitted (i.e., α = 0), the solution could assign unnecessarily long tra-
jectories to all UAVs except for the last to complete its mission. Note
that, because this cost is a function of the completion time for the en-
tire fleet, it cannot be evaluated exactly until detailed trajectories have
been planned that visit all the waypoints and satisfy all the constraints.
The minimum cost coordination problem could be solved by planning
detailed trajectories for all possible assignments of waypoints to UAVs
and all possible orderings of those waypoints, then choosing the detailed
trajectories that minimize cost function J1(t̄, t). However, the computa-
tional effort required to plan one detailed trajectory is large, and given
all possible assignments and orderings, there exist a very large number
of potential detailed trajectories that would have to be designed. For
the relatively small coordination problem shown in Fig. 1.1, there are
1296 feasible allocations, and even more possible ordered arrival permu-
tations.

3. Algorithm Overview
Clearly, planning detailed trajectories for all possible task allocations

is not computationally feasible. Instead, the algorithm presented in this
paper constructs estimates of the finishing times for a subset of the
feasible allocations, then performs the allocation to minimize the cost
function evaluated using the estimates. Next, detailed UAV trajectories
are designed, and checked for collisions between vehicles. The main steps
in the algorithm are shown in Fig. 1.2 and are described in the following.
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Figure 1.2. Steps in the task assignment and trajectory planning algorithm

First, a list of all unordered feasible task combinations is enumerated
for every UAV, given its capabilities. Next, the length of the short-
est path made up of straight line segments between the waypoints and
around obstacles is calculated for all possible order-of-arrival permu-
tations of each combination. The construction of these paths can be
performed extremely rapidly using graph search techniques. The min-
imum finishing time for each combination is estimated by dividing the
length of the shortest path by the UAV’s maximum speed. Some of the
tasks allocations and orderings have completion times that are so high
that they can confidently be removed from the list.

With these estimated finishing times available, the task allocation
problem can be performed to find the minimum of the estimated costs.
MILP is well suited to solving this optimization problem, because it al-
lows Boolean logic to be incorporated into constraints [12, 13]. These
constraints can naturally express concepts such as “exactly one aircraft
must visit every waypoint”, and extend well to more complex concepts
such as ordered arrival and obstacle avoidance [14]. Once the optimal
task allocation is found using the estimated completion times, detailed
kinematically and dynamically feasible trajectories that visit the as-
signed waypoints can be planned and checked for collision avoidance
between UAVs [15]. If the minimum separation between UAVs is vio-
lated, the trajectories can be redesigned to enforce a larger separation
distance (shown by loop B in Fig. 1.2). If desired, or if the comple-
tion time of the detailed trajectory plan is sufficiently different from the
estimate, detailed trajectories can be planned for several of the task allo-
cations with the lowest estimated completion times. The task allocation
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Figure 1.3. Steps in the distributed task assignment and trajectory planning algo-
rithm

can then be performed using these actual completion times (shown by
loop A in Fig. 1.2).

This strategy also casts the task allocation and detailed trajectory
planning problems in a form that allows parts of the computation to
be distributed to parallel platforms, as shown in Fig. 1.3. By making
the processes of estimating the costs and designing detailed trajectories
independent for each vehicle, they can be performed separately. The
parallel platforms could be processors onboard the UAVs, or could be
several computers at a centralized command and control facility. Hav-
ing described how the steps in the algorithm are related, methods for
performing them will be described next.

4. Finding Feasible Permutations and
Associated Costs

This section presents a detailed analysis of the process for developing
a list of feasible task assignments, finding approximate finishing times
for each task assignment, and pruning the list. This step accepts the air-
craft starting states S0, capabilities K, obstacle vertex position Z, and
waypoint positions W. The algorithm also accepts two upper bound-
aries: nmax specifies the maximum number of waypoints that a UAV
can visit on its mission, and tmax specifies the maximum time that any
UAV can fly on its mission. From these inputs this algorithm finds, for
each UAV and each combination of nmax or fewer waypoints, the order
in which to visit the waypoints that gives the shortest finishing time.
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Figure 1.4. Visibility
graph and shortest paths
between UAV 6 and all
waypoints.

Figure 1.5. Shortest
path for UAV 6 over one
combination of waypoints.

Figure 1.6. Shortest
paths for all UAVs over
same combination of
waypoints.

The steps in this algorithm are depicted in Figs. 1.4–1.6, in which
a fleet of UAVs (shown with ◦) must visit a set of waypoints (shown
with ×). The first step is to find the visibility graph between the UAV
starting positions, waypoints, and obstacle vertices. The visibility graph
is shown in Fig. 1.4 with grey lines. Next, UAV 6 is considered, and
the visibility graph is searched to find the shortest paths between its
starting point and all waypoints, as shown in Fig. 1.4 with black lines.
In Fig. 1.5, a combination of three waypoints has been chosen, and the
fastest path from UAV 6’s starting position through them is shown. The
order-of-arrival for this path is found by forming all possible order-of-
arrival permutations of the unordered combination of waypoints, then
summing the distance over the path associated with each order-of-arrival
from UAV 6’s starting point. The UAV is assumed to fly this distance
at maximum speed, and the order-of-arrival with the shorted associated
finishing time is chosen. In Fig. 1.6, the fastest path to visit the same
combination of waypoints is shown for each vehicle. Note that the best
order-of-arrival at these waypoints is not the same for all vehicles.

The algorithm produces four matrices whose jth columns, taken to-
gether, fully describe one permutation of waypoints. These are the row
vector u, whose uj entry identifies which UAV is involved in the jth

permutation; P, whose Pij entry identifies the ith waypoint visited by
permutation j; V, whose Vij entry is 1 if waypoint i is visited by permu-
tation j, and 0 if not; T, whose Tij entry is the time at which waypoint
i is visited by permutation j, and 0 if waypoint i is not visited; and c,
whose cj entry is the completion time for the jth permutation. All of the
permutations produced by this algorithm are guaranteed to be feasible
given the associated UAV’s capabilities.

All steps in this approach are shown in Algorithm 1. In this algo-
rithm, finding the shortest distance between a set of waypoints and
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1: Find shortest distances between all waypoint pairs (i, j) as D(i, j)
using Z and W.

2: for all UAVs p do
3: Find shortest distances d(i) between start point of UAV p, and all

waypoints i using S0, Z, and W.
4: for all combinations of nC waypoints that p is capable of visiting,

nC = 1 . . . nmax do
5: for j = 1 . . . nCPnC do
6: Make next unique permutation P ′

1j . . . P ′
nCj of waypoints in

the combination
7: c′j =

d(P ′
1j)

vmax,p

8: T ′
P ′

1jj = c′j
9: for i = 2 . . . nC do

10: if c′j > tmax then
11: go to next j
12: end if
13: c′j ← c′j +

D(P ′
(i−1)j

,P ′
ij)

vmax,p

14: T ′
P ′

ijj = c′j
15: end for
16: end for
17: Append p to u
18: Append a column to V, whose ith element is 1 if waypoint i is

visited, 0 if not.
19: jmin = minargj c′j
20: Append cjmin

to c
21: Append column jmin of T′ to T and column jmin of P′ to P
22: end for
23: end for
Algorithm 1: Algorithm for finding shortest paths between waypoints

starting points is performed by finding the visibility graph between the
points and vertices of obstacles, then applying an appropriate shortest
path algorithm, such as the Floyd-Warshall All-Pairs Shortest Path al-
gorithm [16]. Note that the iterations through the “for loop” between
lines 2 and 23 of Algorithm 1 are independent, and can be distributed
to parallel processors. The corresponding matrices from each processor
can then be combined and passed onto the next stage in the algorithm,
the task allocation problem.
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5. Task Allocation
The previous section outlined a method of rapidly estimating comple-

tion times for individual vehicles for the possible waypoint allocations.
This section presents a mathematical method of selecting which of these
assignments to use for each vehicle in the fleet, subject to fleet-wide task
completion and arrival timing constraints.

The basic task allocation problem is formulated as a Multi-dimensional
Multiple-Choice Knapsack Problem (MMKP) [17]. In this classical prob-
lem, one element must be chosen from each of multiple sets. Each chosen
element uses an amount of each resource dimension, but yields a bene-
fit. The choice from each set is made to maximize the benefit subject to
multi-dimensional resource constraints.

In the UAV task allocation problem, the choice of one element from
each set corresponds to the choice of one permutation for each vehicle.
Each resource dimension corresponds to a waypoint, and a permuta-
tion uses 1 unit of resource dimension i if it visits the ith waypoint.
The arrival constraints are then transformed into constraints on each
resource dimension. The negative of the completion times in this prob-
lem is equivalent to the benefit. Thus the overall objective is to assign
one permutation (element) to each vehicle (set) that is combined into
the mission plan (knapsack), such that the cost of the mission (knap-
sack) is minimized and the waypoints visited (resources used) meet the
constraint for each dimension. The problem can be written as

min J2 =
NM∑

j=1

cjxj

subject to
NM∑

j=1

Vijxj ≥ wi

Np+1−1∑

j=Np

xj = 1

(3)

where the permutations of vehicle p are numbered Np to Np+1 − 1,
with N1 = 1 and NNV +1 = NM + 1 and the indices have the ranges
i ∈ {1, . . . , NW }, j ∈ {1, . . . , NM}, p ∈ {1, . . . , NV }. cj is a vector of
costs (mission times) for each permutation. xj is a binary decision vari-
able equal to one if permutation j is selected, and 0 otherwise. The cost
in this problem formulation minimizes the sum of the times to perform
each selected permutation. The first constraint enforces that waypoint i
is visited at least wi times (typically wi = 1). The second constraint pre-
vents more than one permutation being assigned to each vehicle. The
MMKP formulation is the basic task allocation algorithm. However,
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modifications are made to the basic problem statement to include addi-
tional cost considerations and constraints.

Modified Cost: Total Mission Time. The first modification for the UAV
allocation problem is to change the cost. The cost in Eq. 2 is a weighted
combination of the sum of the individual mission times (as in the MMKP
problem) and the total mission time. The new cost is as follows,

J3 = t̄ +
α

NV

NM∑

i=1

cixi (4)

The solution to the task allocation problem is a set of ordered sequences
of waypoints for each vehicle which ensure that each waypoint is visited
the correct number of times while minimizing the desired cost (mission
completion time).

Timing Constraints. Solving the task allocation as a centralized prob-
lem allows the inclusion of timing constraints on when a waypoint is
visited. For example, a typical constraint might be for one UAV to elim-
inate a radar site at waypoint A before another vehicle can proceed to
a waypoint B. The constraint would then be that waypoint A must be
visited tD time units before waypoint B, which can be included in the
task allocation problem. The timing constraint is met by either altering
the order in which waypoints are visited, delaying when a vehicle begins
a mission, or assigning a loitering time to each waypoint. The constraint
formulation in which vehicle p starts at V Tp and then executes its mis-
sion without delay is presented below. To construct the constraint, an
intermediate variable, WTi, is used to determine the departure time of
the vehicle that visits waypoint i. The constraint can be written as

NM∑

j=1

(TBjxj − TAjxj) + WTB −WTA ≥ tD (5)

WTA ≤ V Tp + R(1−
Np+1−1∑

j=Np

PAjxj) ∀ p ∈ {1, . . . , NV } (6)

WTA ≥ V Tp −R(1−
Np+1−1∑

j=Np

PAjxj) ∀ p ∈ {1, . . . , NV } (7)

WTB ≤ V Tp + R(1−
Np+1−1∑

j=Np

PBjxj) ∀ p ∈ {1, . . . , NV } (8)
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WTB ≥ V Tp −R(1−
Np+1−1∑

j=Np

PBjxj) ∀ p ∈ {1, . . . , NV } (9)

Constraint Eq. 5 enforces waypoint A to be visited tD time units before
B. Constraint Eqs. 6 – 9 are used to determine the start time for the
vehicles that are assigned the waypoints in the timing constraint. R is
a large number that relaxes the constraint if vehicle p does not visit the
waypoint in question. If vehicle p does visit waypoint A, R multiplies
0, and Equations 6 and 7 combine to enforce an equality relationship
WTA = V Tp. Note that using this formulation does not allow the same
vehicle to visit both waypoints unless one of the original permutation
met the timing constraint. This is because the start times WTA and
WTB would be the same and cancel in Eq. 5. Again these constraints
are added to the original problem in Eq. 3 to form a task allocation
problem including timing constraints. The cost must also be altered to
include the UAV start times as follows

J4 = t̄ +
α

NV

NM∑

i=1

cixi +
α

NV

NV∑

p=1

V Tp (10)

The constraints presented here for delaying individual start times can
be generalized to form other solutions to the timing constraint, such as
allowing a UAV to loiter at a waypoint before going to the next objective.

6. Reaction to Dynamic Environment
The task allocation problem is used to assign a sub-team of vehicles

to visit a set of waypoints based on the information (vehicle states, way-
point locations, and obstacles) known at the beginning of the mission.
However, throughout the execution of the mission the environment can
(and most likely will) change. As a result the optimal task allocation
could be dramatically altered. Note that if the problem size is sufficiently
small, it would be practical to perform a complete re-allocation using a
new set of costs based on the updated environment. However for larger
problems it would be beneficial to re-solve smaller parts of the allocation
problem. Two smaller problems are presented in this section. One is a
local repair where only one vehicle assignment is altered to meet the new
environment. Another is a sub-team allocation problem where only those
“directly influenced” by the change in environment are re-assigned.

Addition of Waypoint. As the mission is executed, it is possible that
further reconnaissance will identify a new goal or waypoint. The set
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of waypoints could be re-allocated amongst the entire fleet, but several
alternatives exist that can result in much smaller optimization problems.

The local repair method estimates the cost of adding the new waypoint
to each vehicle’s list of objectives using Alg. 1. The cost for each UAV
is determined using the UAV’s current state, the remaining waypoints
assigned to the UAV from the original problem, and the new waypoint.
The assignment of this waypoint that results in the smallest increase in
the cost function is then chosen. The local repair can be solved very
quickly, but it is a sub-optimal solution because it does not allow the
vehicles to trade previously assigned waypoints.

A sub-team problem can be formulated which only considers those
vehicles capable of visiting the new waypoint. These vehicles, their pre-
viously assigned waypoints, and the new waypoint are then considered
as a smaller task allocation problem. This allows any waypoints within
this group to be traded amongst the vehicles (subject to each vehicle’s
capabilities), but it is still sub-optimal because it does not consider the
possibility that some waypoints of a type different than the new one
could be traded to UAVs that are not in the sub-team considered. The
full re-allocation problem would, of course, consider this coupling in the
problem, but this would typically take longer to compute.

Addition/Removal of Obstacle. The addition or removal of an obstacle
is considered by estimating the new cost for each vehicle given their
current assigned waypoints with (and without) the obstacle in question.
If the vehicle’s cost estimate changes, then that vehicle is considered to
be influenced by the obstacle.

If the vehicle is influenced by the obstacle, the local repair method
does not change its assignment of waypoints, but redesigns its detailed
trajectory to account for the change. The sub-team problem considers
all vehicles that are influenced by the obstacle. The vehicles and their
previously assigned waypoints are grouped into a new allocation problem
and the re-assignment is performed for this subset of the fleet. The full
re-allocation problem could also be solved for this situation.

The methods presented in this paper only consider unexpected changes
in the environment, such as a waypoint suddenly appearing, or an ob-
stacle appearing/disappearing. Another dynamic problem to consider is
when knowledge of the environment includes a change that will occur at
some future time or due to the actions of the vehicles, such as removal of
an obstacle by a vehicle. Formulations of the cost estimation and task
allocation steps that take advantage of expected changes are areas of
current research.
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7. Simulations
The problem formulation presented in this paper leads to cooperative

path planning in the sense that the task assignments to each UAV are
made in a centralized way. In particular, the tasks are divided amongst
the vehicles in the fleet to minimize the overall cost. The problem formu-
lation also allows multi-task assignments, possibly assigning a sequence
of several tasks to a single UAV. The complete approach is illustrated
in this section using several examples.

A small problem is first considered to show how the assignment changes
when constraints are added. The basic scenario includes three UAVs and
four waypoints to be visited. There are also two obstacles in the envi-
ronment. The objective is to visit each waypoint once and only once
in minimum time. Each vehicle also must take at least one waypoint.
The costs for each vehicle to visit a sequence of waypoints is determined
using the approximate cost algorithm presented earlier. The task allo-
cation is then determined through the modified MMKP problem. The
basic problem is formed using Eqs. 1–3.

The first solution, shown in Fig. 1.7, is the basic allocation problem.
The UAVs are homogeneous so any vehicle can visit any waypoint. The
solution for this problem is relatively straightforward, with each vehicle
visiting waypoints that are close. The mission time in this case is 19.75.
The second scenario is the same basic problem except now the vehicles
are heterogenous. Each vehicle is capable of performing different tasks.
UAV 1 can visit waypoints 1, 2, 4, UAV 2 can visit any waypoints, and
UAV 3 can visit waypoints 2, 3. The vehicle capabilities were enforced
by only considering waypoint permutations that were feasible for each
vehicle. The result for this case is the slightly less obvious solution shown
in Fig. 1.8. Because UAV 3 can no longer visit waypoint 4, the solution
now assigns UAV 1 to waypoint 1 before going to waypoint 4. Waypoint
1 is assigned to UAV 1 because it can be achieved with little deviation
in the route to get to waypoint 4. UAV 2 is assigned only waypoint 3
because it is the furthest objective. Note that two of the vehicle paths
cross and a post check for collisions would be required. The mission time
for this scenario increased to 19.90 time units. This problem was also
solved using the approach described in [3], which is guaranteed to find
the globally optimal coordinated mission plan. The allocation found in
Fig. 1.8 was verified to be the global optimum, and was found much
more rapidly by the approach presented here. The third scenario is the
same as the second problem with the addition of the timing constraint
that waypoint 4 must be visited 5 time units before waypoint 1. The
timing constraint is included using Eq. 5. The solution to this problem
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Figure 1.7. Scenario has 3 homogeneous
vehicles, which is the basic task alloca-
tion problem.
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Figure 1.8. Same problem as Fig. 1.7,
plus heterogenous capabilities shown in
the legend.
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Figure 1.9. Same problem as Fig. 1.8,
plus waypoint 4 must be visited 5 time
units before waypoint 1.
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(see Fig. 1.9) results in a very different set of assignments and UAV 1
delays the start time by 14.15 units before proceeding to waypoint 1.
However, this results in only a small increase in mission time to 22.08
units.

The final simulation performed uses a much larger scenario that in-
cludes a fleet of 6 UAVs of 3 different types and 12 waypoints of 3
different types. The UAV capabilities are shown in Fig. 1.10. There
are also several obstacles in the environment. Again the objective is to
allocate waypoints to the team of UAVs in order to visit every waypoint
once and only once in the minimum amount of time. There are no tim-
ing constraints in this scenario. The solution is shown in Fig. 1.10. All
waypoints are visited subject to the vehicle capabilities in 23.91 time
units.

In order to understand the difficulty of this problem, a “greedy”
heuristic was applied to it. This heuristic performs allocation decisions
one waypoint at a time. It calculates the increase in the cost function in
Eq. 2 associated with allocating each waypoint to each capable vehicle.
The vehicle-waypoint allocation with the smallest associated increase in
the cost is selected. The allocated waypoint is removed from consider-
ation, and the receiving vehicle is considered to be at the waypoint’s
location for the next allocation. This procedure is repeated until all
waypoints are allocated. The greedy heuristic solved the large scenario
shown in Fig. 1.10 with a maximum completion time of 28.20, an increase
of 17.9%. In this coordination plan, the last waypoint to be allocated
caused a large increase in the completion time. This clearly shows that
locally justified decisions do not provide globally optimal fleet coordi-
nation plans, and that the MILP-based method presented here provides
significantly better results than heuristics with local scope.

8. Conclusions
This paper presents an approach to the task allocation and detailed

trajectory design components of the optimal fleet coordination problem.
The approach presented here partially decouples these problems. It effi-
ciently estimates finishing times associated with the different allocation
options, and provides this information to the allocation optimization.
The allocation is an extension of the MMKP problem, and is solved
as a MILP problem. A small number of detailed trajectories are then
designed to perform the allocated tasks. The results from several exam-
ples clearly illustrate the impact of including various constraints in the
fleet assignment problem. They also clearly illustrate that the partially-
decoupled method presented here was capable of solving a large prob-
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Figure 1.10. Scenario has three pairs of heterogenous vehicles with 12 waypoints (3
different types). Figure legend shows which vehicles can visit each waypoint. The
scenario demonstrates task allocation for a large problem with heterogenous vehicles
using the approximate cost method.

lem involving many obstacles and waypoints. Future work will compare
these approximate results with the globally-optimal solution available
from the full MILP solution.
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