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Multi-task CNN Model for Attribute Prediction
Abrar H. Abdulnabi, Student Member, IEEE, Gang Wang, Member, IEEE, , Jiwen Lu, Member, IEEE

and Kui Jia, Member, IEEE

Abstract—This paper proposes a joint multi-task learning
algorithm to better predict attributes in images using deep
convolutional neural networks (CNN). We consider learning
binary semantic attributes through a multi-task CNN model,
where each CNN will predict one binary attribute. The multi-
task learning allows CNN models to simultaneously share visual
knowledge among different attribute categories. Each CNN
will generate attribute-specific feature representations, and then
we apply multi-task learning on the features to predict their
attributes. In our multi-task framework, we propose a method
to decompose the overall model’s parameters into a latent task
matrix and combination matrix. Furthermore, under-sampled
classifiers can leverage shared statistics from other classifiers
to improve their performance. Natural grouping of attributes is
applied such that attributes in the same group are encouraged to
share more knowledge. Meanwhile, attributes in different groups
will generally compete with each other, and consequently share
less knowledge. We show the effectiveness of our method on two
popular attribute datasets.

Index Terms—Semantic Attributes, Multi-task learning, Deep
CNN, Latent tasks matrix.

I. INTRODUCTION

USING semantic properties, or attributes, to describe

objects is a technique that has attracted much attention

in visual recognition research [13], [30]. This is due to the

fact that learning an object’s attributes provides useful and

detailed knowledge about it, and also serves as a bridge

between low-level features and high-level categories. Various

multimedia applications can benefit from attributes, among

which are the following: knowledge transfer, information

sharing between different target tasks, multimedia content

analysis and recommendation, multimedia search and retrieval

[5], [13], [14], [20], [30], [35], [36], [38], [43], [49].

Typically, discriminative learning approaches are used to

learn semantic attributes (attributes that have names) [13],

[27], [30]. Figure 1 shows two examples from the Clothing At-

tributes Dataset [7], where both images have different attribute

labels. Other types of attributes, such as data-driven ones,
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Black: Yes, Necktie: Yes, 

Gender: Male, Strips: No, 

Yellow: No, White: No, 

Skin Exposure: No ...

Black: Yes, Necktie: No, 

Gender: Female, Strips: Yes, 

Yellow: No, White: Yes, 

Skin Exposure: Yes ...

Fig. 1. Illustration of binary semantic attributes. Examples from Clothing
Attribute Dataset [7]. Yes/No indicates the existence/absence of the corre-
sponding attribute.

are learned in an unsupervised or weakly supervised man-

ner [32]. Relative attributes are also introduced and learned

through ranking methods (relative attributes have real values

to describe the strength of the attribute presence) [34], [45].

However, most of the existing literature employs discrimina-

tive classifiers independently to predict the semantic attributes

of low-level image features [13], [30], [46]. Very few works

model the relationship between object attributes, considering

the fact that they may co-occur simultaneously in the same

image [21], [44], [56].

Engineered low-level features like SIFT and HOG are

used in combination with various loss-objective functions for

attribute prediction purposes [13], [21], [30]. Improving the

prediction results gives a good indication of the successful

knowledge transfer of attributes between target tasks, for

example, recognizing presently unseen classes through the

transfer of attributes from another seen class [20], [30]. In the

work of [13], attribute models are learned to generalize across

different categories by training a naive Bayes classifier on the

ground truth of semantic attributes. Then, they train linear

SVM to learn non-semantic feature patterns and choose those

which can be well predicted using the validation data attribute.

The benefits of such generalization can be seen across different

object categories, not just across instances within a category.

On the other hand, deep CNN demonstrates superior per-

formance, dominating the top accuracy benchmarks in various
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vision problems [6], [17], [24], [50]. It has also been shown

that CNN is able to generate robust and generic features

[3], [40]. From a deep learning point of view, CNN learns

image features from raw pixels through several convolutions,

constructing a complicated, non-linear mapping between the

input and the output. The lower convolution layers capture

basic ordinary phrasing features (e.g., color blobs and edges),

and the top layers are able to learn more complicated struc-

ture (e.g., car wheel) [59]. Subsequently, it is believed that

such implementation of artificial Neural Networks mimics the

visual cortex in the human brain [24].

Attribute prediction introduces two additional issues be-

sides the typical object recognition challenges: image multi-

labeling and correlation-based learning. Compared to single

label classification, multi-labeling is more difficult. It is also

more likely to appear in real word scenarios, at which point,

an image would need to be tagged with a set of labels from

a predefined pool [41], [54]. For example, when a user types

their query to search for an image, such as ’red velvet cake’,

the engine should retrieve consistent results for real cake

images having a red velvet appearance. This is a difficult task

from a computational perspective due to the huge hypothesis

space of attributes (e.g., M attributes required 2M ). This limits

our ability to address the problem in its full form without

transforming it into multiple single classification problems

[57]. In particular, correlations should be explored between

all these singular classifiers to allow appropriate sharing of

visual knowledge. Multi-task learning is an effective method

for feature sharing, as well as competition among classifiers

(the so-called ’tasks’ in the term multi-task) [21], [62]. If tasks

are related and especially when one task lacks training data,

it may receive visual knowledge from other, more fit tasks

[1], [4], [19], [23], [31]. In the work of [21], they jointly

learn groups of attribute models through multi-tasking using

a typical logistic regression loss function.

Given the aforementioned issues, we propose an enhanced

multi-task framework for an attribute prediction problem. We

adapt deep CNN features as our feature representations to

learn semantic attributes. Because the structure of the CNN

network is huge, and thus requires powerful computation

ability, we employ the following methods: First, if the number

of attributes is small, we train multi-task CNN models together

through MTL, where each CNN model is dedicated to learning

one binary attribute. Second, if the number of attributes is

relatively large, we fine-tune a CNN model separately on

each attribute annotation to generate attribute-specific features,

and then we apply our proposed MTL framework to jointly

learn classifiers for predicting these binary attributes. The first

approach is more or less applicable depending on the available

resources (CPU/GPU and Memory). The visual knowledge

of different attribute classes can be shared with all CNN

models/classifiers to boost the performance of each individual

model. Among the existing methods in multi-tasking, the work

in [62] proposes a flexible method for feature selection by in-

troducing a latent task matrix, where all categories are selected

to share only the related visual knowledge through this latent

matrix, which can also learn localized features. Meanwhile,

the work in [21] interestingly utilizes the side information of

semantic attribute relatedness. They used structured sparsity

to encourage feature competition between groups and sharing

within each of these groups. Unlike the work in [62], we

introduce the natural grouping information and maintain the

decomposition method to obtain the sharable latent task matrix

and thus flexible global sharing and competition between

groups through learning localized features. Also, unlike the

work of [21], we have no mutual exclusive pre-assumptions,

such that groups may not overlap with each other in terms

of attribute members. However, as the hand-crafted feature

extraction methods can limit the performance, we exploit deep

CNN models to generate features that better suit the attribute

prediction case.

We test our method on popular benchmarks attribute

datasets: Animals with Attributes (AwA) [28] and the Clothing

Attributes Dataset [7]. The results demonstrate the effective-

ness of our method compared to standard methods. Because

the Clothing dataset contains a small number of attributes, we

successfully train our multi-task CNN model simultaneously.

In addition because the AwA dataset contains a relatively large

number of attributes, we first train each single CNN model on

a target attribute. Then, we apply our multi-task framework

on the generated features without instant back-propagation.

Our main contributions in this paper are summarized as

follows: 1) We propose an enhanced deep CNN structure

that allows different CNN models to share knowledge through

multi-tasking; 2) We propose a new multi-task method; we

naturally leverage the grouping information to encourage

attributes in the same group to share feature statistics and dis-

courage attributes in different groups to share knowledge. We

relax any constraints on the groups, such as mutual exclusion,

by decomposing the model parameters into a latent task matrix

and a linear combination weight matrix. The latent task matrix

can learn more localized feature, thus maintaining the ability

to select some basic patterns through its configuration.

The remaining parts of our paper are summarized as fol-

lows: We first discuss the related work in Section II. The

proposed method for the Multi-task CNN model in addition

to the details of our MTL framework are presented in Section

III. Experiments on two known attribute datasets and results

are demonstrated in Section IV. Finally, we conclude the paper

in Section V.

II. RELATED WORK

Because this work is mainly related to the topics of Seman-

tic attributes, Multi-task learning and Deep CNN, we briefly

review the most recent literature on these approaches including

the following.

A. Semantic Attributes

Definition of Attribute: a visual property that appears or

disappears in an image. If this property can be expressed in

human language, we call it a Semantic property. Different

properties may describe different image features such as

colors, patterns, and shapes [13]. Some recent studies con-

centrate on how to link human-interaction applications through

these mid-level attributes, where a consistent alignment should
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occur between human query expressions and the computer

interpretations of query attribute phrases.

Global vs. Local Attributes: an attribute is global if it

describes a holistic property in the image, e.g., ’middle aged’

man. Usually, global attributes do not involve specific object

parts or locations [21], [45], [60]. Localized attributes are

used to describe a part or several locations of the object, e.g.

’striped donkey’. Both types are not easy to infer, because if

the classifier is only trained on high-level labels without spatial

information like bounded boxes, the performance of the under-

sampled classifiers may degrade. However, some work in [21],

[62] show that sharing visual knowledge can offset the effects

of the lack of training samples.

Correlated Attributes: If attributes are related and cooccur

they are correlated. In other words, some attributes will

naturally imply others (e.g., ’green trees’ and ’open sky’ will

imply ’natural scene’), so this configuration will impose some

hierarchical relationship on these attribute classifiers. From

another angle, attributes can be weaved from the same portion

of the feature space and can be close to each other, e.g., ’black’

and ’brown’ attribute classifiers should be close to each other

in the feature dimension space, belonging naturally to the same

group, that is, the same color group [21]. While most of the ex-

isting methods train independent classifiers to predict attributes

[13], [30], [55], typical statistical models, like naive Bayesian

and structured SVM models, are used to address the problem.

In [13], the authors employ a probabilistic generative model to

classify attributes. In the work of [30], objects are categorized

based on discriminative attribute representations. Some works

flow by modeling the relationships between classes with pre-

assumptions of existing attribute correlations [1]. Unlike this

work, the decorrelation attribute method to resist the urge to

share knowledge is proposed in [21], and they assume that

attribute groups are mutually exclusive. Other work in [45]

proposes jointly learning several ranking objective functions

for relative attribute prediction.

Attributes and Multi-labeling: Image multi-labeling is sim-

ply learning to assign multiple labels to an image [37], [54].

If the problem is adapted as is, a challenge arises when

the number of labels increases and the potential output label

combinations become intractable [54]. To mitigate this, a

common transformation way is performed by splitting the

problem into a set of single binary classifiers [42]. Predicting

co-occurring attributes can be seen as multi-label learning.

On the other hand, most of the related works [21], [45] tend

to apply multi-task learning to allow sharing or using some

label relationship heuristics a priori [11]. Another work applies

ranking functions with deep CNN to rank label scores [17].

B. Multi-task learning

Why Mutli-task learning (MTL)? MTL has recently been

applied to computer vision problems, particularly when some

tasks are under-sampled [1], [4]. MTL is intended to impose

knowledge sharing while solving multiple correlated tasks

simultaneously. It has been demonstrated that this sharing can

boost the performance of some or sometimes all of the tasks

[4].

Task and Feature Correlations: Many strategies for sharing

have been explored; the first one considers designing different

approaches to discover the relationships between tasks [18],

while the other considers an approach that aims to find some

common feature structure shared by all tasks or mine the

related features [39]. Recent frameworks, like Max-margin

[61], Bayesian [58], and their joint extension [31], try to

discover either or both task and feature correlations. While

Max-margin is known by its discriminative power, Bayesian

is more flexible and thus better suited to engage any a priori

or performance inference [31]. In contrast to these studies,

the work in [16] claims that as in typical cases, the dimension

of the data is high; thus, the assumption that all the tasks

should share a common set of features is not reasonable. They

address such assumptions by simultaneously capturing the

shared features among tasks and identifying outliers through

introducing an outlier matrix [16]. In other works, [26],

[62], the authors further relax the constraint naturally by

decomposing the model parameters into a shared latent task

matrix and linear combination matrix; hence, all the tasks are

encouraged to select what to share through this latent matrix,

which can learn more localized features. However, among all

these techniques, they rely on popular ways to perform such

sharing through applying various regularizations on the model

parameters, such as structure sparsity for feature selection and

feature competition [1].

C. Deep CNN

CNN for feature learning: CNN was born in the Deep

Learning (DL) era [3], [6], [24]; its goal is to model high-

level abstractions of visual data by using multiple non-linear

transformation architectures. Among the DL models, CNN

shows extraordinary performance, specifically in image clas-

sification and object recognition applications [6], [24]. Two

bothersome issues about training CNN are the number of

training samples needed and the time that is required to fully

train the network. This means that to have an effective CNN

model, the training dataset and time should be large enough

for the CNN to gain the ability to perform its task well [24],

[50]. The learned features generated by the CNN are shown

to be robust, generic, and more effective than hand-crafted

features [12], [40]. Fortunately, popular implementations of

[12], [24] alongside the usage of pre-trained CNN models on

the Imagenet dataset [24] make it easier to fine-tune various

CNN architectures for many vision datasets.

CNN between single and multi-labels: using CNN for single

label prediction is intensively studied [3], [24]. There are

many challenges that accompany multi-labeling, as previously

discussed in the ’Attributes and Multi-labeling’ section. Hence,

training CNN directly is infeasible and impractical. However,

one recent work proposes a work-around solution for the

multi-label problem [57]. In this work [57], a shared CNN

is fed with an arbitrary number of object segment hypotheses

(image batches), which are extracted or generated by some

techniques, like the binarized normed gradients (BING) [10].

The final CNN output results for all of these hypotheses are

aggregated by max-pooling to give the final format of the
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Fig. 2. Multi-task CNN models: the input image(in the left) with attribute labels information is fed into the model. Each CNN will predict one binary
attribute. The shared layer L together with the S layer form a weight matrix of the last fully connected layer followed by a soft-max. The L layer is a shared
latent matrix between all CNN models. Each vector in S is CNN-specific weight matrix layer. The soft-max and loss layers are replaced by our multi-task
squared hinge loss. Group information about attribute relatedness is utilized during the training of the network.

multi-label predictions. Unlike their approach, our proposed

model holds the essence of tagging one image with multiple

labels through multi-task CNN models, which are simulta-

neously trained through MTL to allow sharing of the visual

knowledge. Another direction for multi-labeling is proposed

by [40], where the CNN is mainly used to generate off-

the-shelf activation features; then, they apply SVM for later

classifications. In our approach, when the number of attributes

is large, we fine-tune many CNN models, each of which is

dedicated to learning attribute-specific representations. These

representations are used as off-the-shelf features for later

stages in MTL, as we freeze their training while optimizing

the multi-task loss function.

Convexity as first aids for CNN: Some recent work [48],

[51] demonstrates that convex optimization can improve the

performance of highly non-convex CNN models. The authors

in [48] propose modifying the last two layers in the CNN

network by making a linear combination of many sub-models

and then replacing the original loss function by other ones

from the convex optimization family. One of their findings

is that hinge loss is one of the preferable convex functions

that performs well during backpropagation. Another work [51]

confirms their finding that using the well-known SVM squared

hinge loss does improve the final performance after training

the CNN. By utilizing such experimental integration findings,

we adopt a squared hinge loss framework to jointly optimize

all classifier models while applying multi-tasking to naturally

share visual knowledge between attribute groups.

In contrast to previous methods, our proposed approach is to

train multi-task classifier models on deep features for attribute

prediction and leverage a sharable latent task matrix that can

be very informative for generating a full description of the

input image in terms of attributes. Exploring the importance

of such a latent matrix is a topic of future interest.

III. MULTI-TASK CNN MODELS

In this section, we will explain the details of the proposed

approach of the multi-task CNN model. Figure 2 shows the

overall structure of the proposed method, starting from raw

images and ending with attribute predictions. Given a vocab-

ulary of M attributes, each CNN model will learn a binary

nameable attribute. After the forward pass in all of the CNN

models, the features generated from the last convolution layers

will be fed into our joint MTL loss layer. To illustrate this more

clearly, the weight parameter matrix learned in the loss layer

will be decomposed into a latent task matrix and a combination

matrix. The latent matrix can be seen as a shared layer between

all the CNN models; in other words, the latent layer serves as

a shared, fully-connected layer. Meanwhile, the combination

matrix contains the specific information of each CNN model.

It can also be seen as a specific fully-connected layer plugged

above the shared latent fully-connected layer. After optimizing

the joint loss layer and sharing the visual knowledge, each

CNN model will take back its specific parameters through

backpropagation in the backward pass. By presenting images

that are annotated against several attributes, we iteratively train

the whole structure until convergence.

We adopt the popular network structure proposed by

Krizhevsky [24], which consists of 5 convolutions, followed by

2 fully-connected layers and finally the softmax and the loss.

In addition, some pooling, normalization, and ReLU are ap-

plied between some of these layers. Many works have studied

and analyzed the nature of this structure and identified some

important aspects. For example, the work in [59] shows that

the parameters of the fully-connected layers occupy almost

70% of the total network capacity, which consumes a great

deal of effort while training the network. However, given the

expense of trading between ’good-but-fast’ and ’perfect-but-

slow’, the work in [3] shows that the performance will drop
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slightly when removing the fully-connected layers. Because

our model requires more than one CNN model, we remove the

last fully connected layers, as we substitute these layers with

our own joint MTL objective loss, depending on the weight

parameter matrix learned within.

In the following subsections, we demonstrate the shared

latent task matrix (which also can be seen as a shared layer

in the multi-task CNN models approach). Then, we show

how the feature sharing and competition is engaged. Next,

we introduce our formulations, which we use to solve the

attribute prediction problem. Finally, the total optimization

procedure used to train the whole network of multi-task CNN

models is described. In the remaining part of the paper, we will

use the task/CNN model as an interchangeable meaning for

classifier because in all cases we employ the same underlying

MTL framework. The only difference is that in one approach,

the attribute-specific feature learning is on-line, and the MTL

joint cost function optimization changes will affect the bottom

layers in all CNN models through back-propagation. Thus,

any shared knowledge will also be back-propagated to the

bottom layers. Meanwhile, in the other approach, we learn

these attribute-specific features in isolation of optimizing the

joint cost function, as training many on-line CNN models on

a large number of attributes is impractical.

A. Sharing the Latent Task Matrix in MTL

Given M semantic attributes, the goal is to learn a binary

linear classifier for each of them. Each classifier or task

has model parameters, which are denoted by wm and are

dedicated to predicting the corresponding attribute. W is the

total classifier weights matrix, which can also be considered

a softmax weights matrix but stacked from all CNN softmax

layers. Given N training images, each of them has a label

vector Y of M − dimension, such that Y i
m is either {1} or

{-1}, indicating whether a specific training image i contains

the corresponding m attribute having a value of {1} or not

{-1}. Suppose that the output from the last convolution layer

in each CNN model forms our input feature vectors, such that

each CNN model will generate an attribute-specific training

pool. Thus, we will have XN
M training examples aggregated

from all CNN models.

Our assumption is inspired from the work of [62], where

each classifier can be reconstructed from a number of shared

latent tasks and a linear combination of these tasks. Through

this decomposition, simultaneous CNN models can share

similar visual patterns and perform flexible selection from the

latent layer, which learns more localized features. We denote

L to be this latent task matrix, and sm is an attribute-specific

linear combination column vector. In total, we have S linear

combination matrices for all attribute classifiers.

Now, we want to split W into two matrices L and S, as we

assume that W is a result of multiplying the shared L latent

matrix and the combination matrix S, W = LS. To be more

specific about each attribute classifier, the weight parameter

vector can be formed by multiplying L with the corresponding

sm vector:

wm = Lsm (1)

TABLE I
EXAMPLES OF ATTRIBUTE GROUPS FROM AWA DATASET [28].

Texture:

patches, spots, stripes, furry, hairless, tough-skin

Shape:

big, small, bulbous, lean

Colors:

black, white, blue, brown, gray, orange, red, yellow

Character:

fierce, timid, smart, group, solitary, nest-spot, domestic

where m is the index of the m-th attribute, m = {1,2,3 ... M}.

Given the CNN models, we aim to learn the matrix W ,

which is formed by stacking the parameter matrices of the

softmax layers of each CNN. The key idea behind our model

is to decompose this weight matrix W into two matrices L

and S, where the latent L matrix is the shared layer between

all CNN models, S is a combination matrix, and each column

corresponds to one CNN classification layer.

By this decomposition, each CNN can share visual patterns

with other CNN models through the latent matrix L, and all

CNN models can collaborate together in the training stage

to optimize this shared layer. Each CNN predicts whether

the image contains the corresponding property. The benefit

of learning the shared layer through multi-task is that each

CNN can leverage the visual knowledge from learning other

CNN models even if its training samples are not enough.

B. Feature Sharing and Competition in MTL

According to the semantic attribute grouping idea proposed

in [21], group details are used as discriminative side infor-

mation. It helps to promote which attribute classifiers are

encouraged to share more visual knowledge, due to the group

membership privileges. Meanwhile, different groups tend to

compete with each other and share less knowledge. Table I

shows some group information examples from the Animal

with Attribute (AwA) dataset [28]. Because attributes are

naturally grouped, we encode the grouping side information

by encouraging attributes to share more if they belong to the

same groups and compete with each other if they belong to

different groups. Our attribute group information is shown in

table II.

Suppose we have M attributes and G groups, where each

group contains a variable number of attributes, for example, g1
contains [a1, a2, ..., aC ] as shown in the left side of figure 2,

and each group can have a maximum of M attributes. We have

no restrictions on intra-group attributes. Even if two groups

have the same attribute, the latent layer configuration mitigates

the effect of the overlapped groups through the ability to learn

more localized features. However, in our experiments, we rely

on existing grouping information provided in the datasets, and

obviously the groups are mutually exclusive (an attribute can

be seen only in one group). Typically, solving the problem of

overlapping groups requires some interior-point method, which

is a type of second-order cone programming as discussed in

[9], which is computationally expensive. Structured learning

methods like group lasso [22] are applied in many areas

employing such grouping information. Knowing any a priori
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information about the statistical information of features will

definitely aid the classifiers. Hence, in our MTL framework,

we utilize rich information of groups and also adopt a flexible

decomposition to learn different localized features through the

latent matrix. We follow the work in [21], as they also applied

such group information of attributes.

Regularizations are our critical calibration keys to balance

feature sharing of intra-group attribute classifiers and feature

competition between inter-group attribute classifiers. The idea

is that when applying the L1 norm as
∑M

m=1
‖w‖1 [52], it will

consequently encourage the sparsity on both rows/features and

columns/tasks of W . The effect of sparsity on the rows will

generate a competition scenario between tasks; meanwhile, the

sparsity effect on the columns will generate sparse vectors.

Additionally, when applying the L21 norm as
∑D

d=1
‖wd‖2

[1], where D is the feature dimension space, in our case,

because it is extracted from the previous layer, D is 4096.

This can be seen as applying the L1 norm on the zipped

column-wise output of the L21, which forces tasks to select

only dimensions that are sharable by other tasks as a way

to encourage feature sharing. As a middle solution [21], if

the semantic group information is used when applying the

L21 norm, the competition can be applied on the groups;

meanwhile, the sharing can be applied inside each group.

In our framework, we encourage intra-group feature sharing

and inter-group feature competition through adapting the L21

regularization term. Thus, we apply this on the vector set s∑K

k=1

∑G

g ‖sgk‖2 [1], [21], where K is the number of latent

tasks (latent dimension space) and G is the number of groups,

where each group contains a certain number of attributes.

Specifically, s
g
k is a column vector corresponding to a specific

attribute classification layer, and given a certain latent task

dimension, s will contain all the intra-group attribute vector

sets. This will encourage attribute classifiers to share specific

pieces of the latent dimension space, if they only belong to the

same group. Meanwhile, different groups will compete with

each other as each of them tries to learn a specific portion

from the latent dimension space. Additionally, the L1 norm

is applied on the latent matrix ‖L‖1 [52], [62], to learn more

localized visual patterns.

C. Formulations of the Multi-task CNN model

Given the above discussions about decomposing W and

by applying regularization alongside grouping information

for better feature competition and sharing, we propose the

following objective function:

min
L,S

M∑

m=1

Nm∑

i=1

1

2
[max(0, 1− Y i

m(Lsm)TXi
m)]2

+ µ

K∑

k=1

G∑

g=1

‖sgk‖2 + γ‖L‖1 + λ‖L‖2F

(2)

This is the typical squared hinge loss function, in addition

to our extra regularizations. For the m-th attribute category,

we denote its model parameter as Lsm and the correspond-

ing training data is (Xi
m, Y i

m)
Nm

i=1
⊂ R

d × {−1,+1}(m =
1, 2, ...,M), where Nm is the number of training samples of

the m-th attribute, and K is the total latent task dimension

space. In the second term and given a specific latent task

dimension k, s
g
k is a column vector that contains specific

group attributes. The effect of this term is to continually

elaborate on encouraging intra-group attributes to share feature

dimensions. Thus, the columns/tasks in the combination matrix

S will share with one another only if they belong to the

same group. Such competition between groups is appreciated;

however, if there is some overlap between groups (they are not

absolutely disjointed), some mitigation may help through the

latent matrix L configuration, which can learn more localized

features. The L1 norm is applied on the latent task matrix

L to enforce sparsity between hidden tasks. The last term

is the Frobenius norm to avoid overfitting. Moreover, with

such a configuration of the latent matrix L, an implicit feature

grouping is promoted. Namely, the latent tasks will allow

finding a subset of the input feature dimensions D, which are

useful for related tasks, where their corresponding parameters

in the linear combination matrix S are nonzero.

Accordingly, every CNN is responsible for learning better

input feature representations. Later in the testing, the input

image will be fed into all CNN models to generate different

input feature vectors; then the corresponding classifier weight

vector will be applied to produce the attribute predications.

The bottom layers in each CNN model are defined in the

same way as the network structure proposed by [24]. As shown

in fig 2, every block of CNN has several hidden layers,

mainly 5 convolutions. We replace the last 2 fully connected

layers, softmax and the loss by our proposed MTL squared

maxing hinge loss layer. Nevertheless, when the number of

attributes is large, we freeze the training of the bottom layers

and optimize the multi-task loss function to predict attributes,

using the outputs generated from the CNN models.

D. Optimization Steps

Recall, that during the training procedure of M CNN

models, each of them is responsible for predicting a single

attribute. Our goal is to impose visual knowledge sharing

between all CNN models through optimizing the multi-task

objective function. The optimized components of W will serve

as the last two fully connected layers. The L component is

a shared layer between all CNN models. The generalization

ability of each single CNN is improved by leveraging the

shared visual knowledge from other attribute classifiers. The

burden of the Stochastic Gradient Descent (SGD) optimizer

is only centralized in terms of training the bottom layers well

if they are not freeze from training, so that each CNN can

provide robust feature representation of images.

Solving the proposed cost function is non-trivial, because it

is not jointly convex on either L or S. The work in [44] solves

the non-convex regularized function using the block coordinate

descent method. The function hence becomes a bi-form convex

function. They employ Accelerated Proximal Gradient Descent

(APG) to optimize both L and S in an alternating manner.

Specifically, if S is fixed, the function becomes convex over

L, and optimizing it by APG can solve this state and handle the

non-smooth effect of the l1 norm. Likewise, if L is fixed, the
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function becomes convex over S; in this form of the function

and unlike [44], the mixed norm regularizations require re-

representing the 2-norm into its dual form as discussed in [21].

Smoothing Proximal Gradient Descent (SPGD) [9], [21], [22]

is applied to obtain the optimal solution of S. These optimiza-

tions are common in the literature of structured learning, where

various regularizations may disturb convexity and smoothness

properties of the functions. Algorithm 1 illustrates the main

steps that are applied to optimize equation 2.

Furthermore, when L is fixed, the optimization problem is

in terms of S and is described as follows:

min
L,S

M∑

m=1

Nm∑

i=1

1

2
[max(0, 1− Y i

m(Lsm)TXi
m)]2

+ µ

K∑

k=1

G∑

g=1

‖sgk‖2

(3)

Optimization by SPGD: Chen et al. [9] propose solving

optimization problems that have a mixed-norm penalty over

a priori grouping to achieve some form of structure sparsity.

The idea behind this optimization is to introduce the smooth

approximation of the objective loss function and solve this

approximation function instead of optimizing the original

objective function directly. Some work proposes solving non-

overlapping groups, as is the case in [21]. Others extend the

solution to overlapping groups, as in [9]. We closely follow

the approach of approximating the objective function proposed

in tree-guided group lasso [22], [47], which is basically built

on the popular group-lasso penalty [2]. We apply the step

of squaring the mixed-norm term [21], which is originally

suggested in [2]. Squaring before optimization makes the

regularizer positive, which generates a smooth monotonic

mapping, preserving the same path of solutions but making the

optimization easier. For further details on this approximation,

refer to [2].

Now, after fixing S, the optimization problem is in terms

of L as follows:

min
L,S

M∑

m=1

Nm∑

i=1

1

2
[max(0, 1− Y i

m(Lsm)TXi
m)]2

+ γ‖L‖1 + λ‖L‖2F

(4)

Optimization by APG: Accelerated Proximal Method updates

the searching point from the last linear combination of two

points in each iteration and thus converges faster [53]. Fur-

thermore, it also handles non-smooth convex functions using

proximal operators. The idea is to rely on a shrinkage operator

[44], [53] while updating the search point given the previous

one and the gradient of the smooth part of the function

(the non-regularized part). We adopt this method to optimize

over L because the proximity operator is straightforward, as

the non-smooth l1 norm has been studied extensively [2],

[52]. Meanwhile, in other general learning problems, the

proximity operator cannot be computed explicitly, namely,

the mixed-norm regularization term; hence, we adopt SPGD

while optimizing S. We can optimize L through SPGD by

using approximations for both the gradient and the proximity

Algorithm 1: Solving the Optimization Problem of Equation —2

Input — Generated features from CNN models : XN

M

Attributes labels with values {-1,1} : Y N

M

Output — Combination weight matrix S

Latent tasks matrix L

Overall Model weight matrix W

Step 1 — Fix L and optimize S by SPGD
Solving equation 3 until convergence

Step 2 — Get S from Step 1, and optimize L by APG
Solving equation 4 until convergence

Step 3 — Repeat Step 1 and Step 2
Solving equation 2 until convergence

TABLE II
GROUPING INFORMATION USED IN CLOTHING DATASET [7].

Group Attributes

Colors black, blue, brown, cyan, gray, green,
many, red, purple, white, yellow

Patterns floral, graphics, plaid, solid, stripe, spot

Cloth-parts necktie, scarf, placket, collar

Appearance skin-exposure, gender

operator; however, the APG has a relatively lower convergence

rate.

During a training epoch, the forward pass will generate the

input for the multi-task loss layer from all the CNN models.

After optimizing equation 2 using the proposed algorithm 1,

the output is the overall model weight matrix W , where each

column in W will be dedicated to its specific corresponding

CNN model and is taken back in the backward pass alongside

the gradients with respect to its input. W is reconstructed using

the optimal solutions of L and S, where knowledge sharing is

already explored through MTL between all the CNN models

via L.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Grouping

We conduct our experiments on two datasets:

Clothing Attributes Dataset:

This dataset is collected by the work in [7]; it contains

1856 images and 23 binary attributes, as well as 3 multi-

class value attributes. The ground-truth is provided on image-

level, and each image is annotated against all the attributes.

We ignore the multi-class value attributes, because we are

only interested in binary attributes. The purpose behind such

clothing attributes is to provide better clothing recognition. We

train Multi-task CNN models to predict the attributes in this

dataset. Because no grouping information is suggested in this

dataset, we follow the natural grouping sense proposed in other

attribute datasets as in [28]. In table II, we show the details

of our attribute grouping on the Clothing Attributes dataset.

AwA Dataset:

The Animals with Attributes dataset is collected in [28], the

purpose of which is to apply transfer learning and zero-shot

recognition [29]. It consists of 30475 images of 50 animal

classes. The class/attribute matrix is provided; hence, the

annotation is on the animal’s class level. It provides 85 binary

attributes for each class. This dataset has 9 groups: colors,

textures, shapes, activity, behavior, nutrition, character, habitat
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and body parts [21]; table I shows some attributes in some

of these groups.

B. Attribute Prediction Accuracy

We conduct several experiments on these two datasets. For

the clothing dataset, we train multiple CNN models simul-

taneously. We calculate the accuracy of attribute predictions

against the provided ground truth in the dataset. In table III,

S-extract refers to a simple sitting where we directly use a pre-

trained model of CNN [25] for feature extraction, and then we

train single SVM tasks for attribute prediction; meanwhile,

in M-extract, we train our MTL framework on the same

CNN extracted features. S-CNN refers to the single-task CNN,

where we fine-tuned individual models of CNN to predict

each attribute, and M-CNN refers to our MTL framework

without encoding the group information [62], and MG-CNN is

our whole MTL framework with group encodings and wholly

training CNN models with our framework together. CF refers

to the combined features model with no pose baseline [7],

while CRF refers to the state-of-the-art method proposed by

[7]. Our model outperforms the state-of-the-art results in [7].

We notice, though, that the overall improvement margin over

the single CNN task models is relatively small compared to

our results in AwA (see table IV). This is because the accuracy

results are already quite high and thus hard to improve further.

TABLE III
THE ACCURACY OF ATTRIBUTE PREDICTION BEFORE SHARING THE L

LAYER, AFTER SHARING AND PREVIOUS METHODS ON THE CLOTHING

DATASET [8]. G1 REFERS TO COLOR ATTRIBUTES, G2 REFERS TO THE

PATTERN GROUP, G3 REFERS TO CLOTH-PARTS AND G4 REFERS TO THE

APPEARANCE GROUP. MG-CNN IS OUR OVERALL PROPOSED

FRAMEWORK.THE HIGHER, THE BETTER. FOR FURTHER DETAILS ABOUT

SEVERAL SITTING AND METHOD NAMES IN THIS TABLE, REFER TO

SECTION IV-B.

Method G1 G2 G3 G4 Total

S-extract 81.84 82.07 67.51 69.25 78.31

M-extract 84.98 89.89 81.41 81.03 85.29

S-CNN 90.50 92.90 87.00 89.57 90.43

M-CNN 91.72 94.26 87.96 91.51 91.70

MG-CNN 93.12 95.37 88.65 91.93 92.82

CF [15] 81.00 82.08 77.63 78.50 80.48

CRF [7] 85.00 84.33 81.25 82.50 83.95

We conduct another experiment on the AwA dataset. We

fine-tuned single CNN models separately on each attribute.

Later, given the input images, we use these learned models to

extract attribute-specific features. In other words, we freeze the

training of the bottom layers in all CNN models and elaborate

only in training our multi-task loss layer. This is due to the

large number of attributes in the AwA dataset. We note that the

fine-tuning stage will not add much practical difference and is

a very time consuming process, perhaps due to the fact that

AwA and Image-net datasets have an overlap of approximately

17 object categories; this has also been explored by another

work [33], in which they even train the CNN model to classify

objects on the AwA dataset; however, they noticed that using

the pre-trained CNN model on the Imagenet dataset directly or

fine-tuning the model on AwA will in both cases give the same

attribute prediction results. However, our MTL framework

TABLE IV
ATTRIBUTE DETECTION SCORES OF OUR MULTI-TASK FRAMEWORK

COMPARED WITH OTHER METHODS ON AWA [28]. THE HIGHER, THE

BETTER. (MEAN AVERAGE PRECISION).

Tasks Prediction Score

lasso [52] 61.75

l21 all-sharing [1] 60.21

l2 regression loss 66.87

decorrelated [21] 64.80

category-trained CNN [33] 74.89

single CNN 75.37

multi-task CNN (ours) 81.19

TABLE V
THE GROUP-LEVEL ACCURACY RESULTS OF OUR MULTI-TASK

FRAMEWORK ON AWA [28]. THE HIGHER, THE BETTER.

Groups # Attributes Single CNN Our Multi-task CNN

Colors 9 76.91 82.28

Texture 6 76.16 82.44

Shape 4 61.67 72.68

Body-Parts 18 75.93 81.82

Activity 10 82.22 85.4

Behavior 5 72.78 74.96

Nutrition 12 74.76 82.67

Habitat 15 80.21 84.72

Character 7 62.01 70.52

Total 85 75.37 81.19

outperforms the single-tasks by a large margin; table IV

shows the performance of our method compared with other

standard methods, where the prediction accuracy is in terms

of the mean average over all of the attributes. Compared with

previous state-of-the-art results, which are approximately 75%

[33], our trained MTL CNN models on attributes outperform

it by a large margin. Additionally, table V shows the accuracy

results in terms of mean average precision over each group of

attributes (group-level accuracy), before and after applying our

multi-task framework. Initialization of the pre-trained model

on Imagenet [24] again is used throughout our experiments.

Figure 3 also shows a number of misclassified test samples

from single-task classifiers, which our multi-task classifiers

classified correctly.

C. Implementation Details

CNN model training: We put each CNN model through 100

epochs, although most models converged in approximately 50

epochs. We initialize each CNN model with the pre-trained

network on Imagenet [24] and fine-tune it on the target

attribute annotations. We normalize the input images into

256x256 and subtract the mean from them. To train our

model on the Clothing dataset, we use a data augmentation

strategy as in [24].

Multi-task Optimization: We perform Singular Value

Decomposition (SVD) on W following the work in [62] to

obtain an initialization for L; meanwhile, S is randomly

initialized. The initialization of W was accomplished by

stacking the last fully-connected layers from all pre-trained

CNN models. The other model parameter values are either

selected experimentally or following the typical heuristics
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and strategies proposed in [24]. The latent tasks number is

set to the maximum possible feature dimension, because the

application of attribute prediction is very critical for any

subtle fine-grained details; thus, any severe information loss

caused via SVD can degrade the performance drastically.

Hence, the number of latent tasks is set to 2048 in our

experiments.

Additionally, we set the weight decay to 0.0005 in our CNN

models; also, the momentum is set to 0.9, and the learning

rate is initialized by 0.01 and reduced manually throughout

training; we follow the same heuristic in [25]. In our multi-

task part (see equation 2), the latent task λ‖L‖2F regularization

parameter λ is set to 0.4, and the other two parameters γ and

µ are best validated in each dataset experiments with held out

unseen attribute data.

We conduct our experiments on two NVIDIA TK40 16GB

GPU; the overall training time including the CNN part and

MTL part of the training is approximately 1.5 days for the

Clothing dataset (approximately 50 epochs for all 23 CNN

models), and the testing time including feature extraction

from all CNN models is approximately 50 minutes (sequential

extraction from models one by one, not in parallel, where

the time needed to extract features in each model is about

1.5 minutes/1000 images); if more attribute CNN models

are added, the time will eventually increase. For the AwA

dataset, we divide its training images into several sets (each

set contains 3000 images, and we have 8 sets; 5 are used for

training and 3 for testing). In total, the training time takes

approximately 2 weeks (however, because we noticed that the

major accuracy increase was mainly from training our MLT

framework and not from CNN fine-tuning, we re-conducted

the experiment and froze the bottom layers and depended on

training the MTL layer, as we previously discussed; but in the

second experiment, we saved a great deal of training time, as it

only takes approximately 13 hours to completely train the last

two layers on all CNN models within our MTL framework on

one training set; on all remaining sets, it takes approximately

2.5 days to complete training.

V. CONCLUSION

In this paper, we introduce an enhanced multi-task learning

method to better predict semantic binary attributes. We pro-

pose a multi-task CNN model to allow sharing of visual knowl-

edge between tasks. We encode semantic group information

in our MTL framework to encourage more sharing between

attributes in the same group. We also propose decomposing

the model parameters into a latent task matrix and a linear

combination matrix. The latent task matrix can effectively

learn localized feature patterns, and any under-sampled clas-

sifier will generalize better through leveraging this sharable

latent layer. The importance of such a latent task matrix is a

topic of future interest. Specifically, we would like to explore

the potential of the latent task matrix decomposition to be

informative enough to generate an efficient description of the

input image in terms of either semantic or latent attributes.

Our experiments on both attribute benchmark datasets show

that our learned multi-task CNN classifiers easily outperform

the previous single-task classifiers.
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