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Abstract

Referring expression comprehension (REC) and segmen-

tation (RES) are two highly-related tasks, which both aim at

identifying the referent according to a natural language ex-

pression. In this paper, we propose a novel Multi-task Col-

laborative Network (MCN)1 to achieve a joint learning of

REC and RES for the first time. In MCN, RES can help

REC to achieve better language-vision alignment, while

REC can help RES to better locate the referent. In addi-

tion, we address a key challenge in this multi-task setup, i.e.,

the prediction conflict, with two innovative designs namely,

Consistency Energy Maximization (CEM) and Adaptive Soft

Non-Located Suppression (ASNLS). Specifically, CEM en-

ables REC and RES to focus on similar visual regions

by maximizing the consistency energy between two tasks.

ASNLS supresses the response of unrelated regions in RES

based on the prediction of REC. To validate our model, we

conduct extensive experiments on three benchmark datasets

of REC and RES, i.e., RefCOCO, RefCOCO+ and Ref-

COCOg. The experimental results report the significant

performance gains of MCN over all existing methods, i.e.,

up to +7.13% for REC and +11.50% for RES over SOTA,

which well confirm the validity of our model for joint REC

and RES learning.

1. Introduction

Referring Expression Comprehension (REC) [11, 12, 19,

21, 44, 45, 48, 42, 37] and Referring Expression Segmen-

tation (RES) [32, 16, 40, 25, 34] are two emerging tasks,

which involves identifying the target visual instances ac-

cording to a given linguistic expression. Their difference

∗Equal Contribution. † Corresponding Author.
1Source codes and pretrained backbone are available at : https://

github.com/luogen1996/MCN

“a half horse.”
(a) Illustration of Referring Expression Comprehension (REC)

and Segmentation (RES).

Referring Expression
Segmentation

Referring Expression 
Comprehension

“person on scooter wearing black 
helmet and has black backpack” “the cat right in front of the window.”

(b) Illustraion of the prediction conflict.
Figure 1. (a) The RES and REC models first perceive the instances

in an image and then locate one or few referents based on an ex-

pression. (b) Two typical cases of prediction conflict: wrong REC

correct RES (left) and wrong RES correct REC (right).

is that in REC, the targets are grounded by bounding boxes,

while they are segmented in RES, as shown in Fig. 1(a).

REC and RES are regarded as two seperated tasks with

distinct methodologies in the existing literature. In REC,

most existing methods [11, 12, 19, 21, 23, 44, 45, 46, 48]

follow a multi-stage pipeline, i.e., detecting the salient re-

gions from the image and selecting the most matched one

through multimodal interactions. In RES, existing meth-

ods [32, 16] usually embed a language module, e.g., LSTM

or GRU [6], into a one-stage segmentation network like

FCN [20] to segment the referent. Although some recent

works like MAttNet [43] can simultaneously process both

REC and RES, their multi-task functionality are largely at-

tributed to their backbone detector, i.e., MaskRCNN [43],

rather than explicitly interacting and reincecing two tasks.

It is a natural thought to jointly learn REC and RES to

reinforce each other, as similar to the classic endeavors in

joint object detection and segmentation [9, 10, 7]. Com-

pared with RES, REC is superior in predicting the poten-
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tial location of the referent, which can compensate for the

deficiency of RES in determining the correct instance. On

the other hand, RES is trained with pixel-level labels, which

can help REC obtain better language-vision alignments dur-

ing the multimodal training. However, such a joint learning

is not trivial at all. We attribute the main difficulty to the

prediction conflict, as shown in Fig. 1 (b). Such prediction

conflict is also common in general detection and segmenta-

tion based multi-task models [10, 8, 5]. However, it is more

prominent in RES and REC, since only one or a few of the

multiple instances are the correct referents.

To this end, we propose a novel Multi-task Collabora-

tive Network (MCN) to jointly learn REC and RES in a

one-stage fashion, which is illustrated in Fig. 2. The prin-

ciple of MCN is a multimodal and multitask collaborative

learning framework. It links two tasks centered on the lan-

guage information to maximize their collaborative learning.

Particularly, the visual backbone and the language encoder

are shared, while the multimodal inference branches of two

tasks remain relatively separated. Such a design is to take

full account of the intrinsic differences between REC and

RES, and avoid the performance degeneration of one task to

accommodate the other, e.g., RES typically requires higher

resolution feature maps for its pixel-wise prediction.

To address the issue of prediction conflict, we equip

MCN with two innovative designs, namely Consistency En-

ergy Maximization (CEM) and Adaptive Soft Non-Located

Suppression (ASNLS). CEM is a language-centric loss

function that forces two tasks on the similar visual areas

by maximizing the consistency energy between two infer-

ence branches. Besides, it also serves as a pivot to con-

nect the learning processes of REC and RES. ASNLS is a

post-processing method, which suppresses the response of

unrelated regions in RES based on the prediction of REC.

Compared with existing hard processing methods, e.g., RoI-

Pooling [30] or Rol-Align [10], the adaptive soft processing

of ASNLS allows the model to have a higher error tolerance

in terms of the detection results. With CEM and ASNLS,

MCN can significantly reduce the effect of the prediction

conflict, as validated in our quantitative evaluations.

To validate our approach, we conduct extensive exper-

iments on three benchmark datasets, i.e., RefCOCO, Re-

fCOCO+ and RefCOCOg, and compare MCN to a set of

state-of-the-arts (SOTAs) in both REC and RES [42, 38, 40,

16, 18, 37]. Besides, we propose a new metric termed In-

consistency Error (IE) to objectively measure the impact of

prediction conflict. The experiments show superior perfor-

mance gains of MCN over SOTA, i.e., up to +7.13% in REC

and +11.50% in RES. More importantly, these experimen-

tal results greatly validate our argument of reinforcing REC

and RES in a joint framework, and the impact of prediction

conflict is effectively reduced by our designs.

Conclusively, our contributions are three-fold:

• We propose a new multi-task network for REC

and RES, termed Multi-task Collaborative Network

(MCN), which facilitates the collaborative learning of

REC and RES.

• We address the key issue in the collaborative learn-

ing of REC and RES, i.e., the prediction conflict, with

two innovative designs, i.e., Consistency Energy Max-

imization (CEM) and Adaptive Soft Non-Located Sup-

pression (ASNLS)

• The proposed MCN has established new state-of-the-

art performance in both REC and RES on three bench-

mark datasets, i.e., RefCOCO, RefCOCO+ and Ref-

COCOg. Notably, its inference speed is 6 times faster

than that of most existing multi-stage methods in REC.

2. Related Work

2.1. Referring Expression Comprehension

Referring expression comprehension (REC) is a task of

grounding the target object with a bounding box based on

a given expression. Most existing methods [11, 12, 19,

21, 44, 45, 48, 42, 37] in REC follow a multi-stage pro-

cedure to select the best-matching region from a set of can-

didates. Concretely, a pre-trained detection network, e.g.,

FasterRCNN [30], is first used to detect salient regions of

a given image. Then to rank the query-region pairs, a mul-

timodal embedding network [31, 36, 19, 3, 47] is used, or

the visual features are included into the language model-

ing [23, 1, 21, 12, 44]. Besides, additional processes are

also used to improve the multi-modal ranking results, e.g.,

the prediction of image attributes [43] or the calculation of

location features [45, 37]. Despite their high performance,

these methods have a significant drawback in low computa-

tional efficiency. Meanwhile, their upper-bounds are largely

determined by the pre-trained object detector [33].

To speedup the inference, some recent works in REC re-

sort to a one-stage modeling [33, 38], which embeds the

extracted linguistic feature into a one-stage detection net-

work, e.g., YoloV3 [29], and directly predicts the bounding

box. However, their performance is still worse than the most

popular two-stage approaches, e.g., MattNet [42]. Conclu-

sively, our work are the first to combine REC and RES in a

one-stage framework, which not only boosts the inference

speed but also outperforms these two-stage methods.

2.2. Referring Expression Segmentation

Referring expression segmentation (RES) is a task of

segmenting the referent according to a given textual ex-

pression. A typical solution of RES is to embed the lan-

guage encoder into a segmentation network, e.g., FCN [20],

which further learns a multimodal tensor for decoding the

segmentation mask [32, 16, 25, 40, 34]. Some recent
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Figure 2. The framework of the proposed Multi-task Collaborative Network (MCN). The visual features and linguistic features are extracted

by a deep convolutional network and a bi-GRU network respectively, and then fused to generate the multi-scale multimodal features. The

bottom-up connection from the RES branch effectively promotes the language-vision alignment of REC. The two branches are further

reinforced by each other through CEM. Finally, the output of RES is adaptively refined by ASNLS based on the REC result.

developments also focus on improving the efficiency of

multimodal interactions, e.g., adaptive feature fusions at

multi-scale [32], pyramidal fusions for progressive refine-

ments [16, 25], and query-based or transformer-based at-

tention modules [34, 40].

Although relatively high performance is achieved in

RES, existing methods are generally inferior in determin-

ing the referent compared to REC. To explain, the pixel-

wise prediction of RES is easy to generate uncertain seg-

mentation mask that includes incorrect regions or objects,

e.g., overlapping people. In this case, the incorporation of

REC can help RES to suppress responses of unrelated re-

gions, while activating the related ones based on the pre-

dicted bounding boxes.

2.3. Multitask Learning

Multi-task Learning (MTL) is often applied when re-

lated tasks can be performed simultaneously. MTL has

been widely deployed in a variety of computer vision

tasks [8, 5, 27, 7, 10, 15]. Early endeavors [8, 5, 27] resort

to learn multiple tasks of pixel-wise predictions in an MTL

setting, such as depth estimation, surface normals or seman-

tic segmentation. Some recent works also focus on com-

bining the object detection and segmentation into a joint

framework, e.g., MaskRCNN [10], YOLACT [2], and Reti-

naMask [9]. The main difference between MCN and these

methods is that MCN is an MTL network centered on the

language information. The selection of target instance in

REC and RES also exacerbates the issue of prediction con-

flicts, as mentioned above.

3. Multi-task Collaborative Network

The framework of the proposed Multi-task Collabora-

tive Network (MCN) is shown in Fig. 2. Specifically, the

representations of the input image and expression are first

extracted by the visual and the language encoders respec-

tively, which are further fused to obtain the multimodal fea-

tures of different scales. These multimodal features are then

fed to the inference branches of REC and RES, where a

bottom-up connection is built to strengthen the collabora-

tive learning of two tasks. In addition, a language-centric

connection is also built between two branches, where the

Consistency Energy Maximization loss is used to maximize

the consistency energy between REC and RES. After infer-

ence, the proposed Adaptive Soft Non-Located Suppression

(ASNLS) is used to refine the segmentation result of RES

based on the predicted bounding box by the REC branch.

3.1. The Framework

As shown in Fig. 2, MCN is partially shared, where the

inference branches of RES and REC remain relatively inde-

pendent. The intuition is two-fold: On one hand, the objec-

tives of two tasks are still distinct, thus the full sharing of

the inference branch can be counterproductive. On the other

hand, such a relatively independent design enables the opti-

mal settings of two tasks, e.g., the resolution of feature map.

Concretely, given an image-expression pair (I, E), we

first use the visual backbone to extract the feature maps

of three scales, denoted as Fv1 ∈ R
h1×w1×d1 ,Fv2

∈
R

h2×w2×d2 ,Fv3 ∈ R
h3×w3×d3 , where h, w and d denote

the height, width and the depth. The expression is processed

by a bi-GRU encoder, where the hidden states are weightly

combined as the textual feature by using a self-guided at-

tention module [39], denoted as ft ∈ R
dt .

Afterwards, we obtain the first multimodal tensor by fus-

ing Fv1 with ft, which is formulated as:

f l
m1

= σ(f l
v1
Wv1

)⊙ σ(ftWt), (1)

where Wv1
and Wt are the projection weight matrices, and

σ denotes Leaky ReLU [22]. f l
m1

and f l
v1

are the feature

vector of Fm1
and Fv1

, respectively. Then, the other two

multimodal tensors, Fm2
and Fm3

, are obtained by the fol-
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lowing procedure:

Fmi−1
= UpSample(Fmi−1

),

Fmi
= [σ(Fmi−1

Wmi−1
), σ(FviWvi

)],
(2)

where i ∈ {2, 3}, UpSampling has a stride of 2× 2, and [·]
denotes concatenation.

Such a multi-scale fusion not only propagates the lan-

guage information through upsamplings and concatena-

tions, but also includes the mid-level semantics to the upper

feature maps, which is crucial for both REC and RES. Con-

sidering that these two tasks have different requirements for

the feature map scales, e.g., 13 × 13 for REC and 52 × 52
for RES, we use Fm1

and Fm3
as the inputs of REC and

RES, respectively.

To further strengthen the connection of two tasks, we im-

plement another bottom-up path from RES to REC. Such

a connection introduces the semantics supervised by the

pixel-level labels in RES to benefit the language-vision

alignments in REC. Particularly, the new multimodal ten-

sor, F′

m1
for REC, is obtained by repeating the down sam-

pling and concatenations twice, as similar to the procedure

defined in Eq. 2. Afterwards, F′

m1
and F

′

m3
for REC and

RES respectively are then refined by two GARAN Attention

modules [41], as illustrated in Fig. 2.

Objective Functions. For RES, we implement the ASPP

decoder [4] to predict the segmentation mask based on the

refined multimodal tensor. Its loss function is defined by

ℓres = −

h3×w3
∑

l=1

[

gllog (ol) + (1− gl) log (1− ol)
]

, (3)

where gl and ol represent the elements of the down-sampled

ground-truth G
′ ∈ R

52×52 and predicted mask O ∈
R

52×52, respectively.

For REC, we add a regression layer after the multimodal

tensor for predicting the confidence score and the bounding

box of the referent. Following the setting in YoloV3 [29],

the regression loss of REC is formulated as:

ℓrec =

h1×w1×N
∑

l=1

ℓbox (t
∗

l , tl) + ℓconf (p
∗

l , pl) , (4)

where tl and pl are the predicted coordinate position of the

box and confidence score. N is the number of anchors for

each grid. tl∗ and pl∗ are the ground-truths. p∗l is set to

1 when the anchor matches ground-truth. ℓbox is a binary

cross-entropy to measure the regression loss for the center

point of the bounding box. For the width and height of the

bounding box, we adopt the smooth-L1 loss [30]. ℓconf is

the binary cross entropy.

3.2. Consistency Energy Maximization

We further propose a Consistency Energy Maximization

(CEM) scheme to theoretically reduce the impact of predic-

Attention

Attention

𝒇𝒕
𝑭𝒎1′

𝑭𝒎3′
𝑻𝒔𝒄

𝑭𝒂𝒄
𝑭𝒂𝒔

𝑬𝒄′
𝑬𝒔′

Co-Energy 

Maximization

REC

+

+

RES

Figure 3. Illustration of the Consistency Energy Maximization

(CEM). The CEM loss optimizes the attention features to maxi-

mize the consistency spatial responses between REC and RES.

tion conflict. As shown in Fig. 3, CEM build a language-

centered connection between two branches. Then, CEM

loss defined in Eq. 9 is used to maintain the consistency

of spatial responses for two tasks by maximizing the energy

between their attention tensors.

Concretely, given the attention tensors of RES and REC,

denoted as F
s
a ∈ R

(h3×w3)×d and F
c
a ∈ R

(h1×w1)×d, we

project them to the two-order tensors by:

Es = F
s
aWs, Ec = F

c
aWc, (5)

where Ws,Wc ∈ R
d×1, Es ∈ R

(h3×w3) and Ec ∈
R

(h1×w1). Afterwards, we perform Softmax on Ec and Es

to obtain the energy distributions of REC and RES over the

image, dentoed as E′

c and E′

s. Elements of E′

c and E′

s indi-

cate the response degrees of the corresponding regions to-

wards the given expression.

To maximize the co-energy between two tasks, we

further calculate the inter-task correlation, Tsc ∈
R

(h3×w3)×(h1×w1), by

Tsc(i, j) = sw ∗
fs
i
T f c

j

‖fs
i ‖‖f

c
j ‖

+ sb, (6)

where the fs
i ∈ R

d and f c
j ∈ R

d are elements of Fs
a and

F
c
a, respectively. The sw and sb are two scalars to scale the

value in Tsc to (0, 1]. The co-energy C is caculated as:

C (i, j) = log
[

E′

s (i)Tsc (i, j)E
′

c (j)
]

=Es (i) + Ec (j) + logTsc (i, j)

− logαs − logαc,

(7)

where the αs and αc are two reguralization term to penalize

the irrelevant responeses, denoted as:

αs =

h3×w3
∑

i=1

eEs(i), αc =

h1×w1
∑

i=1

eEc(i). (8)

Finally, the CEM loss is formulated by

ℓcem = −

h3×w3
∑

i=1

h1×w1
∑

j=1

C(i, j). (9)
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Figure 4. The comparison between ASNLS and conventional hard

processing (bottom). Compared to the hard processing, ASNLS

has a better error tolerance for REC predictions, which can well

preserve the integrity of referent given an inaccurate box.

3.3. Adaptive Soft NonLocated Suppression

We further propose a soft post-processing method to me-

thodically address the prediction conflict, termed as Adap-

tive Soft Non-Located Suppression (ASNLS). Based on the

predcited bounding box by REC, ASNLS suppresses the re-

sponse of unrelated regions and strengths the related ones.

Compared to the existing hard processings, e.g., ROI Pool-

ing [30] and ROI Align [10], which directly crop features of

the bounding box, the soft processing of ASNLS can obtain

a better error tolerance towards the predictions of REC, as

illustrated in Fig. 4.

In particular, given the predicted mask by the RES

branch, O ∈ R
h3×w3 , and the bounding box b, each ele-

ment oi in O is updated by:

mi =

{

αup ∗ oi, if oi in b,

αdec ∗ oi, else.
(10)

Here, αup ∈ (1,+∞) and αdec ∈ (0, 1) are the enhance-

ment and decay factors, respectively. We term this method

in Eq. 10 as Soft Non-Located Suppression (Soft-NLS). Af-

ter that, the updated RES result O is binarized by a thresh-

old to generate the final mask.

In addition, we extend the Soft-NLS to an adaptive ver-

sion, where the update factors are determined by the pre-

diction confidence of REC. To explain, a lower confidence

p indicates a larger uncertainty that the referent can be seg-

mented integrally, and should increase the effects of NLS to

eliminate the uncertainty as well as to enhance its saliency.

Specifically, given the confidence score p, αup and αdec are

calculated by

αup = λau ∗ p+ λbu,

αdec = λad ∗ p+ λbd,
(11)

where the λau, λad , λbu and λbd are hyper-parameters2 to

2In our experiments, we set λau = −1, λad = 1, λbu = 2, λbd = 0.

control the enhancement and decay, respectively. We term

this adaptive approach as Adaptive Soft Non-Located Sup-

pression (ASNLS).

3.4. Overall Loss

The overall loss function of MCN is formulated as:

ℓall = λsℓres + λcℓrec + λeℓcem, (12)

where, λs, λc and λe control the relative importance among

the three losses, which are set to 0.1, 1.0 and 1.0 in our

experiments, respectively.

4. Experiments

We further evaluate the proposed MCN on three bench-

mark datasets, i.e., RefCOCO [13], RefCOCO+ [13] and

RefCOCOg [24], and compare them to a set of state-of-the-

art methods [43, 37, 38, 40, 16] of both REC and RES.

4.1. Datasets

RefCOCO [13] has 142,210 referring expressions for

50,000 bounding boxes in 19,994 images from MS-

COCO [17], which is split into train, validation, Test A

and Test B with a number of 120,624, 10,834, 5,657 and

5,095 samples, respectively. The expressions are collected

via an interactive game interface [13], which are typically

short sentences with a average length of 3.5 words. The

categories of bounding boxes in TestA are people while the

ones in TestB are objects.

RefCOCO+ [13] has 141,564 expressions for 49,856

boxes in 19,992 images from MS-COCO. It is also divided

into splits of train (120,191), val (10,758), Test A (5,726)

and Test B (4,889). Compared to RefCOCO, its expres-

sions include more appearances (attributes) than absolute

locations. Similar to RefCOCO, expressions of Test A in

RefCOCO+ are about people while the ones in Test B are

about objects.

RefCOCOg [24, 26] has 104,560 expressions for 54,822

objects in 26,711 images. In this paper, we use the UNC

partition [26] for training and testing our method. Com-

pared to RefCOCO and RefCOCO+, expressions in Re-

fCOCOg are collected in a non-interactive way, and the

lengths are longer (8.4 words on average), of which content

includes both appearances and locations of the referent.

4.2. Evaluation Metrics

For REC, we use the precision as the evaluation metric.

When the Intersection-over-Union (IoU) between the pre-

dicted bounding box and the ground truth is larger than 0.5,

the prediction is correct.

For RES, we use IoU and Acc@X to evaluate the model.

The Acc@X metric measures the percentage of test images
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Table 1. Comparisons of the different post-processing methods on the validation set of RefCOCO. ↓ denotes the lower is better.

IoU Acc@0.5 Acc@0.6 Acc@0.7 Acc@0.8 Acc@0.9 IE ↓
w.o. post-processing 61.61 73.95 67.42 56.39 32.02 4.72 10.37%

RoI Crop [10, 30] 61.19 75.13 68.88 57.61 32.42 3.81 7.91%

Soft-NLS (ours) 62.27 75.92 69.48 58.21 33.20 5.11 7.28%

ASNLS (ours) 62.44 76.60 70.33 58.39 33.68 5.26 6.65%

Table 2. Ablation study on the val set of three datasets. The metric is Acc@0.5 for REC, and IoU for RES. Base indicates the network

structure without any extra components.

RefCOCO RefCOCO+ RefCOCOg

REC RES IE ↓ REC RES IE ↓ REC RES IE ↓
MCN (Base) 77.45 58.24 13.80% 62.74 44.08 20.70% 62.29 44.58 19.87%

+TextAtt 77.65 58.44 13.44% 63.07 44.38 19.88% 64.51 46.58 18.71%

+GARAN 79.20 59.07 13.37% 66.22 47.89 17.12% 65.98 47.33 17.44%

+CEM 80.08 61.61 10.37% 67.16 49.55 13.51% 66.46 48.56 14.90%

+ASNLS 80.08 62.44 6.65% 67.16 50.62 7.54% 66.46 49.22 9.41%

Table 3. Comparisons of MCN with different network structures

on the val set of RefCOCO. The structure of MCN can signifi-

cantly improve the performance of both two tasks, and it is also

superior than other single and multi-task frameworks.

Structure REC RES

Single REC(scale1=132) 70.38 -

Single REC(scale=522) 68.58 -

Single RES(scale=132) - 36.37

Single RES(scale=522) - 57.91

OnlyHeadDifferent(scale=132) 72.42 34.50

OnlyHeadDifferent(scale=522) 72.54 58.08

OnlyBackboneShared(REC scale=132, RES scale=522) 75.81 58.16

MCN (Base) 77.45 58.24

with an IoU score higher than the threshold X, while X

higher than 0.5 is considered to be correct.

In addition, we propose a Inconsistency Error (IE) to

measure the impact of the prediction conflict. The inconsis-

tent results are considered to be the two types: 1) the results

include wrong REC result and correct RES result. 2) the

results include correct REC result and wrong RES result.

4.3. Implementation Details

In terms of the visual backbone, we train MCN with

Darknet53 [29] and Vgg16 [35]. Following the setting

of MattNet [43], the backbones are pre-trained on MS-

COCO [17] while removing the images appeared in the val

and test sets of three datasets. The images are resized to

416×416 and the words in the expressions are initialized

with GLOVE embeddings [28]. The dimension of the GRU

is set to 1,024. In terms of multimodal fusion, the project

dimension in Eq. 1 and Eq. 2 is 512. For the Soft-NLS, we

set αup to 1.5 and set αdec to 0.5. We set the maximum

sentence length of 15 for RefCOCO and RefCOCO+, and

20 for RefCOCOg. To binarize the prediction of RES, we

set a threshold of 0.35.

We use Adam [14] as the optimizer, and the batch size is

set to 35. The initial learning rate is 0.001, which is mul-

1Scale denotes the resolution of the last feature map before prediction.
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Figure 5. Comparisons of MCN and other structures. (a) MCN

significantly improves the performance of both two tasks on three

datasets. (b) The learning speed of MCN is superior to alternative

structures. Here, all structures do not use the post-processing.

tiplied by a decay factor of 0.1 at the 30th, the 35th and

40th epochs. We take nearly a day to train our model for 45

epochs on a single 1080Ti GPU.

4.4. Experimental Results

4.4.1 Quantitative Analysis

Comparisons of different network structures. We

first evaluate the merit of the proposed multi-task collab-

orative framework, of which results are given in Tab. 3.

In Tab. 3, Single REC and Single RES denote the single-

task setups. OnlyHeadDifferent (OHD) and OnlyBackbone-

Shared (OBS) are the other two types of multi-task frame-

works. OHD denotes that the inference branches are also

shared and only the heads are different, i.e., the regression

layer for REC and the decoder for RES. In contrast, OBS

denotes that the inference branches of two tasks are com-

pletely independent. From the first part of Tab. 3, we ob-
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Table 4. Comparisons of MCN with the state-of-the-arts on the REC task.

RefCOCO RefCOCO+ RefCOCOg

Model Visual Features val testA testB val testA testB val test Speed* ↓
MMI [23] CVPR16 vgg16 - 64.90 54.51 - 54.03 42.81 - - -

CMN [31] CVPR16 vgg16 - 71.03 65.77 - 54.32 47.76 - - -

Spe+Lis+Rl [45] CVPR17 frcnn-resnet101 69.48 73.71 64.96 55.71 60.74 48.80 60.21 59.63 -

Spe+Lis+Rl [45] CVPR17 frcnn-resnet101 68.95 73.10 64.85 54.89 60.04 49.56 59.33 59.21 -

ParalAttn [49] CVPR18 frcnn-vgg16 - 75.31 65.52 - 61.34 50.86 - - -

LGRANs [37] CVPR19 frcnn-vgg16 - 76.60 66.40 - 64.00 53.40 - - -

NMTree [18] ICCV19 frcnn-vgg16 71.65 74.81 67.34 58.00 61.09 53.45 61.01 61.46 -

FAOA [38] ICCV19 darknet53 71.15 74.88 66.32 56.86 61.89 49.46 59.44 58.90 39 ms

MattNet [43] CVPR18 frcnn-resnet101 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 367 ms

MattNet [43] CVPR18 mrcnn-resnet101 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27 378 ms

MCN (ours) vgg16 75.98 76.97 73.09 62.80 65.24 54.26 62.42 62.29 48 ms

MCN (ours) darknet53 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01 56 ms

* The inference time is tested on the same hardware, i.e., GTX1080ti.

Table 5. Comparisons of MCN with the state-of-the-arts on the RES task.

RefCOCO RefCOCO+ RefCOCOg

Model Visual Features val testA testB val testA testB val test

DMN [25] ECCV18 resnet101 49.78 54.83 45.13 38.88 44.22 32.29 - -

RRN [16] CVPR18 resnet101 55.33 57.26 53.93 39.75 42.15 36.11 - -

CMSA [40] CVPR19 resnet101 58.32 60.61 55.09 43.76 47.60 37.89 - -

MattNet [43] CVPR18 mrcnn-resnet101 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61

NMTree [18] ICCV19 mrcnn-resnet101 56.59 63.02 52.06 47.40 53.01 41.56 46.59 47.88

MCN (ours) vgg16 57.33 58.59 57.23 46.53 48.68 41.93 46.95 47.20

MCN (ours) darknet53 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40

serve that MCN significantly benefits both tasks. Besides,

we notice that the two tasks have different optimal settings

about the scales of the multimodal tensors, i.e., 13× 13 for

REC and 52 × 52 for RES, suggesting the differences of

two tasks. The second part of Tab. 3 shows that a com-

pletely independent or fully shared network can not max-

imize the advantage of the joint REC and RES learning,

which subsequently validates the effectiveness of the col-

laborative connections built in MCN. Meanwhile, as shown

in Fig. 5, MCN demonstrates its benefits of collaborative

multi-task training and outperforms other single and multi-

task models by a large margin.

Comparison of ASNLS and different post-processing

methods. We further evaluate different processing meth-

ods, and give the results in Tab. 1. From Tab. 1, the first ob-

servation is that all the processing methods based on REC

have a positive impact on both the RES performance and the

IE score. But we also notice that the hard processing, i.e.,

RoI Crop [10, 30], still reduces the performance of RES on

some metrics, e.g., IoU and Acc@0.9, while our soft pro-

cessing methods, i.e. Soft-NLS and ASNLS, does not. This

results greatly prove the robustness of our methods. Mean-

while, we observe that ASNLS can achieve more signifi-

cant performance gains than Soft-NLS, which validates the

effects of the adaptive factor design.

Ablation study. Next, we validate different designs in

MCN, of which results are given in Tab. 2. From Tab. 2, we

can observe significant performance gains by each design of

MCN, e.g., up to 7.04% gains for REC and 14.84% for RES.

We also notice that CEM not only helps the model achieve

distinct improvements on both the REC and the RES tasks,

but also effectively reduces the IE value, e.g., from 17.12%

to 13.51%. Similar advantages can also be witnessed in

ASNLS. Conclusively, these results confirm the merits of

the collaborative framework, CEM and ASNLS again.

Comparison with the State-of-the-arts. Lastly, we

compare MCN with the state-of-the-arts (SOTAs) on both

REC and RES, of which results are given in Tab. 4 and

Tab. 5. As shown in Tab. 4, MCN outperforms most ex-

isting methods in REC. Even compared with the most ad-

vanced methods, like MattNet [43], MCN still achieves a

comprehensive advantage and has distinct improvements on

some splits, e.g. +7.13% on the testB split of RefCOCO and

+2.80% the val split of RefCOCO+. In addition, MCN ob-

viously merits in the processing speed to these multi-stage

methods, e.g., 6 times faster than MattNet, which also sug-

gests that the improvements by MCN are valuable. Mean-

while, MCN are signficantly better than the most advanced

one-stage model, e.g., FAOA [38], which confirms the merit

of the joint REC and RES learning again. In Tab. 5, we

further observe that the performance leads of MCN leads

in RES task is more distinct, which is up to +8.39% on
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Expr.1: dude in white shirt in middle.
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Expr.2: person in gray and white jacket with back to camera.

Expr.3: a yellow taxi which is to the left of another taxi.
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Expr.1: boy holding pizza.

Image With CEM loss Without CEM loss

Expr.2: laptop with green keyboard.

Image 
(a) Examples of MCN with other multi-task models.

(b) Examples of MCN* with and without CEM loss.

With CEM loss Without CEM loss

Expr.1: man in white shirt forefront.

Image With ASNLSWithout Processings With Hard Crop

Expr.2: a woman dressed in black who appears to be talking to someone.

Image With ASNLSWithout Processings With Hard Crop

(c) Examples of MCN with different post processings.

Figure 6. Visualizations of the inference and prediction by the proposed MCN. We compare the results of MCN with three multi-task

networks in (a) and compare the effects of our design in (b) and (c). * denotes that the post-processings is not used in these example.

RefCOCO, +11.50% on RefCOCO+ and +3.32% on Ref-

COCOg. As previously analyzed, such performance gains

stem from the collaborative learning structure, CEM loss

and ASNLS, greatly confirming the designs of MCN.

4.4.2 Qualitative Analysis

To gain deep insights into MCN, we visualize its predic-

tions in Fig. 6. The comparisons between MCN and alter-

native structures are shown in Fig. 6 (a). From Fig. 6 (a),

we can observe that the collaborative learning structure of

MCN significantly improves the results of both REC and

RES. Besides, MCN is able to predict high-quality boxes

and masks for the referent in complex backgrounds, which

is often not possible by alternative structures, e.g., Expr.1.

Fig. 6 (b) displays the effect of the proposed CEM loss.

Without it, the model tends to focus on different instances

of similar semantics, resulting the prediction conflicts of

the REC and RES branches. With CEM, the two inference

branches can have a similar focus with respect to the expres-

sion. Fig. 6 (c) shows results of the model without and with

different post-processing methods. From these examples,

we can observe that the proposed ASNLS helps to preserve

the integrity of an object, e.g., Exp.(2). It can be seen that

the part of referent outside the bounding box is preserved

by our ASNLS, while it will be naturally cropped by the

hard methods, e.g., ROI-Pooling [30] and RoI-Align [10].

Conclusively, these visualized results reconfirm the effec-

tiveness of the novel designs in MCN, i.e., the collaborative

learning structure, CEM and ASNLS.

5. Conclusion

In this paper, we propose a novel Multi-task Collabo-

rative Network (MCN) for the first attempt of joint REC

and RES learning. MCN maximizes the collaborative learn-

ing advantages of REC and RES by using the properties of

two tasks to benefit each other. In addition, we introduce

two designs, i.e., Consistency Energy Maximization (CEM)

and Adaptive Soft Non-Located Suppression (ASNLS), to

address a key issue in this multi-task setting i.e., the pre-

diction conflict. Experimental results on three datasets not

only witness the distinct performance gains over SOTAs of

REC and RES, but also prove that the prediction conflict is

well addressed.
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