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Abstract

Given the tremendous growth of online videos, video

thumbnail, as the common visualization form of video con-

tent, is becoming increasingly important to influence user’s

browsing and searching experience. However, conventional

methods for video thumbnail selection often fail to produce

satisfying results as they ignore the side semantic informa-

tion (e.g., title, description, and query) associated with the

video. As a result, the selected thumbnail cannot always

represent video semantics and the click-through rate is ad-

versely affected even when the retrieved videos are relevant.

In this paper, we have developed a multi-task deep visual-

semantic embedding model, which can automatically select

query-dependent video thumbnails according to both visual

and side information. Different from most existing methods,

the proposed approach employs the deep visual-semantic

embedding model to directly compute the similarity between

the query and video thumbnails by mapping them into a

common latent semantic space, where even unseen query-

thumbnail pairs can be correctly matched. In particular,

we train the embedding model by exploring the large-scale

and freely accessible click-through video and image data,

as well as employing a multi-task learning strategy to holis-

tically exploit the query-thumbnail relevance from these two

highly related datasets. Finally, a thumbnail is selected by

fusing both the representative and query relevance scores.

The evaluations on 1,000 query-thumbnail dataset labeled

by 191 workers in Amazon Mechanical Turk have demon-

strated the effectiveness of our proposed method.

1. Introduction

As the most widely adopted representation of video con-

tent, a video thumbnail provides a vivid yet condensed pre-

view of the entire video. Most conventional methods for

Side Semantic Information

Title: How to replace an AC compressor in the car

Query: AC compressor replacement videos

(a) Video and Side Semantic Information

(b) Thumbnails Selected by Visual Representativeness based Method

(c) Thumbnails Selected by Multi-Task Visual-Semantic Embedding Method

Figure 1. Examples of query-dependent thumbnails. (a) is the

video and its side semantic information, (b) shows the thumbnails

selected by the visual representativeness based method, and (c)

contains the query-dependent thumbnails selected by multi-task

deep visual-semantic embedding. Compared with (b), the thumb-

nails in (c) are more representative and semantically meaningful.

video thumbnail selection have focused on learning visual

representativeness purely from visual content [5, 12, 13].

However, these methods ignore the abundant semantic in-

formation associated with the video. For example, a video is

usually associated with a title, a short description, a piece of

transcript, or a textual query for searching this video. This

side information is important for thumbnail selection and

often overlooked in previous research. As shown in Fig-

ure 1, a video with the title “AC compressor replacement”

should be represented by the thumbnails which are truly re-

lated to the action of “compressor replacement.”

In this paper, we study the problem of video thumbnail

selection with side semantic information, which is over-

looked in previous research. We investigate how to embed

this side semantic information (e.g., title, description, query,

and transcript) with visual content to select semantically

meaningful thumbnails. The problem has a wide variety



of real world applications such as online video summariza-

tion [24] where a video is usually associated with a title or

a description, and video search where the video thumbnails

returned by a search engine are expected to be semantically

relevant to a given query.

To this end, we propose a multi-task deep visual-

semantic embedding method which serves as a bridge be-

tween the diverse side semantic information and visual con-

tent. Our main idea is to learn a deep visual-semantic em-

bedding model which directly maps the two views (textual

and visual) to a latent semantic embedding space, where

the relevance between two incomparable views can be com-

puted through their projections. Different from existing

works [2], we employ a large-scale click-through based

video and image data to learn a robust embedding model,

as well as close the domain gap between video and image

by a multi-task learning strategy. We demonstrate the effec-

tiveness of this method in the query-dependent thumbnail

selection task. To the best of our knowledge, this paper

represents one of the first attempts towards visual-semantic

embedding for selecting video thumbnails.

Compared with other multi-view embedding methods [4,

16], visual-semantic embedding model has its unique ad-

vantage. It can leverage the semantic similarity to correctly

predict the relevance between unseen textual or visual infor-

mation, and overcome the category limitations of the con-

ventional N-way discrete classifiers models [2]. In our ap-

plication, we train the visual-semantic embedding model on

a click-through video dataset to exploit the relevance be-

tween a query and the clicked thumbnail. As the model’s

performance highly depends on the massive public datasets,

we also expand our dataset with user click-through based

image data. Compared with artificially labeled data, such

click-through data are large-scale, freely accessible, and

more useful for understanding the relevance of query-visual

information.

However, directly training model on the fusion dataset

neglects the gap between images and videos. To solve the

problem, we adopt the multi-task learning strategy, which

refers to the joint training of multiple tasks, while enforcing

a common intermediate parameterization or representation

to improve each individual task’s performance [17]. Here,

we consider the model trained on click-through based im-

age and video datasets as two different but highly related

tasks. Thus, we first train one metric that is shared be-

tween the two tasks, and then fine-tune the metric to the

specific query-dependent thumbnail selection task. Conse-

quently, the learned multi-task visual semantic embedding

model avoids overfitting on the click-through based video

dataset and adequately exploits more query-thumbnail rela-

tionship from the two datasets.

The multi-task deep visual-semantic embedding model

is employed to select the query-dependent thumbnail, which

is used to supply representative and semantic relevant

thumbnails. First, we extract eight different video repre-

sentative attributes to select 20 most visual representative

keyframes as candidate thumbnails. Then, we leverage the

trained embedding model to map the side semantic infor-

mation (i.e., query and title) and visual content into a latent

embedding space to compute their relevance. Finally, the

visual representative and query relevance scores are fused

to select the final thumbnails. One such example can be

found in Figure 1. Compared with thumbnails selected by

a conventional method in (b), the thumbnails selected by

our proposed method in (c) can not only well represent the

video content, but also help video browsers or searchers

quickly find their interested videos. Furthermore, the exper-

iments on a collection of 1,000 query-video pairs labeled by

191 workers on Amazon Mechanical Turk (AMT) show that

74.83% thumbnails selected by our approach achieve user

satisfaction, which is nearly 6% higher than the baseline.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 introduces the deep visual-

semantic embedding model trained on video dataset. The

proposed multi-task deep visual-semantic embedding is de-

scribed in Section 4. Section 5 showcases the application

on query-dependent thumbnail selection. Experiments and

evaluations are presented in Section 6, followed by the con-

clusion and future work in Section 7.

2. Related Work

Most conventional methods for video thumbnail selec-

tion have focused on learning visual representativeness

purely from visual content. For instance, Kang et al. define

the concept of the “representativeness” and divide the cri-

terion into four main video attributes: frame quality, visual

details, content dominance, and attention measurement [5].

In addition, Luo et al. segment the video clip into homo-

geneous parts based on major types of camera motion and

utilize them to select representative keyframes [13]. Fur-

thermore, high-level features like important object, people

and subjects are also utilized to summarize the video [8, 19].

Besides, Lu et al. propose a saliency based video sum-

marization method, which trains a linear regression model

to predict the importance score for each frame in egocen-

tric videos [12]. Admittedly, the above representativeness-

based methods can choose the visual representative frame

to represent the video’s visual content, but they neglect the

semantic information and user’s search intent, which may

not be adequate to satisfy the users with widest kinds infor-

mation need.

Accordingly, more recent researchers start to research on

how to choose the query-dependent thumbnails to supply

specific thumbnails for different queries. The existed works

can be classified into search based and learning based. Af-

ter receiving query information, the search based methods



firstly use input queries to search the related images, then

to calculate the relevance between query and thumbnail

by the similarity between the searched images and thumb-

nail [1, 6, 10, 23]. However, the images search process in

the online stage is too time-consuming for real-world ap-

plications. Consequently, learning based methods are em-

ployed by more researchers [9, 22]. For example, Wang et

al. adopt a multiple instance learning approach to localize

the tags into video shots and select query-dependent thumb-

nail according to the tags [22]. Although the method can

achieve satisfy performance on limited query-video dataset

(e.g., 60 queries in [22]), scaling such N-way discrete clas-

sifiers methods beyond a limited number of discrete query

categories remains an unsolved problem.

In the image search field, aiming to address the above

query and image relevance calculation problem, the multi-

view embedding methods have been proposed. For in-

stance, Pan et al. propose a click-through-based cross view

learning strategy, which directly calculate the multi-view

distance between a textual query and an image by learn-

ing a latent common subspace with the ability in com-

puting the query-image relevance [16]. Furthermore, the

deep visual-semantic embedding model leverages textual

data to learn semantic relationships between labels, and

explicitly mapped images into a rich semantic embedding

space [2]. According to their evaluation, they can correctly

predict object category labels for unseen categories. Al-

though the above methods can effectively compute the rel-

evance between query and images, we cannot directly use

them as the gap between image recognition/search tasks and

video thumbnail selection. Differently, we employ a freely

click-through based image and video dataset to train the

multi-task deep visual-semantic embedding model. In or-

der to eliminate the gap between the two different tasks, we

employ multi-task learning strategy to holistically exploit

the query-thumbnail relevance from the two high-related

datasets. In this way, the query-dependent thumbnails can

be effectively and efficiently selected.

3. Deep Visual-Semantic Embedding

The deep visual-semantic embedding was first intro-

duced in [2] to leverage semantic knowledge learned in the

text domain, and transfer it to a model trained for visual ob-

ject recognition. By both mapping into the latent semantic

space, they can directly compute the relevance between the

label and image by the semantic vector representations of

the image and label. More important, for unseen labels, the

visual-semantic embedding model can also correctly find

the similar images by the labels’ semantic representations.

Hence, we can leverage the deep visual-semantic embed-

ding to calculate the relevance between the widest unpre-

dictable queries and thumbnails.

The structure of the visual-semantic embedding model

In
p

u
t 

T
h

u
m

b
n

a
il

Convolutional

Filtering 

Layers Local Contrast Norm and 

Sample Pooling Layers

F
u
lly

-C
o

n
n

e
c
ti
o

n
 L

a
y
e

r 
(F

C
1

)

F
u

lly
-C

o
n

n
e

c
ti
o

n
 L

a
y
e

r 
(F

C
2
)

P
ro

je
ct

io
n

 L
a

y
e

r 
(M

)

L
a
te

n
t 

S
e

m
a

n
ti

c
 S

p
a

c
e

In
p

u
t 

Q
u

e
ry

Word Embedding

Model

Figure 2. The structure of the deep visual-semantic embedding

model.

can be seen in Figure 2. For the input textual query, the

model needs a neural language model which is well-suited

for learning semantically-meaningful dense vector repre-

sentation of words to map the query into the latent semantic

space. Here we directly employ the “GloVe” word embed-

ding model [18] which is pre-trained on a corpus of 840 bil-

lion tokens of web data 1. The “GloVe” is used here as its

comprehensive performance on word analogy, word simi-

larity, and named entity recognition tasks. Nevertheless, our

algorithm does not depend on one fixed word embedding

method, any efficient models can also be used here [15]. As

suggested in [2], we choose the 300-D embeddings as the

good compromise between training speed, semantic quality

and ultimate performance.

For the input thumbnails, we leverage the deep convolu-

tional neural network (CNN) architecture as discussed in [7]

by adapting their publicly released C++ implementation 2.

This model has been successfully trained on the ILSVRC-

2012 dataset and achieved winning performance on 1,000

categories. The original CNN consists of two parts: 1) the

input layers, five convolution layers and maxpooling lay-

ers, and 2) two fully connection layers “FC1” and “FC2”,

and the output layers which produces a distribution over the

1,000 class labels. Here, aiming to map the thumbnails into

the latent semantic space, we change the 1,000 label output

to the semantic vector representations of the query related to

the thumbnail. Meanwhile, the softmax prediction layer is

replaced by a projection layer M . Furthermore, we change

the original loss function to Equation (1),

loss(v, ~t+, ~t−) =
∑

max[0, γ − ~t+M~v + ~t−M~v], (1)

where ~t+ is the semantic vector representation of the query

and ~v is the output of FC2 in CNN network for the thumb-

nail in the given clicked query-thumbnail pairs, ~t− is the

semantic vector representations of other text which is inde-

pendent of v, M is the matrix of trainable parameters in the

projection layer, γ is the parameter of margin (set to 0.1).

1“GloVe,” http://nlp.stanford.edu/projects/glove/.
2“Cuda-convnet,” https://code.google.com/p/cuda-convnet/.



The loss function is a combination of dot-product similarity

and hinge rank loss such that the model was trained to pro-

duce a higher dot-product similarity between the vector rep-

resentation of the clicked query-thumbnail pairs than simi-

larity between randomly generated query-thumbnail pairs.

As M is set as one layer of the CNN, we train the

visual-semantic embedding model by the stochastic gra-

dient descent. For training set, we use the click-through

based video dataset collected from Bing, which consists of

0.5 million {query, URL, click} triples, where query is a

textual phrase, URL is the video’s hyperlink and click is

an integer indicating the total clicked number. Compared

with artificially labeled data, we use click-through data not

only for large-scale and freely accessible, but also as they

directly capture the relevance between the query and the

clicked thumbnails. From the URL, we download video’s

title and thumbnail where click ≥ 5. Then we choose the

thumbnail as v, all words in its query and title as t+, and

randomly choose other words as t−. In addition, Natural

Language Toolkit is used to remove the non-English words,

stop words, and the morphological affixes 3. Finally, we get

0.41 million {v, t+, t−} triples. Training and validate data

are randomly chosen from the triples according to the pro-

portion of 10 : 1. Before training, we init the CNN with

the parameters trained well in [21]. In the training process,

we firstly trained the parameters of M while holding both

the above layers in CNN and the text representation fixed.

In the later stages, the derivative of the loss function was

back-propagated into all CNN layers to fine-tune the output.

However, as the visual-semantic embedding model directly

learns the visual feature and visual-semantic relevance from

the big data, to train a reliable model, the scale of the train-

ing dataset (i.e., 0.41 million) is far from enough. In order to

solve the problem, we expand the dataset with click-through

based image dataset and describe the proposed multi-task

learning strategy in the next section.

4. Multi-Task Deep Visual-Semantic Embed-

ding

The multi-task learning strategy learns related tasks si-

multaneously by extracting and utilizing appropriate shared

information across tasks, which can effectively increase the

sample size for each task, and improve their prediction per-

formance. Thus, multi-task learning is especially benefi-

cial when the training sample size is small for each task

[3]. As a result, we employ the multi-task learning strategy

in our algorithm to expand the training dataset with Click-

ture to improve the performance of the deep visual-semantic

embedding model for query-thumbnail relevance calcula-

tion4. The Clickture is a large-scale click based image

3“Natural Language Toolkit,” http://www.nltk.org/.
4“Clickture,” http://research.microsoft.com/en-us/projects/clickture/.

dataset collected from one year click-through data, which

is commonly used for image search task. Although the two

tasks refer different source medias, video and image, they

are highly related as they both provide strong connections

between semantics and visual information, as well as con-

nections between users’ search intents and queries. Hence,

we can employ the Clickture to improve our multi-task deep

visual-semantic embedding model. In our experiments, we

use the training set in Clickture which consists of 23.1 mil-

lion {query, image, click} triads, i.e., 11.7 million distinct

queries and 1.0 million unique images. After the same pre-

processing as described in Section 4, we obtain 10.0 million

{v, t+, t−} triples.

By following the multi-task learning setting with K

learning tasks (i.e., K = 2 in our setting), we can redefine

the goal of deep visual-semantic embedding model learning

as Equation (2).

min
Mk

τ0‖M0 − I‖2F +

2∑

k=1

{τk‖△Mk‖
2
F +max[0, γ − S(t+k , v) + S(t−k , v)]},

(2)

where M also indicates the projection layer in the CNN.

Differently, M0 picks up general trends across multiple

datasets and Mk = M0 + △Mk specialize each particu-

lar task. As an important aspect of multi-task learning is

the appropriate coupling of the multiple learning tasks, the

minimization of ‖M0 − I‖2F and ‖△Mk‖
2
F ensures that the

learning algorithm does not put too much emphasis onto the

shared or individual data. Similar to Equation (1), the mini-

mization of max[0, γ − S(t+k , v) + S(t−k , v)], S(tk, v) =
~tkMk ~vk make sure that the model is trained to produce

a higher dot-product similarity between the vector repre-

sentation of the clicked query-thumbnail/image pairs. The

τk ≥ 0, k = 0, 1, 2 is a trade-off parameter that controls the

regularization of Mt.

The training of multi-task deep visual-semantic embed-

ding model contains two processes. First, we train the M0

on the common dataset, just like the process in Section 3.

Differently, the t and v are both selected from the click-

through based image and video dataset. The loss function

can be changed to Equation (3).

loss(v, ~t+, ~t−) =

τ0‖M0 − I‖2F +
∑

max[0, γ − ~t+M0~v + ~t−M0~v].
(3)

We can regard the top seven layers as extracting the com-

mon features of the images and thumbnails. Simultane-

ously, the M0 layer is employed as the transforming of the

visual feature into the semantic space by extracting the com-

mon relationship of query-image and query-thumbnail.



After trained M0, we need to fine-tune the M1 for query-

dependent thumbnail selection. In this stage, we lock the

top seven layers and only train the M1 layer on the click-

through based video dataset. In particular, the loss function

is changed to Equation (4).

loss(v, ~t+, ~t−) =

τ1‖M1 −M0‖
2
F +

∑
max[0, γ − ~t+M1~v + ~t−M1~v],

(4)

where ‖M1 − M0‖
2
F ensures that the learning algorithm

does not put too much emphasis onto the video dataset to

avoid the overfitting, τ1 is the trade-off parameter. In the

training, we can initialize the τ1 with 1.0 and modify it ac-

cording to the test error. As we mainly focus on the query-

dependent thumbnail selection task, in this stage, we only

fine-tune M1 on click-through based video dataset and ne-

glect M2. In the future, we will try to simultaneously fine-

tune more parallel projection layers Mk for different tasks

in one CNN network.

5. Query-dependent Thumbnail Selection

In this section, we will introduce how to utilize the above

multi-task deep visual-semantic embedding model to select

the query-dependent thumbnails. The process can be di-

vided into two stages: offline and online.

Although we aim to select the query-dependent thumb-

nail, we cannot ignore thumbnail’s primary role is to repre-

sent the video content properly. Hence in the offline stage,

we firstly need to select the visual representative and com-

prehensive keyframes as the candidate thumbnails by the

video representation attributes based method. Inspired by

[5], we firstly segment the videos into scenes, shots and

sub-shots by the color histogram. Then for keyframes in

each sub shots, two kinds of video attributes are extracted

to compute the keyframes’ representative score. For high

image visual quantity, we extract 1) the durations of sub-

shot, neighbor sub-shot, shot and scene; 2) the keyframes’

position, color entropy, motion blur and edge sharpness at-

tributes; and 3) successive keyframe’s similarities as video

representation attributes. For high image’s attractiveness,

we extract the human face and skin ratio as video represen-

tation attributes. After that, the final representative score is

computed by the linear fusion of these attributes. The top

20 keyframes are selected as the candidate thumbnails by

their representative scores. Additionally, their representa-

tive scores are also saved to be fused with query relevance

scores in the online stage. Finally, we will use the trained

multi-task deep visual-semantic embedding model to map

all the candidate images into the latent space to get their

semantic vector representations.

In the online video search stage, after receiving user’s

query, we also need to map it into the semantic space by

the word embedding model. Then the query-thumbnail rel-

evance is directly computed in the latent semantic space by

their semantic representation vectors. As the query may

contain several words, we compute one thumbnail’s cosine

similarity with each word in the query. Then the highest

similarity will be used as each thumbnail’s query relevance

score. Finally, we fuse each thumbnail’s visual represen-

tative score and query relevance score through the average

late fusion and send thumbnail with the highest score to the

user as the final selected query-dependent thumbnail. As

most of the complicated works (e.g., model training, video

keyframes extraction and representative score computation)

are processed offline, in the online, it only takes 21ms to

select the query-dependent thumbnail for each query-video

pair on an Ubuntu 14.10 server with Intel Xeon CPU E5-

2650, 64 GB Memory and NVidia Tesla K20Xm GPU.

6. Experiments

6.1. Evaluation Dataset

To evaluate the performance of our proposed algorithms,

we select 1,000 query-video pairs from the click-through

based video dataset, which are not used in the training pro-

cess. The videos contain nine categories and the average

length is 331 seconds. To reduce the workload of labeling,

for each video, we use video representativeness attributes

based method described in Section 5 to extract 20 most

keyframes as candidate thumbnails. In the end, we totally

get 17,480 candidate thumbnails. As the thumbnail selec-

tion is somewhat subjective task, and for each video more

than one frame could be chosen as a thumbnail, we ask the

workers in the AMT to label each candidate thumbnail ac-

cording to the query and video 5. To ensure that the la-

bels are consistent across viewers, we totally publish 5,000

hit tasks on AMT to make each video be labeled by five

diffident workers. Each hit contains one query-video pair,

20 candidate thumbnails. The workers must firstly read

the query and watch the video, then label all the candidate

thumbnails by five different scores: Very Good (VG), Good

(G), Fair (F), Bad (B) and Very Bad (VB) 6.

Furthermore, to control the label quality, the follow re-

quirements are also added: 1) Only the workers who have

already been approved more than 100 hits and the hit ap-

proval rates are higher than 80% can join the project. 2) If

more than one thumbnail is missed in one hit, we will reject

it to make sure most of the candidate thumbnails are labeled

by five different people. 3) For 65% videos, we choose at

least one exactly VB or VG thumbnail as seed. If a worker

gives more than three obviously wrong scores for the seeds

5“Amazon Mechanical Turk,” https://www.mturk.com.
6The detailed score criteria and labeled dataset are released in

http://mcg.ict.ac.cn/mcg-vts.html as a benchmark for video thumbnail se-

lection in this community.



(e.g., label higher than B for VB or lower than G for VG),

we will block him and reject all of his hits. 4) If the worker

gives the same score to 90% candidate thumbnails in one

hit, we will check the video to decide whether to reject the

hit. In the label processing, nearly 12% hits are rejected

and all the rejected hits are published to be labeled again.

At last, more than 191 workers join the label project and

averagely spend 355 seconds for each hit. For each can-

didate thumbnail, we select the score labeled by the most

workers as its final score. If there is more than one such

score, we choose the low one. Some example videos and

labeled results can be found in Figure 5.

6.2. Experimental Settings

In order to evaluate the multi-task visual-semantic em-

bedding for query-dependent thumbnail selection, we com-

pare the following seven methods on the labeled query-

thumbnail dataset:

(1) RANDOM. The method randomly selects one image

from the candidate thumbnails as final thumbnail.

(2) Video Representation Attributes based Method

(ATTR). The method selects the most visual repre-

sentative video frame as thumbnail by the video rep-

resentation attributes [5] described in Section 5. We

select it as the state-of-the-art for video representative-

ness based method.

(3) Canonical Correlation Analysis (CCA). A classical

and successful query-image similarity computation ap-

proach to map visual and textual features into a latent

subspace where the correlation between the two views

is maximized [4, 16]. We retrain the CCA model on

the click-through based image and video dataset by the

implementation in [4], and select it as the state-of-the-

art for traditional query-dependent method.

(4) VSEM-VIDEO. Query-dependent thumbnail selec-

tion method in which the deep visual-semantic em-

bedding model is only trained on click-through based

video dataset.

(5) VSEM-ALL. Query-dependent thumbnail selection

method in which the deep visual-semantic embedding

model is trained on click-through based image and

video dataset without multi-task learning strategy.

(6) MTL-VSEM. The proposed query-dependent thumb-

nail selection method with the multi-task visual-

semantic embedding model trained on click-through

based image and video dataset.

(7) FUSION. The proposed query-dependent thumbnail

selection method considers both the visual represen-

tativeness (ATTR) and user’s search intent (MTL-

VSEM) by averagely fusing their scores.

Method HIT@1 (VG) HIT@1 (VG & G)

RANDOM 26.95% 55.68%

ATTR [5] 40.21% 68.89%

CCA [4] 31.66% 60.06%

VSEM-VIDEO 32.96% 62.48%

VSEM-ALL 39.88% 67.84%

MTL-VSEM 43.03% 71.70%

FUSION 47.13% 74.83%

Table 1. Comparison of the thumbnail selection methods (in terms

of HIT@1).

As the video search engineer can supply one or multi

thumbnails to the user, we evaluate the methods by two cri-

teria: HIT@1 computing the hit ratio for the first selected

thumbnail and Mean Average Precision (MAP) computing

the precision for all the candidate thumbnails. The MAP is

computed by

MAP =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

Precision(Rjk), (5)

where Q is the query set, mj is the number of positive

thumbnails in each query-video pairs, Precision(Rjk) is

the average precision at the position of returned kth posi-

tive thumbnails. As we label the thumbnails by five differ-

ent scores, we separately compute the HIT@1 and MAP in

two different situations: set positive score equals VG and

set positive scores as VG and G.

6.3. Evaluation on Entire Videos

We first test the seven methods with all the 1,000 query-

video pairs. The hit@1 results can be seen in Table 1. The

MAP results for different positive thumbnail selection stan-

dards can be found in Figure 3. In order to evaluate the

gap between proposed methods and human labeling, we

also compute the degree of agreement among AMT labels,

which is 68.34% and 83.04% for VG and VG&G. From the

results, we find that whether only selecting one thumbnail

or giving several thumbnails, our method both achieves the

highest accuracy among the seven methods. Compared to

ATTR, our method can obviously improve the video thumb-

nail selection accuracy, which demonstrates that the pro-

posed query-thumbnail relevance calculation method def-

initely refers the user’s search intent and gives them more

satisfactory thumbnails. Furthermore, compared with CCA,

our method also achieves much better accuracy. The reason

is that the CCA only trains a transformation matrix which

linearly maps the designed visual and textual features into

one latent subspace. However, the designed features maybe

not well linear correlation with each other. Differently, in

the training of the visual-semantic embedding model, the



derivative of the loss function was back-propagated into the

core visual model to fine-tune the generated visual features.

More important, among all the query-dependent thumb-

nail selection methods based on visual-semantic embed-

ding model, i.e., VSEM-VIDEO, VSEM-ALL and MTL-

VSEM, the proposed MTL-VSEM also achieves the high-

est accuracy. The reason is that VSEM-VIDEO only trains

the visual-semantic embedding model on the limited click-

through based video dataset, which is too small to exploit

the visual-semantic relevance. Although adding the image

dataset, the VSEM-ALL method does not consider the gap

between the image search and video thumbnail selection.

The trained model put too much emphasis onto the shared

information across the two tasks without fine-tuned on the

individual task. Instead, the MTL-VSEM effectively holis-

tically exploits the appropriate shared information across

the two dataset and avoids the overfitting on the limited

video dataset. The results demonstrate the effectiveness of

the multi-task learning strategy. Finally, the proposed FU-

SION method achieves the best performance, which demon-

strates that the representative and query-dependent informa-

tion are both very important for the video thumbnail selec-

tion.

6.4. Evaluation on Different Video Categories

In order to further evaluate the effectiveness of our

approach, we test the thumbnail selection accuracy on

nine different video categories: Education and Technology

(Educ.), Entertainment (Enter.), Film, Games and Cartoon

(Games), Music, News and Politics (News), Objects, People

and Blogs (People), and Sports. We use MAP as criterion

and the positive thumbnails are set as scores equal VG and

G. As shown in Figure 4, the performance improvements

of MTL-VSEM and FUSION are consistent and stable, i.e.,

all the video categories improved compared to other meth-

ods. In particular, for “Objects” and “Education,” the im-

provements are very significant. It demonstrates that when

searching these kind videos, the users are more purposeful

to find the specific video. In this case, the query-dependent

based methods will play a greater role. By contrast, for

“Sports” and “Film,” the representativeness based method

can give similar effects with the query-dependent methods.

The reason is that in this case, most of the video contents

are related to the query. For instance, the football video

always contains football match views from beginning to

the end. Hence the selected representative thumbnail is

also highly related to the query. However, as it is hard to

capture the match’s wonderful moment or the film’s spe-

cific actor in the query, all methods cannot give very sat-

isfy results for “Sports” and “Film” videos. Besides, com-

pared with VSEM-ALL, the MTL-VSEM also achieves bet-

ter performance for most categories, especially for “Object”

and “Games,” which further demonstrates the effectiveness
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Figure 3. Comparison of the thumbnail selection methods (in terms

of MAP). (a) positive score equals VG; (b) positive scores equal

VG and G.

of the multi-task learning strategy.

Figure 5 shows some selected thumbnails by different

approaches for different queries and video categories to give

the reader a visual sense. It is clear that the proposed MTL-

VSEM and FUSION methods produce the most satisfactory

thumbnails. Specifically, compared to other baselines, the

selected thumbnails by the proposed method can not only

provides a vivid yet condensed preview of the entire video,

but also be very related to the queries, which can help users

quickly find the relevant videos. As supplements, we also

provide two failed examples in the last rows for discussion

in Figure 5 (b). For the first example, FUSION and MTL-

VSEM methods prefer the American Football match screen

instead of Lance Briggs’s close-up. For the second exam-

ple, the two proposed methods also fail to capture “Matt

Damon.”

7. Conclusions and Future Work

In this paper, we have investigated the issue of directly

learning the multi-view distance between the video side se-

mantic information and visual content by training the multi-
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Figure 4. Comparison of the thumbnail selection methods on dif-

ferent video categories (in terms of MAP, the positive scores equal

VG and G).

Query: Turbo charged Mercedes Brabus SL
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Figure 5. Examples of selected thumbnails by different methods

for different queries and video categories (better viewed in color).

The labeled score is provided at the top left corner for each thumb-

nail. (a) six successful examples; (b) two failure examples for dis-

cussion.

task deep visual-semantic embedding model on the click-

through image-video data. The large scale and freely acces-

sible click-through data supply a massive open dataset to

train the visual-semantic embedding model. The multi-task

learning strategy proves effective by holistically exploiting

the click-through between queries and thumbnails. Finally,

the proposed algorithm is evaluated for the query-dependent

video thumbnail selection task. The results demonstrate that

the user search experience has been significantly improved

with our proposed method due to the selected representative

and personalized thumbnails.

Although the multi-task deep visual-semantic embed-

ding model is only used for query-dependent video thumb-

nail selection in this paper, it can also be easily applied to

other applications, such as video tag localization [20], video

search reranking [14], mobile video search [11] and so on.

Furthermore, we will try to simultaneously fine-tune more

different tasks with more parallel projection layers Mk to

improve each other. More modality such as video tags, sub-

title, automatic speech recognition and face recognition will

also be investigated to select more effective thumbnails.
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