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Multi-Task Federated Learning for Personalised
Deep Neural Networks in Edge Computing

Jed Mills, Jia Hu, Geyong Min

Abstract—Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile

devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed

(non-IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model

accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real

objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization

(BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their

own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show

empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the

optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the

number of rounds required to reach a target UA, by up to 5× when using existing FL optimisation strategies, and with a further 3×

improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to

achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an

edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.

Index Terms—Federated Learning, Multi-Task Learning, Deep Learning, Edge Computing, Adaptive Optimization.
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1 INTRODUCTION

M ULTI-access Edge Computing (MEC) [?] moves Cloud

services to the network edge, enabling low-latency and real-

time processing of applications via content caching and computa-

tion offloading [?] [?]. Coupled with the rapidly increasing quan-

tity of data collected by smartphones, Internet-of-Things (IoT)

devices, and social networks (SNs), MEC presents an opportunity

to store and process huge quantities of data at the edge, close to

their source.

Deep Neural Networks (DNNs) for Machine Learning (ML)

are becoming increasingly popular for their huge range of poten-

tial applications, ease of deployment, and state-of-the-art perfor-

mance. Training DNNs in supervised learning, however, can be

computationally expensive and require an enormous amount of

training data, especially with the trend of increasing DNN size.

The use of DNNs in MEC has typically involved collecting data

from mobile phones/IoT devices/SNs, performing training in the

cloud, and then deploying the model at the edge. Concerns about

data privacy, however, mean that users are increasingly unwilling

to upload their potentially sensitive data, raising the question about

how these models will be trained.

Federated Learning (FL) [?] opens new horizons for ML

at the edge. In FL, participating clients collaboratively train an

ML model (typically DNNs), without revealing their private data.

McMahan et al. [?] published an initial investigation into FL with

the Federated Averaging (FedAvg) algorithm. FedAvg works by

initialising a model at a coordinating server before distributing

this model to clients. These clients perform a round of training
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on their local datasets and push their new models to the server.

The server averages these models together before sending the new

aggregated model to the clients for the next round of training. We

refer to the people/institutions/etc. that own data for FL as ‘users’,

and to the devices that actually participate in FL as ‘clients’.

FL is a very promising approach for distributed ML in situa-

tions where data cannot be uploaded for protecting clients’ privacy.

Therefore, FL is well suited for real-world scenarios such as

analysing sensitive healthcare data [?] [?], next-word prediction on

mobile keyboards [?], and content-recommendation [?]. However,

FL presents multiple unique challenges:

• Clients usually do not have Independent and Identically

Distributed (IID) training data. Each client has data generated

by itself, and can have noisy data or only a subset of all

features/labels. These factors can all substantially hinder

training of the FL model.

• FL research typically uses the performance metric of global-

model accuracy on a centralised test-set. However, in many

cases, individual model accuracy on clients is the real objec-

tive - motivating ‘personalised FL’ that creates unique models

for FL clients to improve local performance. However, the

best way of incorporating personalisation into FL remains an

under-researched topic.

• Due to the non-IID nature of client datasets, the performance

of the global FL model may be higher on some clients than

others. This could even lead some clients to receive a worse

model than the one they could have trained independently.

This paper addresses the above challenges by proposing a

Multi-Task FL algorithm (MTFL), that allows clients to train

personalised DNNs that both improve local model accuracy, and

help to further enhance client privacy. MTFL has lower storage

cost of personalisation, and lower computing cost compared with
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other personalised FL algorithms (not requiring extra steps of SGD

on clients during the training loop or at personalisation time) [?]

[?] [?] [?].

As client datasets in FL are usually non-IID, clients can

be viewed as attempting to optimise their models during local

training for disparate tasks. Our MTFL approach takes the Batch-

Normalisation (BN) layers that are commonly incorporated into

DNN architectures, and keeps them private to each client. Mu-

drarkarta et al. [?] previously showed that private BN layers im-

proved Multi-Task Learning (MTL) performance for joint training

on ImageNet/Places-365 in the centralised setting.

Using private BN layers has the dual benefit of personalising

each model to the clients’ local data as well as helping to preserve

data privacy: as some parameters of client models are not uploaded

to the server, less information about a client’s data distribution

can be gleaned from the uploaded model. Our MTFL approach

using BN layers also has a storage-cost benefit compared to other

personalised FL algorithms: BN layers typically contain a tiny

fraction of the total parameters of a DNN, and only these BN

parameters need to be stored between FL rounds, compared to

entire personalised DNN models of competing algorithms [?] [?]

[?].

MTFL adds personalisation on top of the typical iterative FL

framework. FedAvg and other popular algorithms are instances of

this iterative optimisation framework [?] [?] [?]. Most of these

FL algorithms use vanilla Stochastic Gradient Descent (SGD) on

clients, however, momentum-based optimisation strategies such

as Adam [?] have the potential to improve convergence speed of

FL training. We show that a distributed optimisation technique

using Adam (FedAvg-Adam) shows substantial speedup in terms

of communication rounds compared to FedAvg, and works very

well within the MTFL algorithm.

Our work makes the following contributions:

• We propose an MTFL algorithm that adds Multi-Task learn-

ing on top of general iterative-FL algorithms, allowing users

to learn DNN models that are personalised for their own

data. MTFL uses private Batch Normalisation (BN) layers to

achieve this personalisation, which provides an added privacy

benefit.

• We propose a new metric for measuring the performance

of FL algorithms: User model Accuracy (UA). UA better

reflects a common objective of FL (increasing test accuracy

on clients), as opposed to the standard global-model accuracy.

• We analyse the impact that private BN layers have on the

activations of MTFL models during inference, providing

insights into the source of their impact. We also analyse

the training and testing performance of MTFL when keep-

ing either the trained parameters or statistics of BN layers

private, demonstrating that MTFL provides a better balance

between convergence and regularisation compared to FL or

independent training.

• We conduct extensive simulations on the MNIST and CI-

FAR10 datasets. The results show that MTFL with FedAvg is

able to reach a target UA in up to 5× less rounds than when

using only FL, with FedAvg-Adam providing a further 3×
improvement. Other experiments show that MTFL is able to

significantly improve average UA compared to other state-of-

the-art personalised FL algorithms.

• We perform experiments using an MEC-like testbed consist-

ing of Raspberry Pi clients and a FL server. The results show

that MTFL with FedAvg-Adam’s overheads are outweighed

by its substantial UA and convergence speed benefits.

The rest of this paper is organised as follows: Section 2

describes related work; Section 3 details the proposed MTFL

algorithm, the effect that keeping private BN layers within MTFL

has on training and inference, and the FedAvg-Adam optimisation

strategy; Section 4 presents and discusses experiments using both

simulations and an MEC-like testbed; and Section 5 concludes the

paper.

2 RELATED WORK

As this work addresses several challenges to existing FL algo-

rithms, we overview the related work in three sub-topics of FL:

works considering personalisation, works dealing with practical

and deployment challenges, and works aiming to improve conver-

gence speed and global-model performance.

2.1 Personalised Federated Learning

Several authors have considered the approach of ‘personalising’

FL models in order to tailor model performance to non-IID user

datasets.

Meta-Learning aims to train a model that is easy to fine-

tune with few samples. Fallah et al. [?] proposed the Per-FedAvg

algorithm based on Model Agnostic Meta-Learning (MAML), that

adds a first-order adaptation term to the client loss functions, so

they can be tuned to client datasets with one step. Jiang et al.

[?] highlighted the connection between FedAvg and first-order

MAML updates, and proposed a three-stage training algorithm to

improve personalisation.

Other authors propose training a combination of local and

global models in FL to improve personalisation. Hanzely and

Richtárick [?] added a learnable parameter to allow clients to

control the extent of local and global model mixing. Dinh et

al. [?] kept a global model and a personal model for each user,

performing SGD on their personal model and then updating their

copy of the global model in an outer loop. Huang et al. [?] kept

a local model on each client, and added a proximal term to client

loss functions to keep these models close to a ‘personalised’ cloud

model, for the cross-silo FL setting.

Smith et al. [?] proposed MOCHA, which performs Federated

MTL formulates FL as a function of the model weight matrix

and a relationship matrix. Their algorithm takes into account

the heterogeneous hardware of clients, meaning MOCHA is not

directly comparable to our MTFL scheme. Recently, Dinh et

al. [?] generalised MOCHA and other algorithms into the FedU

framework, including proposing a decentralised version.

Our work proposes a Multi-Task learning approach to achieve

personalisation in FL (MTFL). We later show that our approach

has substantial converge speed, personalisation performance, pri-

vacy and storage coast benefits compared to existing personalised

FL algorithms.

2.2 Federated Learning in Edge Computing

FL performs distributed computing at the network edge. Some

authors have considered the system design and communication

costs of FL in this environment. Jiang et al. [?] proposed an

FL system that reduces the total data clients upload by selecting

model weights with the largest gradient magnitudes. They also
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Fig. 1: Operation of the MTFL algorithm in Edge Computing. Training is performed in rounds until a termination condition is met.

Step 1: the server selects a subset of clients from its database to participate in the round, and sends a work request to them. Step 2:

clients reply with an accept message depending on physical state and local preferences. Step 3: clients download the global model (and

any optimisation parameters) from the server, and update their copy of the global model with private patches (in this work, we use BN

layers as patches). Step 4: clients perform local training, before saving their personal patches for the next round. Step 5: the server

waits for C fraction of clients to upload their non-private model and optimiser values, or until a time limit. Step 6: the server averages

all models, saves the aggregate, and starts a new round.

considered implementation details such as asynchronous or round-

robin client updates. Bonawitz et al. [?] produced a FedAvg

system design, specifying clients/server roles, fault handling, and

security. They also provide analytics for their deployment of

this system with over 10 million clients. To address the non-

IID nature of client datasets in FL, Duan et al. [?] proposed the

Astrea framework: client datasets are augmented to help reduce

local class imbalances, and mediators are introduced to the global

aggregation method.

Several authors have also investigated the impacts of wire-

lessly connected FL clients. Yang et al. [?] studied different

scheduling policies in a wireless FL scenario. Their analysis

showed that with a low Signal-to-Interference-plus-Noise Ratio

(SINR), simple FL schemes perform well, but that as SINR

increases, more intelligent methods of selecting clients are needed.

Ahn et al. [?] proposed a Hybrid Federated Distillation scheme

for FL with wireless edge devices, including using over-the-

air computing and compression methods. Their results showed

that their scheme gave better performance in high-noise wireless

scenarios.

Other authors have proposed schemes for considering the com-

puting, networking and communication resources of FL clients

in edge computing. Wang et al. [?] performed experiments with

smartphones to argue that the computation-time (as opposed to

communication-time) of FedAvg is the most significant bottleneck

for real-world FL, and propose algorithms to accommodate this

computational heterogeneity. Nishio and Yonetani [?] designed a

system that collects information about the computing and wireless

resources of clients before initiating a round of FL, reducing the

real-time taken to reach a target accuracy for FedAvg.

These previous works have proposed implementations of FL

systems. However, they do not consider MTL within FL, which is

a main contribution of our work with the MTFL algorithm.

2.3 Federated Learning Performance

The seminal FedAvg algorithm [?] collaboratively trains a model

by sending an initial model to participating clients, who each

perform SGD on the model using their local data. These new

models are sent to the server for averaging and a new round

is begun. Some progress has been made towards improving the

convergence rate of FedAvg. Leroy et al. [?] used Adam adaptive

optimisation when updating the global model on the server. Reddi

et al. [?] also generalised other adaptive optimisation techniques in

the same style and provided convergence guarantees. Our FedAvg-

Adam algorithm differs from these as clients in FedAvg-Adam

perform Adam SGD (as opposed to vanilla SGD), and the Adam

parameters are averaged alongside model weights at the server.

Liu et al. [?] used momentum-SGD on clients, and aggregated the

momentum values of clients on the server alongside the model

weights as an alternative method of accelerating convergence.

Some works have been produced investigating FL with non-

IID or poor-quality client data. Zhao et al. [?] proposed sharing a

small amount of data between clients to decrease the differences

in their data distributions and improve global model accuracy.

Konstantinov and Lampert [?] evaluated which clients have poor-

quality data by finding the difference between a client model’s

local predictions and predictions using a trusted dataset. Wang

et al. [?] ignored irrelevant client updates during training by

checking if each client’s update aligns with the global model.

The FedAvg-Adam optimisation method presented here uses

adaptive optimisation on clients, rather than SGD, which we later

show converges much faster than when using FedAvg or Adam

optimisation purely on the server.
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3 MULTI-TASK FEDERATED LEARNING (MTFL)

Fig. 1 shows a high-level overview of how the MTFL algorithm

would operate in the edge-computing environment. More detailed

descriptions of the use of BN patches in MTFL, and optimisation

on clients is given in the later subsections.

The MTFL algorithm is based on the client-server framework,

however, rounds are initiated by the server, as shown in Fig 1.

First, the server selects all, or a subset of all, known clients

from its database and asks them to participate in the FL round

(Step 1), and sends a Work Request message to them. Clients

will accept a Work Request depending on user preferences (for

example, users can set their device to only participate in FL if

charging and connected to WiFi). All accepting clients then send

an Accept message to the server (Step 2). The server sends the

global model (and any associated optimization parameters) to all

accepting clients, who augment their copy of the global model

with private patches (Step 3). Clients then perform local training

using their own data, creating a different model. Clients save the

patch layers from their new model locally, and upload their non-

private model parameters to the server (Step 4).

The server waits for clients to finish training and upload their

models (Step 5). It can either wait for a maximum time limit, or for

a given fraction of clients to upload before continuing, depending

on the server preferences. After this, the server will aggregate all

received models to produce a single global model (Step 6) which

is saved on the server, before starting a new round.

MTFL therefore offloads the vast majority of computation

to client devices, who perform the actual model training. It

preserves users’ data-privacy more strongly than FedAvg and other

personalised-FL algorithms: not only is user data not uploaded, but

key parts of their local models are not uploaded. The framework

also accounts for client stragglers with its round time/uploading

client fraction limit. Moreover, MTFL utilises patch layers to

improve local model performance on individual users’ non-IID

datasets, making MTFL more personalised.

3.1 User Model Accuracy and MTFL

In many FL works, such as the original FedAvg paper [?], the

authors use a central IID test-set to measure FL performance.

Depending on the FL scenario, this metric may or may not be

desirable. If the intention is to create a single model that has good

performance on IID data, then this method would be suitable.

However, in many FL scenarios, the desire is to create a model that

has good performance on individual user devices. For example,

Google have used FedAvg for their GBoard next-word-prediction

software [?]. The objective was to improve the prediction score

for individual users. As users do not typically have non-IID data,

a single global model may display good performance for some

users, and worse performance for others.

We propose using the average User model Accuracy (UA) as

an alternative metric of FL performance. UA is the accuracy on a

client using a local test-set. This test-set for each client should be

drawn from a similar distribution as its training data. In this paper,

we perform experiments on classification problems, but UA could

be altered for different metrics (e.g. error, recall).

In FL, user data is often non-IID, so users could be considered

as having different but related learning tasks. It is possible for

an FL scheme to achieve good global-model accuracy, but poor

UA, as the aggregate model may perform poorly on some clients’

datasets (especially if they have a small number of local samples,

Fig. 2: Example composition of a DNN model used in MTFL.

Each client’s model consists of shared global parameters (Ω1−Ω4)

for Convolutional (Conv) and Fully-Connected (FC) layers, and

private Batch-Normalization (BN) patch layers (Pk1
, Pk2

, Pk3
).

so are weighted less in the FedAvg averaging step). We propose

the MTFL algorithm that allows clients to build different models,

while still benefiting from FL, in order to improve the average UA.

Mudrakarta et al. [?] have previously shown that adding small

per-task ‘patch’ layers to DNNs improved their performance in

MTL scenarios. Patches are therefore a good candidate for training

personalised models for clients.

In FL, the aim is to minimise the following objective function:

FFL =
K
∑

k=1

nk

n
ℓk(Ω) (1)

where K is the total number of clients, nk is the number of

samples on client k, n is the total number of samples across all

clients, ℓk is the loss function on client k, and Ω is the set of

global model parameters. Adding unique client patches to the FL

model changes the objective function of MTFL to:

FMTFL =
K
∑

k=1

nk

n
ℓk(Mk) (2)

Mk = (Ω1 · · ·Ωi1 , Pk1
,Ωi1+1 · · ·Ωim , Pkm

,Ωim+1 · · ·Ωj)
(3)

where Mk is the patched model on client k, composed of

Federated model parameters Ω1 · · ·Ωj (j being the total number

of Federated layers) and patch parameters Pk1
· · ·Pkm

(m being

the total number of local patches, {i} being the set of indexes of

the patch parameters) unique to client k. Fig. 2 shows an example

composition of a DNN model used in MTFL.

MTFL is a general algorithm for incorporating MTL into

FL. Different optimisation strategies (including FedAvg-Adam

described in Section 3.3) can be used within MTFL, and we later

show that MTFL can substantially reduce the number of rounds to

reach target UA, regardless of the optimisation strategy used.

As shown in Algorithm 1, MTFL runs rounds of communica-

tion until a given termination criteria (such as target UA) is met

(Line 2). At each round, a subset Sr of clients are selected to

participate from the set of all clients S (Line 3). These clients
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Algorithm 1: MTFL

1: Initialise global model Ω and global optimiser values V
2: while termination criteria not met do

3: Select round clients, Sr ⊂ S, |Sr| = C · |S|

4: for each client sk ∈ Sr in parallel do

5: Download global parametersMk ← Ω
6: Download optimiser values Vk ← V
7: for i ∈ patchIdxs do ⊲ Apply local patches

8: Mk,i ← Pk,i, Vk,i ←Wk,i

9: end for

10: for batch b drawn from local data Dk do

11: Mk, Vk ← LocalUpdate(Mk, Vk, b)
12: end for

13: for i ∈ patchIdxs do ⊲ Save local patches

14: Pk,i ←Mk,i,Wk,i ← Vk,i

15: end for

16: for each i /∈ patchIdxs do

17: UploadMk,i, Vk,i to server

18: end for

19: end for

20: for i /∈ nonPatchIndexes do

21: Ωi ← GlobalModelUpdate(Ωi, {Mk,i}k∈Sr
)

22: Vi ← GlobalOptimUpdate(Vi, {Vk,i}k∈Sr
)

23: end for

24: end while

download the global model Ω, which is a tuple of model param-

eters, and the global optimiser V , if used (Lines 5-6). The clients

then update their copy of the global model and optimiser with their

private patch layers (Lines 7-9), where the ‘patchIdxs’ variable

contains the indexes of patch layer placement in the DNN. Clients

perform training using their now-personalised copy of the global

model and optimiser on their local data (Line 10). Depending on

the choice of FL optimisation strategy to be used within MTFL,

the LocalUpdate function represents local training of the model.

For FedAvg, LocalUpdate is simply minibatch-SGD. We discuss

this, and the proposed FedAvg-Adam optimisation strategy, further

in Section 3.3. After local training, the updated local patches are

saved (Lines 11-13), and the non-patch layers and optimiser values

are uploaded to the server (Lines 14-16).

At the end of the round, the server makes a new global

model and optimiser according to the GlobalModelUpdate and

GlobalOptimUpdate functions (Lines 18-20). These functions are

again dependent on the FL optimisation strategy used, and are

discussed further in Section 3.3. FedAvg, for example, uses a

weighted average of client models for GlobalModelUpdate. The

updated global model marks the end of the round and a new round

is begun.

The total per-round computation complexity of MTFL scales

with |Sr|, where |Sr| is the number of clients participating per

round. The computation performed by each client is independent

of the total number of clients. As clients perform local computa-

tion in parallel, MTFL (like FedAvg) is eminently scalable. Scal-

ability is important in FL as real-world deployments are expected

to have huge numbers of low-powered clients [?] [?]. The global

model and optimiser updates (Lines 20-23 in Algorithm 1) depend

on the optimisation strategy used. For FedAvg and FedAvg-Adam,

GlobalModelUpdate is essentially map-reduce (averaging after

local training) - also O(|Sr|). For FedAdam, the Adam step

following the map-reduce in GlobalOptimUpdate is not dependent

on the number of clients (only on the DNN architecture).

There are numerous works investigating FL in the Peer-To-

Peer (p2p) setting, which we do not consider in this paper. Simple

p2p FL algorithms involve sending all client models to all partici-

pating peers for decentralised aggregation. Extension of MTFL to

these schemes is trivial: peers would simply just send/aggregate

the non-private layers. More sophisticated p2p FL algorithms may

require more complex ways of incorporating private layers – an

interesting direction we leave for future works.

Mudrakarta et al. [?] showed that Batch Normalisation (BN)

layers can act as model patches for MTL in the centralised setting.

We show later that BN layers work well as patches in MTFL,

considering that they are very lightweight in terms of number of

parameters. BN layers are given by:

x̂i =
zi − E(zi)

√

Var(zi) + ǫ

BN(x̂i) = γix̂i + βi

(4)

where E(zi) and Var(zi) are the mean and variance of a neuron’s

activations (zi, post-nonlinearity) across a minibatch, and γi and

βi are parameters learned during training. BN layers track a

weighted moving average of E(zi) and Var(zi) during training:

µi and σ2
i , for use at inference time. In Section 4 we investigate

the benefit of keeping statistics µ, σ and/or trainable parameters

γ, β as part of private patch layers.

We have chosen to use BN layers for personalisation within

MTFL. The reason for this choice is twofold: 1) they show

excellent personalisation performance and 2) the storage cost of

BN parameters is very small (< 1% of total model size for the

tested model architectures). Mudrakarta et al. [?] also investigated

the use of depthwise-convolutional patches for centralised Multi-

Task learning. Any model layers could in principle be kept private

during MTFL, however, there is an inherent trade-off between the

number of parameters kept private and the ability of the global

model to converge.

3.2 Effect of BN Patches on Inference

To understand the impact that BN-patch layers have on UA, we

consider the change in internal DNN activations over a client’s

local test-set immediately before and immediately after the FL

aggregation step.

As illustrated in Fig. 3 (a), UA typically drops after the ag-

gregation step in iterative FL. This is because the model has been

tuned on the local training set for several epochs, and suddenly has

its model weights replaced by the Federated weights, which are

unlikely to have better test performance than the pre-aggregation

model. This idea is further examined in [?] and showed later in

our experimental section. Consider a simple DNN consisting of

dense layers followed by BN and then nonlinearities. The vector

of first-layer neuron activations over the client’s test-set (X) from

applying weights and biases (W0, b0), can be modelled as a normal

distribution, which BN relies on to work:

zi , [W0X + b0]i

zi ∼ N(E[zi], V ar[zi])
(5)

During local training, the client’s model has been adapted to the

local dataset, and the BN-layer statistics used for inference (µ,
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Fig. 3: (a) Federated Learning (FL) results in an accuracy curve

where the UA decreases after aggregations and increases during

local training, compared with the smoother accuracy curve when

training independently (Ind). (b) Patch BN-layers help bring the

distribution in outputs for neuron i closer to the pre-aggregation

distributions.

σ2) have been updated from the layer activations. Assuming, after

local training (and before aggregation), µi ≈ E[zi], and σ2
i ≈

V ar[zi], then the BN-layer (ignoring ǫ) computes:

x̂i ,
zi − µi

σi

x̂i ∼ N(0, 1)

BN(x̂i) ∼ N(βi, γ
2
i )

(6)

where βi, γ2
i are the learned BN parameters. If the client is

participating in FL or MTFL, then the model parameters W0, b0
are updated after downloading the global model with federated

values: W 0, b0. The activations of the first layer are then:

zi , [W 0X + b0]i

zi ∼ N(E[zi],Var[zi])
(7)

Defining the difference in mean and variance between pre- and

post-aggregation activations, ∆µi = E[zi] − E[zi] and ∆σ2
i =

Var[zi] − Var[zi], the output from a BN-patch layer as part of

MTFL (which maintains µ, σ, β, γ after aggregation) is:

ˆ̄xi ∼ N

(

∆µi

σi

, 1 +
∆σ2

i

σ2
i

)

BN(ˆ̄xi) ∼ N

(

γ
∆µi

σi

+ βi, γ
2
i

(

1 +
∆σ2

i

σ2
i

)) (8)

If the BN layer is not a patch layer (i.e., the client is participating

in FL, with federated BN values µ̄, σ̄, β̄, γ̄), the output of the BN

layer is:

ˆ̄xi ∼ N

(

µi +∆µi − µ̄i

σ̄i

,
σ2
i +∆σ2

i

σ̄2
i

)

BN(ˆ̄xi) ∼ N

(

γ̄
µi +∆µi − µ̄i

σ̄i

+ β̄i, γ̄
2
i

σ2
i +∆σ2

i

σ̄2
i

) (9)

We posit that using BN-patch layers in MTFL constrains neuron

activations to be closer to what they were before the aggregation

step, compared to non-patch BN layers as part of FL (as illustrated

in Fig. 3 (b). I.e., the difference in means and variances pre- and

post-aggregation using MTFL is smaller than when using FL:

∣
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∣

∣

∣
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∣
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∣

∣

γ2
i − γ̄2

i

σ2
i +∆σ2

i

σ̄2
i

∣

∣

∣

∣

(10)

Assuming the above inequality holds, it is easy to see how the

values propagated through the network after the first layer are

closer to the pre-aggregation values when using BN-patches as

opposed to federated BN layers. If BN-patches are added through-

out the network, the intermediate DNN values will be regularly

‘constrained’ to be closer to the pre-aggregation values, resulting

ultimately in network outputs closer to the pre-aggregation out-

puts.

Looking at Eq. (8), if ∆µi and ∆σ2
i for neuron i are large,

then the output distribution of the neuron after the BN-patch layer

(BN(ˆ̄x)i) over the test-set will be quite different than BN(x̂)i.
The BN-patch layer will therefore provide little benefit over a

federated BN layer, as the left hand sides of the inequalities in

Eq. (10) are unlikely to be much smaller than the right hand sides.

Large differences in pre- and post-aggregated model parameters

are seen during the early stages of training, when gradients are

large and client models diverge more during local training. This

therefore implies that MTFL has less benefit during the early

stages of training, and its benefit increases during training as

gradient magnitudes decrease (as shown in Fig. 4).

3.3 Federated Optimisation within MTFL

As shown in Algorithm 1, MTFL applies private patch layers for

each client, and trains them alongside the federated (non-private)

layers during LocalUpdate. At the end of each round, the server

aggregates the uploaded federated layers from clients (and any

distributed optimiser values used), producing a new global model

using the GlobalModelUpdate function. If distributed adaptive-

optimisation is used, then the GlobalOptimUpdate function will

also be called. Table 1 details different FL training algorithms as

characterised by their implementations of these functions.

In FedAvg, LocalUpdate is simply minibatch-SGD, and Glob-

alModelUpdate produces the new global model as a weighted

(by number of local samples) average of uploaded client models.

FedAvg uses SGD with no adaptive optimisation, so the variable V
in Algorithm 1 is a tuple of empty values, and GlobalOptimUpdate

performs no function. For FedAdam [?] [?], clients also perform

SGD during LocalUpdate. However, during GlobalModelUpdate,

the server takes the difference (∆r) between the previous global

model and the average uploaded client model. The server treats

∆r as a ‘psuedogradient’, and uses a set of 1st and 2nd moment

values stored on the server to update the global model using an

Adam-like update step. Clients do not use distributed adaptive
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TABLE 1: LocalUpdate, GlobalModelUpdate and GlobalOp-

timUpdate used by the FedAvg [?], FedAdam [?] [?] and FedAvg-

Adam FL training strategies. All of these strategies can be used

within MTFL.

Optimisation
LocalUpdate

GlobalModel GlobalOptim
Strategy Update Update

FedAvg SGD Average -
FedAdam SGD Adam -

FedAvg-Adam Adam Average Average

optimisation in FedAdam, so V is also a tuple of empty values

and GlobalOptimUpdate performs no function.

We propose using adaptive optimisation (namely, Adam) as

the distributed optimisation strategy. We call this strategy FedAvg-

Adam. In FedAvg-Adam, clients share a global set of Adam 1st

and 2nd moments, stored in the V variable in Algorithm 1. Clients

store private optimiser values for their patch layers (Wk), as we

find performance is better when keeping private optimiser values

for patches. During LocalUpdate, clients perform Adam SGD,

and the federated model layers and Adam values are uploaded

by clients at the end of the round. To produce a new global model,

the server averages the client models in GlobalModelUpdate and

averages the Adam moments in GlobalOptimUpdate. FedAvg-

Adam therefore has a 3× communication cost per round compared

to FedAvg or FedAdam. However, in many FL scenarios, the

major concern is reducing the number of communication rounds

required for the model to converge. We later show that FedAvg-

Adam considerably improves the convergence speed of FL and

MTFL.

For the rest of the paper, we refer to iterative FL schemes

that do not keep any private model patches as FL, with the

optimisation strategy in brackets, e.g. FL(FedAvg). If clients keep

private model patches, we refer to the scheme as MTFL, again

with the optimisation strategy in brackets, e.g. MTFL(FedAvg).

4 EXPERIMENTS

In this section, we first give details of the datasets, models and

data partitioning scheme used for all the experiments. We then

present extensive experiments analysing the impact that MTFL

has on the number of rounds taken to reach a target UA. These

experiments also examine which BN values, when kept private,

give the best performance, and compare FL and MTFL with

different optimisation strategies. After that, we investigate why

different private BN values have different impacts on training,

and compare MTFL to other state-of-the-art personalised FL

algorithms. Finally, we evaluate the cost in terms of computation

time of MTFL(FedAvg-Adam) on an MEC-like testbed.

4.1 Datasets and Models

We conduct experiments using two image-classification datasets:

MNIST [?] and CIFAR10 [?], and two DNN architectures.

MNIST: (28 × 28) pixel greyscale images of

handwritten digits from 10 classes. The ‘2NN’

network used on this dataset had one Fully Connected

(FC) layer of 200 neurons, a BN layer, a second

200-neuron FC layer, and a softmax output layer.

CIFAR10: (32 × 32) pixel RGB images of objects

from 10 classes. The ‘CNN’ network used on this

dataset had one (3 × 3) convolutional (conv) layer

with 32 filters followed by BN, ReLU and (2 × 2)
max pooling; a second (3 × 3) conv ReLU layer with

64 filters, BN, ReLU and (2 × 2) max pooling; a

512 neuron ReLU FC layer; and a softmax output layer.

Experiments were run with different numbers of clients W ,

client participation rates C and optimisation strategies, on non-

IID clients. To produce non-IID client data, we take the popular

approach from [?]: order the training and testing data by label,

split each into 2W shards, and assign each client two shards at

random. Using the same assignment indexes for the testing data

means that the classes in each client’s training set are the same as

those in their test set. This splitting produces a strongly non-IID

distribution across clients. All results are an average over 5 trials

with different random seeds.

4.2 Patch Layers in FL

Setup - First, we compare how many rounds are needed to reach

a target average UA (97% for MNIST, 65% for CIFAR10) for

MTFL and FL. In FL, no model parameters are kept private (i.e.

there are no patches), whereas in MTFL, some model parameters

are kept private. For the MTFL columns in Tables 2 and 3, we

present the effects of keeping BN-layer statistics (µ, σ) and/or

trainable parameters (γ, β) private, as part of the patch layers.

For these results, we fixed number of local epochs E = 1 and

tuned the learning-rate hyperparameters for every scenario such

that the target was reached in the fewest rounds. For FedAvg and

FedAvg-Adam, we had to tune only one hyperparameter for each

scenario, but FedAdam required training both client and server

learning rate. Entries with ‘X’ in Tables 2 and 3 denote cases that

could not reach the target within 500 communication rounds.

In Table 3, we also investigate the robustness of MTFL

to clients with noisy training data. Here, 20% of the clients

at random had 0-mean Gaussian noise added to their training

data. The average UA taken for Table 3 was for the non-noisy

clients only, to test how MTFL helps to mitigate the effect of

noisy clients on non-noisy clients. We used Gaussian noise with

standard deviation 3 for MNIST and 0.2 for CIFAR10 (MNIST

is a much simpler image classification task than CIFAR10, so

required more noise to significantly hinder training).

Results - Table 2 shows that for MTFL, when all BN-layer values

(µ, σ, γ, β) are kept private, the number of rounds to reach a

target average UA is substantially lower in almost all scenarios

when compared to FL. For example for the CIFAR10 W = 400,

C = 1.0 scenario, FL(FedAvg) took 164 rounds to reach the target

average UA, whereas MTFL(FedAvg) with private (µ, σ, γ, β)

took only 36 rounds. However, Tables 2 and 3 show that when

keeping only the tracked statistics of BN patches private, UA is

actually harmed. Conversely, MTFL with only private trainable

parameters took even fewer rounds than MTFL will all-private

(µ, σ, γ, β). For the same scenario, MTFL(FedAvg) with private

(µ, σ) took 266 rounds, whereas MTFL(FedAvg) with private

(γ, β) took just 30 rounds. We investigate the reason behind these

differences further in Section 4.3.

MTFL naturally increases the variance of UAs during training,

as non-identical user models in MTFL would contribute to the
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TABLE 2: Communication rounds required to reach target average user accuracies for different tasks using FL and MTFL (with private

statistics µ, σ and/or trained parameters γ, β), for different numbers of total clients W , client participation rates C , and optimisation

strategies. Cases unable to reach the target UA within 500 rounds are denoted by X. Best results for each scenario (combination of W
and C) given in bold.

MNIST - 2NN

FL MTFL
Private values = None µ, σ, γ, β µ, σ γ, β

Optimisation W = 200 400 200 400 200 400 200 400
Strategy C = 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

FedAvg 99 102 107 110 85 58 101 68 X X X X 29 21 34 26
FedAdam 85 69 88 65 56 37 75 77 109 90 194 262 31 25 31 27

FedAvg-Adam 44 49 40 50 17 41 19 32 131 151 170 198 9 9 10 9

CIFAR10 - CNN

FedAvg 139 138 171 164 49 33 55 36 231 280 258 266 37 24 45 30
FedAdam 105 90 83 80 21 14 22 16 67 45 48 38 24 14 25 16

FedAvg-Adam 57 43 36 31 11 9 14 8 82 79 62 63 10 7 11 8

TABLE 3: Communication rounds required to reach target average user accuracies (of non-noisy clients) for different tasks using FL

and MTFL (with private statistics µ, σ and/or trained parameters γ, β), when 20% of clients have noisy training data, for different

numbers of total clients W , client participation rates C , and optimisation strategies. Cases unable to reach the target UA within 500

rounds are denoted by X. Best results for each scenario (combination of W and C) given in bold.

MNIST - 2NN

FL MTFL
Private values = None µ, σ, γ, β µ, σ γ, β

Optimisation W = 200 400 200 400 200 400 200 400
Strategy C = 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

FedAvg 276 X 290 X 115 76 144 144 85 58 102 68 50 36 65 48
FedAdam X X X X 76 47 110 89 56 37 75 77 43 33 46 53

FedAvg-Adam 133 260 191 X 20 16 24 27 17 41 19 32 12 8 15 40

CIFAR10 - CNN

FedAvg 148 208 202 250 47 32 52 35 239 186 260 88 36 24 43 28
FedAdam 159 91 92 93 21 14 21 15 74 49 51 42 34 16 21 14

FedAvg-Adam 193 X X X 14 10 16 9 103 111 67 74 12 8 13 9

variance of UAs. However, in the experiments we performed, the

difference between the variance of UA for FL and MTFL is very

small: at less than 1%.

Table 3 shows that MTFL also helped to mitigate the impact

of noisy clients on non-noisy clients. With FL, noisy clients

prevented the average non-noisy UA from reaching the target

in many scenarios. However, in most cases, MTFL allowed the

non-noisy clients to reach the target average UA in a similar

number of rounds than the corresponding non-noisy scenarios in

Table 2. For example, for the CIFAR10 W = 400, C = 1.0
scenario, FL(FedAvg) took 250 rounds to reach the target, how-

ever MTFL(FedAvg) with private (γ, β) parameters, took just 28

rounds.

As Table 3 displays the rounds required for the non-noisy

clients to reach the target average UA, the improvements shown

when using MTFL may be due to the non-noisy clients being more

‘decoupled’ from the noisy ones. As they do not share all model

parameters, the harmful effect of receiving a global model that

has been harmed by the participation of noisy clients has been

reduced, allowing them to reach higher accuracies, faster.

Tables 2 and 3 also show that in most scenarios, the FedAvg-

Adam optimisation strategy reached the target average UA in the

fewest rounds, regardless of whether FL or MTFL is used. Taking

the same CIFAR10 scenario in Table 2, FL(FedAvg) took 164

rounds, FL(FedAdam) 80 rounds, and FL(FedAvg-Adam) only

31 rounds to reach the target. Similarly, MTFL(FedAvg) took 36

rounds, MTFL(FedAdam) 16 rounds and MTFL(FedAvg-Adam)

just 8 rounds with private (µ, σ, γ, β).

4.3 Training and Testing Results Using MTFL

Setup - To investigate why MTFL with BN patches using private

(µ, σ) and/or private (γ, β) give such different results (as shown

in Tables 2 and 3), we plotted training and testing UA during one

scenario from Table 2: namely MNIST with W = 200, C = 1.0
for FL(FedAvg) and MTFL(FedAvg). We ran the algorithms for

600 communication rounds, where clients performed 10 steps of

local training each round, and calculated the average training and

testing UA for every local step. These graphs therefore present

600×10 = 6000 total steps. Measuring in this way allowed us to

present the train/test accuracy trade-off, the impact that averaging

has during training, and the effect on training and testing with

different private BN values.

Results - Fig. 4 shows the (smoothed) training and testing UAs

of the different combinations of BN layer statistics/parameters for

the MNIST problem. Note that because the lines are smoothed for

presentation, the steps where the curves reach the target accuracies

may not correspond to the values in Table 2. In Fig. 4 (a), the

training curves for FL(FedAvg) and MTFL(FedAvg) with private

(µ, σ) are the same: this is because the BN statistics are only
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Fig. 4: Average training (faint) and testing (solid) User Accuracy (UA) curves for every step of local SGD on the MNIST, W = 200,

C = 1.0 scenario, using FL(FedAvg) (red), and MTFL(FedAvg) (blue). Each plot compares keeping different values within the BN

layers of MTFL private: either statistics (µ, σ) and/or trainable parameters (γ, β), to FL. All curves have been smoothed with an

averaging kernel for presentation, except the inset of plot (b), which shows the cyclic drops in accuracy due to model averaging

characteristic of FL.

Fig. 5: Per-round testing User Accuracy (UA) of four FL algorithms: FL(FedAvg) [?], MTFL(FedAvg) (using private γ, β), pFedMe [?]

and Per-FedAvg [?]. Experiments are conducted on MNIST and CIFAR10, with data divided in a non-IID fashion between W = 200
or 400 clients, and C = 0.5 or 1.0 fraction of users participating per round. Shaded regions show 95% confidence intervals per round

over 5 trials with different random seeds.

used at test-time and do not influence training. The test accuracy

for private (µ, σ) is lower than FedAvg, mirroring the results in

Tables 2 and 3. The lower test accuracy may be due to mismatch

in BN values: γ and β have been averaged, so output a different

distribution than these private statistics have been tracking, thus

harming the ability of the model. This seems to be supported by

Fig. 4 (c). When keeping both private (µ, σ) and (γ, β) there is no

substantial performance drop when compared to Fig 4 (b), when

only (γ, β) are kept private.

Fig 4. (b) and (c) show that keeping private (µ, σ) significantly

increases the rate at which the training accuracy can improve (see

faint lines in Fig 4. (b) and (c)). Previous authors [?] have com-

mented that FedAvg can work as a kind of regularisation for client

models. When clients have small local datasets, their training error

would quickly reach near-0 as it is easy for independently-trained

models to overfit. However, they would have poor generalisation

performance (which is the motivation behind FL). Keeping some

model parameters private (here µ and σ from the BN layers) seems

to strike a balance between fast convergence (which would be

achieved by a fully-private model) and regularisation due to FL

(which is achieved by averaging client model parameters).

4.4 Personalised FL Comparison

Setup - We compare the personalisation performance of

MTFL(FedAvg) with two other state-of-the-art Personalised FL

algorithms: Per-FedAvg [?] and pFedMe [?], and FL(FedAvg)

(where no model layers are private) [?]. We tuned the

hyperparameters of each algorithm to achieve the maximum

average UA within 200 communication rounds. We present

MTFL(FedAvg) with private (γ, β), not MTFL(FedAvg-Adam),

as we wish only to compare the personalisation algorithms, not

the benefit of the adaptive optimisation strategy. We also fixed

the amount of local computation to be roughly constant for

the algorithms: we perform E = 1 epoch of local training for

MTFL(FedAvg) and FL(FedAvg). For MNIST, using a batch

size of 20, this is equivalent to 15 and 8 steps of local SGD

for W = 200 and W = 400, respectively. For CIFAR10, this

is equivalent to 13 and 7 steps of local SGD for W = 200
and W = 400, respectively. Per-FedAvg uses the value K for

local iterations, so we fix that the the same number of steps

for FL and MTFL. pFedMe uses has two inner loops, and we

set the number of outer-loops R to the same value as K from

Per-FedAvg, and fix the inner-loop number for pFedMe to 1 for

all scenarios. This setup results in the same number of local
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steps performed for each algorithm, however, the cost per local

step of Per-FedAvg and pFedMe is considerably higher than

FL(FedAvg) and MTFL(FedAvg). Note also that MTFL(FedAvg)

and FL(FedAvg) have only one hyperparameter, η to tune,

whereas Per-FedAvg and pFedMe both have two. This makes the

hyperparameter search for Per-FedAvg and pFedMe considerably

more costly.

Results - The plots in Fig. 5 show that MTFL(FedAvg) was able to

achieve a higher UA compared to the other schemes in all tested

scenarios. Per-FedAvg and pFedMe were able to reach a higher

UA than FL(FedAvg) in the W = 200 cases for MNIST, but were

actually slower in the W = 400 cases. All the personalised-FL

schemes were able to achieve good UA faster than FL(FedAvg)

for the CIFAR10 experiments, however. This is likely due to

the CIFAR10 task being a much harder one than MNIST. It is

interesting to note that Per-FedAvg appeared to overfit quickly

on this task. Also worthy of note is the fact that MTFL(FedAvg)

was able to beat Per-FedAvg and pFedMe whilst also having one

less hyperparameter to tune, and being computationally cheaper.

MTFL also provides the extra benefit to privacy of keeping some

model parameters private (pFedMe and Per-FedAvg both upload

entire models).

4.5 Testbed Results

Setup - To test MTFL in a more realistic MEC environment, we

set up a testbed consisting of 10 clients: 5 Raspberry Pi (RPi)

2B’s and 5 RPi 3B’s, connected over WiFi to a server, in order

to emulate a low-powered, heterogeneous set of clients. The

RPi’s used Tensorflow to perform local training. The server did

not perform any model testing, only receiving, averaging and

distributing models. The average time over 10 rounds was taken,

along with the percentage of time spent per round in downloading

models from the server, local training, uploading models and

work performed on the server.

Results - Table 4 shows the average time taken per round for

FL(FedAvg), MTFL(FedAvg-Adam), and Independent learning,

when one local epoch of training is performed. Each round is

also split by time spent for each task within the round. As would

be expected, Independent learning took the least time per round as

clients did not have to download / upload any models. FL(FedAvg)

took longer per round due to uploading / downloading, and

MTFL(FedAvg-Adam) took the longest per round due to the

increased number of weights that FedAvg-Adam communicates

over FedAvg, indicated by the higher percentage of round time

spent downloading and uploading models. However, the increase

in communication time is likely to be outweighed in most cases

by the far fewer rounds required to reach a target average UA (see

Tables 2-3).

The majority of the round times were spent in local training

rather than in communication for FL or MTFL. This is due to the

low computing power of the RPi’s and the high computational cost

of training DNN models. In real-world FL scenarios, the round

times are influenced by the compute abilities of client devices, the

computational cost of the models used, and the communication

conditions.

5 CONCLUSION

We proposed a Multi-Task Federated Learning (MTFL) algorithm

that builds on iterative FL algorithms by introducing private patch

TABLE 4: Average time per round of different learning schemes

on the MNIST and CIFAR10 datasets, and percentage of time

spent downloading the model (Down), training the model (Client),

uploading the model (Up), and model aggregation/distribution on

the server (Server) took.

MNIST - 2NN
Learning Round Percentage of Round Time (%)
Scheme Time (s) Down Client Up Server

FL(FedAvg) 30 5 88 6 1
MTFL(FedAvg-Adam) 38 11 76 12 1

Independent 29 0 100 0 0

CIFAR10 - CNN

FL(FedAvg) 108 5 86 5 4
MTFL(FedAvg-Adam) 136 11 74 12 3

Independent 100 0 100 0 0

layers into the global model. Private layers allow users to have per-

sonalised models and significantly improves average User model

Accuracy (UA). We analysed the use of BN layers as patches in

MTFL, providing insight into the source of their benefit. MTFL

is a general algorithm that requires a specific FL optimisation

strategy, and we also proposed the FedAvg-Adam optimisation

scheme that uses Adam on clients. Experiments using MNIST

and CIFAR10 show that MTFL with FedAvg significantly reduces

the number of rounds to reach a target average UA compared

to FL, by up to 5×. Further experiments show that MTFL with

FedAvg-Adam reduces this number even further, by up to 3×.

These experiments also indicate that using private BN trainable

parameters (γ, β) instead of statistics (µ, σ) in model patches

gives better convergence speed. Comparison to other state-of-the-

art personalised FL algorithms show that MTFL is able to achieve

the highest average UA given limited communication rounds.

Lastly, we showed in experiments using a MEC-like testbed that

the communication overhead of MTFL with FedAvg-Adam is

outweighed by its significant benefits over FL with FedAvg in

terms of UA and convergence speed.
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