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Abstract

In radar high-resolution range profile (HRRP)-based statistical target recognition, one of the most challenging task is

the feature extraction. This article utilizes spectrogram feature of HRRP data for improving the recognition

performance, of which the spectrogram is a two-dimensional feature providing the variation of frequency domain

feature with time domain feature. And then, a new radar HRRP target recognition method is presented via a

truncated stick-breaking hidden Markov model (TSB-HMM). Moreover, multi-task learning (MTL) is employed, from

which a full posterior distribution on the numbers of states associated with the targets can be inferred and the

target-dependent states information are shared among multiple target-aspect frames of each target. The

framework of TSB-HMM allows efficient variational Bayesian inference, of interest for large-scale problem.

Experimental results for measured data show that the spectrogram feature has significant advantages over the

time domain sample in both the recognition and rejection performance, and MTL provides a better recognition

performance.

Keywords: radar automatic target recognition (RATR), high-resolution range profile (HRRP), spectrogram feature,

hidden Markov model (HMM), multi-task learning (MTL), variational Bayes (VB)

1. Introduction
A high-resolution range profile (HRRP) is the amplitude

of coherent summations of the complex time return

from target scatterers in each range resolution cell,

which represents the projection of the complex returned

from the target scatting centers onto the line-of-sight

(LOS), as shown in Figure 1. Since it contains the target

structure signatures, such as target size and scatterer

distribution, radar HRRP target recognition has received

intensive attention from the radar automatic target

recognition (RATR) community [1-16].

Several studies [8-16] show that statistical recognition is

an efficient method for RATR. Figure 2 shows a typical

flow chart of radar HRRP statistical recognition. By statis-

tical recognition is meant the feature vector y extracted

from test HRRP sample x will be assigned to the class with

maximum posterior probability p(c|y), where c Î {1, ..., C}

denotes the class membership. According to Bayes algo-

rithm, p(c|y) ∝ p(y|c)p(c), where p(y|c) is the class-

conditional likelihood and p(c) is the prior class probabil-

ity. Since the prior class probability is usually assumed to

be uniformly distributed, estimation of the posterior prob-

ability p(c|y) of each class is turned into estimation of

the class-conditional likelihood p(y|c) of each class. There

are usually two stages (training and classification) in the

statistical recognition procedure. We suppose the class-

conditional likelihood p(y|c) can be described via a model

with a set of parameters (i.e., a parametric model). In the

training phase, these parameters are estimated via training

data (known as statistical modeling); and in the classifica-

tion phase, as discussed above, given a test sample x, we

first extract the feature vector y from the test sample, then

we calculate the class-conditional likelihood p(y|c) for

each target c, finally, the test sample is associated with

target c’ if c′ = arg max
c

p(c|y) . The focus of this article is

on the feature extraction and statistical modeling.

Feature extraction from HRRP is a key step of our

recognition system. One of the general feature extrac-

tion methods is feature dimensionality reduction [5].

This method is generally supervised, and some
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discriminative information may be lost during the

dimensional reduction procedure. Another general fea-

ture extraction method is feature transformation. The

study given in [6] investigates various higher-order spec-

tra, and shows that the power spectrum has the best

recognition performance. Rather than just utilizing the

frequency domain feature as in [6], this study exploits

the spectrogram feature of HRRP data for combining

both time domain and frequency domain features,

which is a two-dimensional feature providing the varia-

tion of frequency domain feature with time domain fea-

ture. Some statistical models [8-16] are developed for

HRRP-based RATR, of which [14-16] successfully uti-

lized the hidden Markov model (HMM) for modeling

the feature vectors from the HRRP sequence. Since the

HRRP sample is a typical high-dimensional distributed

signal, it is computationally prohibitive to build such a

high-dimensional HMM for describing HRRP sequences

directly. Therefore, to avoid this problem, some dimen-

sionality reduction methods are utilized. For example, in

[14,15], the relax algorithm is employed to extract the

waveform constituents from the HRRP radar echoes,

and then an HMM is utilized to characterize the fea-

tures; in [16], a nonstationary HMM is utilized to char-

acterize the following two features, i.e., the location

information feature of scattering centers which are

extracted via the multirelax algorithm, and the moments

of HRRP radar echoes. Nevertheless, some information

contained in HRRP samples will be inevitably lost dur-

ing the dimensional reduction procedure. Moreover,

since multiple aspect-dependent looks at a single target

are utilized in the classification phase, the angular velo-

city of the target relative to the LOS of the radar is

required to remain the same for the training and classi-

fication phases, which can hardly be satisfied for a non-

cooperative target.

The study reported here seeks an alternative way of

exploiting HMM, in which we characterize the spectro-

gram feature from a single HRRP sample via the hidden

Markov structure. In our model, the spectrogram fea-

ture extracted from each single HRRP is viewed as a

d-dimensional sequence (d is the length of spectrogram

feature in the frequency dimension), thus only a single

HRRP sample is required for the classification phase

rather than an aspect-dependent sequence. The main

contribution of this study can be summarized as follows.

(a) Spectrogram feature: The time domain HRRP

samples only characterize the time domain feature of

the target, which is too simple to obtain good per-

formance. By contrast, the spectrogram feature

introduced in this article is a time-frequency repre-

sentation of HRRP data. The physical meaning of

the spectrogram feature extracted from an HRRP

sample is that the spectrogram feature in each time

bin characterizes the frequency domain property of a

fragment of the target, which can reflect the scatter-

ing properties of different physical constructions.

Therefore, the spectrogram feature should be a bet-

ter choice for the recognition problem.

(b) Nonparametric model selection via stick-breaking

construction: In the context of target recognition

using HMMs, a key issue is to develop a methodol-

ogy for defining an appropriate set of states to avoid

over- or under-fitting. A Bayesian nonparametric

infinite HMM (iHMM) which constituted by the

hierarchical Dirichlet process (HDP) has proven

Figure 1 Illustration of an HRRP sample from a plane target,

where the scatters on the plane target are represented in

circles. This figure is cited from [1].

Figure 2 Typical flow chart of radar HRRP statistical recognition.
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effective to infer the number of states in acoustic

sensing scenarios [17,18]. However, the lack of con-

jugacy between the two-level HDP means that a

truly variational Bayesian (VB) solution is difficult

for HDP-HMM, which makes computationally pro-

hibitive in large data problems. Recent study [19]

proposes another way to constitute iHMM, where

each row of transition matrix and initial state prob-

ability is given with a fully conjugate infinite dimen-

sional stick-breaking prior, which can accommodate

an infinite number of states, with the statistical

property that only a subset of these states will be

used with substantial probabilities, referred to as the

stick-breaking HMM (SB-HMM). We utilize the

truncated version of such stick-breaking construc-

tion in our model to characterize the HMM states,

which is referred to as the truncated stick-breaking

HMM (TSB-HMM).

(c) Multi-task learning (MTL): A limitation of statistical

model is that it usually requires substantial training

data, assumed to be similar to the data on which the

model is tested. However, in radar target recognition

problems, one may have limited training data. In addi-

tion, the test data may be obtained under different

motion circumstance. Rather than building models for

each data subset associated with different target-aspect

individually, it is desirable to appropriately share the

information among these related data, thus offering the

potential to improve overall recognition performance.

If the modeling of one data subset is termed one learn-

ing task, the learning of models for all tasks jointly is

referred to as MTL [20]. We here extend the TSB-

HMM learning in a multi-task setting for spectrogram

feature-based radar HRRP recognition.

(d) Full Bayesian inference: We present a fully con-

jugate Bayesian model structure, which does have an

efficient VB solution.

The remainder of this article is organized as follows. We

introduce spectrogram feature of HRRP data and analyze

its advantages over time domain samples in Section 2. Sec-

tion 3 briefly reviews the traditional HMMs. In Section 4,

the proposed model construction is introduced, and the

model learning and classification are implemented based

on VB inference. We present experimental results on both

single-task and multi-task TSB-HMM with time domain

feature and spectrogram feature of measured HRRP data

in Section 5. Finally, the conclusions are addressed in

Section 6.

2. Spectrogram feature extraction

2.1 Definition of the spectrogram

The spectrogram analysis is a common signal processing

procedure in spectral analysis and other fields. It is a

view of a signal represented over both time and fre-

quency domains, and has widely been used in the fields

of radar signal processing, and speech processing

[21,22], etc.

Spectrograms can readily be created by calculating the

short-time Fourier transform (STFT) of the time signal.

The STFT transform may be represented as

STFT(τ , ω) =

∫ ∞

−∞

x(u)w(u − τ )e−jωudu (1)

where x(u) is the signal to be transformed, w(·) is the

window function.

The spectrogram is given by the squared magnitude of

the STFT function of the signal:

Y(τ , ω) = |STFT(τ , ω)|2 (2)

From (1) and (2), we can see that the spectrogram

function shows how the spectral density of signal varies

with time.

In RATR problems, employing some nonlinear trans-

formation (e.g., power transform metric) in feature

domain may correct for the departures of samples from

normal distribution to some extent and improve average

recognition of learning models [2]. The power transform

metric is defined as

y = xa; 0 < a < 1 (3)

where a is the power parameter.

2.2 Spectrogram feature of HRRP data

The sequential relationship across the range cells within

a single HRRP echo can reflect the physical composition

of the target. This can be illustrated by Figure 3, which

presents the HRRP samples and corresponding spectro-

gram features from three plane targets, i.e., Yark-42,

An-26, and Cessna Citation S/II.

The advantages of spectrogram are as follows: (i)

HRRP scattering from complex targets are a strong

function of the target sensor orientation; and even a

slight variation of the target-aspect may yield the scat-

terers at the edges of the target moving across some

range cells [23]. When the target-aspect changes a little,

the scatterers within several continuous range cells

(referred to as a chunk) are more robust than the scat-

terers in a single range cell. Therefore, the sequential

relationship across the chunks in spectrogram of a sin-

gle HRRP echo, rather than that across the range cells

within a single HRRP, can reflect the target physical

composition more robustly. (ii) Spectrogram is a time-

frequency representation of a signal. It describes not

only time domain feature, but also the spectral density

varying with the time. (iii) At each discrete time (each
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chunk or each range cell), the observation of a spectro-

gram feature is a vector, while that of time domain fea-

ture (HRRP sample) is a scalar. Thus, the high-

dimensional feature vector may reflect more details than

a single point for discrimination.

3. Review of traditional HMM: finite HMM and
infinite HMM

The HMM [24] has widely been used in speech recogni-

tion and target recognition. It is a generative representa-

tion of sequential data with an underlying markovian

process selecting state-dependents distributions, from

which observations are drawn. Specially for a sequence of

length T, a state sequence s = (s1, s2, ..., sT) is drawn from

P(st|st-1). Given the observation model f(·), the observa-

tion sequence x = (x1, x2, ..., xT) can then be drawn as

f (θst
) , where θst is a set of parameters for the observation

models which is indexed by the state at time t.

An HMM can be modeled as F = {w0, w, θ}, each

parameter is defined as

w0 = {w0,i}, w0,i = Pr(s1 = i) : Initial state distribution

w = {wi,j}, wi,j = Pr(st+1 = j|st = i) : State transition probability

θ = {θi}, xt ∼ f (θst
) : Emission likelihood

(4)

Given model parameters F, the probability of the

complete data can be expressed as

p(x, s|�) = w0,i

T−1
∏

t=1

wst ,st+1

T
∏

t=1

p(xt|θst
) (5)

And the data likelihood p(x|F) can be obtained by

integrating over the states using the forward algorithm

[24]. In a classical HMM [24], the number of the

states with the HMM is initialized and fixed. There-

fore, we have to specify model structure before learn-

ing. However, in many practical applications, it needs

an expansive model selection process to obtain a cor-

rect model structure. To avoid the model selection

process, a fully nonparametric Bayesian approach with

countably infinite state spaces is employed, first pro-

posed by Beal, and termed infinite Markov model

(iHMM) [25].

Recent study [19] proposes the iHMM with stick-

breaking priors (SB-HMM), which can be used to

develop an HMM with an unknown number of states.

In this model, each row of the infinite state transition

matrix w is given a stick-breaking prior. The model is

expressed as follows

Gi =

∞
∑

j=1

wi,jδ(θj), wi,j = vi,j

j−1
∏

h=1

(1 − vi,h), vi,j|βi ∼ Beta(1, βi)

βi ∼ Ga(aα, bα), θj ∼ H; i = 1, 2, · · · ∞; j = 1, 2, · · · , ∞

(6)
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Figure 3 The HRRP sample and corresponding spectrogram feature of plane targets. (a) HRRP echo (time domain feature) of plane

targets, (b) corresponding spectrogram feature of original HRRP echoes of plane targets.
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where the mixture distribution Gi has weights repre-

sented as wi = [wi, 1, wi, 2, ..., wi, j, ...], δ(θj) is a point

measure concentrated at θj, Beta(1, bi) represents the

Beta distribution with hidden variable bi, the drawn vari-

ables {vi,j}
∞
j=1 are independent and identically distributed

(i.i.d), Ga(aa, ba) represents the Gamma distribution

with preset parameters aa, ba, and H denotes a prior

distribution from which the set {θj}
∞
j=1 is i.i.d drawn.

The initial state probability mass function, w0, is also

constructed according to an infinite stick-breaking con-

struction. When wi terminates at some finite number I -

1 with wi,I ≡ 1 −
∑I−1

J=1
wi,j , this result is a draw from a

general Dirichlet distribution [26], which is denoted as

wi ~ GDD(1(I-1) × 1, [bi](I-1) × 1), where 1(I-1) × 1 denotes

an (I - 1)-length vector of ones, [bi](I-1) × 1 is an (I - 1)-

length vector of bi, and I represents the truncation num-

ber of states.

The key advantage of stick-breaking construction is

that the corresponding state-dependent parameters θj
are drawn separately, effectively detaching the construc-

tion θ from the construction initial-state probability w0

and state transition matrix w. This is contrast with HDP

priors [27], where these matrices are linked with two-

level construction. Therefore, the stick-breaking con-

struction makes fast variational inference feasible. In

addition, the SB-HMM has a good sparse property,

which promotes a sparse utilization of the underlying

states [19].

4. The SB-HMM for HRRP data

4.1 MTL model construction

According to the scattering center model [4], for a high-

resolution radar system, a radar target does not appear as

a “point target” any more, but consists of many scatterers

distributed in some range cells along radar LOS. For a cer-

tain target, the scattering center model varies throughout

the whole target-aspect. Therefore, pre-processing techni-

ques should be applied to the raw HRRP data. In our pre-

vious work [11-13], we divide the HRRP into frames

according to the aspect-sectors without most scatterers’

motion through resolution cells (MTRC), and use distinct

parametric models for statistical characterization of each

HRRP frame, which are referred to as the aspect-frames

and corresponding single-task learning (STL) models in

our articles.

For the motivating HRRP recognition problems of

interested here, we utilize TSB-HMM for analyzing

spectrogram features extracted from HRRP data. For a

multi-aspect HRRP sequence of target c (c Î {1, ..., C}

with C denoting the number of targets here), we divide

the data into Mc aspect frames, e.g., the mth set (here m

Î {1, ..., Mc}) is {x(c,m,n)}N
n=1 where N denotes the

number of samples in the frame, and x(c, m, n) = [x(c, m,

n)(1), ..., x(c, m, n)(Lx)]
T represents the nth HRRP sample

in the mth frame, with Lx denoting the number of range

cells in an HRRP sample. Each aspect frame corresponds

to a small aspect-sector avoiding scatters’ MTRC [13],

and the HRRP samples inside each target-aspect frame

can be assumed to be i.i.d. We extract the spectrogram

feature of each HRRP sample, and Y(c, m, n) = [y(c, m, n)

(1), ..., y(c, m, n)(Ly)] denotes the spectrogram feature of x
(c, m, n) as defined in (2) with Ly denoting the number of

time bins in spectrogram feature.

If learning a separate TSB-HMM for each frame of the

target, i.e., {Y(c,m,n)}N
n=1 , is termed the single-task TSB-

HMM (STL TSB-HMM). Here, we wish to learn a TSB-

HMM for all the aspect-frames (tasks) of one target

jointly, which is referred to as multi-task TSB-HMM

(MTL TSB-HMM). MTL is an approach to inductive

transfer that improves generalization by using the

domain information contained in the training samples

of related tasks as an inductive bias [20]. In our learning

problems, the aspect-frames of one target may be

viewed as a set of related learning tasks. Rather than

building models for each aspect-frame individually (due

to target-aspect sensitivity), it is desirable to appropri-

ately share the information among these related data.

Therefore, the training data for each task are strength-

ened and overall recognition performance is potentially

improved.

The construction of the MTL TSB-HMM with para-

meters for target c is represented as

y(c,m,n)(l) ∼ f (θ
s
(c,m,n)
l

); l = 1, . . . , Ly; n = 1, . . . , N; m = 1, . . . , Mc;

s
(c,m,n)
l ∼

⎧

⎨

⎩

w
(c,m)
0 if l = 1

w
(c,m)

s
(c,m,n)
l−1

if l ≥ 2

w
(c,m)
i |βi ∼ GDD(1(I−1)×1, [βi](I−1)×1), βi|aα , bα ∼ Ga(aα, bα); i = 0, . . . , I

θi ∼ H; i = 1, . . . , I

(7)

where y(c, m, n)(l) is lth time chunk of nth sample’s

spectrogram in the mth aspect-frame of the cth target,

s
(c,m,n)
l

denotes the corresponding state indicator, (aa,

ba) are the preset hyperparameters. Here, the observa-

tion model f(·)is defined as independently normal distri-

bution, and each corresponding element in H(·) is

normal-Gamma distribution to preserve conjugacy

requirements. Since each time bin of spectrogram fea-

ture of a plane corresponds to a fragment of the plane,

the HMM states can characterize the frequency domain

properties of different fragments of the plane target, i.e.,

the scattering properties of different physical construc-

tions. A graphical representation of this model is shown

in Figure 4a, and Figure 4b depicts that the sequential

dependence across time chunks for a given aspect-frame

is characterized by an HMM structure.
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The main difference between MTL TSB-HMM and

STL TSB-HMM is in the proposed MTL TSB-HMM, all

the multi-aspect frames of one target are learned jointly,

each of the Mc tasks of target c is assumed to have an

independent state-transition statistics, but the state-

dependent observation statistics are shared across these

tasks, i.e., the observation parameters are learned via all

aspect-frames; while in the STL TSB-HMM, each multi-

aspect frame of target c is learned separately, therefore,

each target-aspect frame builds its own model and the

corresponding parameters are learned just via this

aspect-frame.

4.2 Model learning

The parameters of proposed MTL TSB-HMM model

are treated as variables, and this model can readily be

implemented by Markov Chain Monte Carlo (MCMC)

[28] method. However, to approximate the posterior dis-

tribution over parameters, MCMC requires large com-

putational resources to assess the convergence and

reliability of estimates. In this article, we employ VB

inference [19,29,30], which does not generate a single

point estimation of the parameters, but regard all model

parameters as possible, with the goal of estimating the

posterior density function on the model parameters, as a

compromise between accuracy and computational cost

for large-scale problems.

The goal of Bayesian inference is to estimate the pos-

terior distribution of model parameters F. Given the

observation data X and hyper parameters g, by Bayes’

rule, the posterior density for the model parameters may

be expressed as

p(�|X, γ ) =
p(X|�, γ)p(�|γ)

∫

p(X|�, γ)p(�|γ)d�
(8)

where the denominator ∫p(X|F, g)p(F|g)dF = p(X|g)

is the model evidence (marginal likelihood).

VB inference provides a computationally tractable way

which seeks a variational distribution q(F) to approxi-

mate the true posterior distribution of the latent vari-

ables p(F|X, g), we obtain the expression

log p(X|γ) = L(q(�)) + KL(q(�)||p(�|X, γ)) (9)

where L(q(�)) =

∫

q(�) log
p(X|�, γ)p(�|γ)

q(�)
d� , and

KL(q(F)|| p(F|X, g)) is the Kullback-Leibler (KL) diver-

gence between the variational distributions q(F) and the

true posterior p(F|X, g). Since KL(q(F)|| p(F|X, g)) ≥ 0,

and it reaches zero when q(F) = p(F|X, g), this forms a

lower bound for log p(X|g), so we have log p(X|g) ≥ L(q

(F)). The goal of minimizing the KL divergence between

the variational distribution and the true posterior is

i
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Figure 4 Graphical representation of the MTL TSB-HMM, the detailed generative process is described in (7). (a) Graph of the MTL TSB-

HMM, the detailed generative process is described in (6). Here, W(c,m) = [w
(c,m)T

0 ; w
(c,m)T

1 ; . . . ; w
(c,m)T

I ] , i is the state index, c is the target

index, l is the range cell index, y(c, m, n)(l) is lth time chunk of nth sample’s spectrogram in the mth aspect-frame of the cth target. For the

symbol I, Mc, N, and Ly of a box indicate that there is a stack of such box for the index i, m, n, and l, where I denotes the truncation number of

states, Mc denotes the number of aspect-frames of target c, N denotes the number of samples in an aspect frame, and Ly denotes the number

of time bins in spectrogram feature. (b) The spatial dependence across time cell of spectrogram feature for a given aspect frame.
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equal to maximize this lower bound, which is known as

the negative free energy in statistical physics.

For the computational convenience and intractable of

the negative-free energy, we assume a factorized q(F),

i.e., q(�) =
∏

k

qk(ϕk) , which has same form as

employed in p(F|X, g). With this assumption, the mean

field approximation of the variational distributions for

the proposed MTL TSB-HMM with target c may be

expressed as

q(�) =

Mc
∏

m=1

I
∏

i=0

q(w
(c,m)
i )[

Mc
∏

m=1

N
∏

n=1

Ly
∏

l=1

q(s
(c,m,n)
l )]q(θ)q(β) (10)

where {{w
(c,m)
i }

Mc,I
m=1,i=0, {s

(c,m,n)
l }

Mc,N,Ly

m=1,n=1,l=1, θ, β} are the

latent variables in this MTL model.

A general method for performing variational infer-

ence for conjugate-exponential Bayesian networks out-

lined in [17] is as follows: for a given node in a graphic

model, write out the posterior as though everything

were known, take the logarithm, the expectation with

respect to all known parameters and exponentiate the

result. We can implement expectation-maximization

(EM) algorithm in variational inference. The lower

bound is increased in each of iteration until the algo-

rithm converges. In the following experiments, we ter-

minate EM algorithm when the changes of the lower

bound can be neglected (the threshold is 10-6). Since it

requires computational resource comparable to EM

algorithm, variational inference is faster than MCMC

methods. The detailed update equations for the latent

variables and hyperparameters of MTL TSB-HMM

with HRRP spectrogram feature are summarized in the

Appendix.

4.3 Main procedure of radar HRRP target recognition

based on the proposed MTL TSB-HMM algorithm

The main procedure of radar HRRP target recognition

based on the proposed MTL TSB-HMM algorithm is

shown as follows.

4.3.1. Training phase

(1) Divide the training samples of target c (c = 1, 2,

..., C) into HRRP frames {x(c,m)}
Mc

m=1 , where Mc is the

number of tasks of target c, x(c,m) = {x(c,m,n)}N
n=1

denotes the mth range aligned and amplitude nor-

malized HRRP frame, N is the number of echoes a

frame contains.

(2) Extract the spectrogram feature {Y(c,m,n)}
Mc,N
m=1,n=1

of each HRRP sample with Y(c, m, n) = [y(c, m, n)(1), y
(c, m, n)(2), ..., y(c, m, n)(Ly)] denoting the spectrogram

feature of x(c, m, n) as defined in (2).

(3) For each target, we construct an MTL TSB-

HMM model, and learn the parameters of w
(c,m)

0,s
(c,m)
1

,

w
(c,m)
i,j

, and θi for all aspect-frames of the target via

using spectrogram feature, where w
(c,m)

0,s
(c,m)
1

is the

initial state probability for the index frame m of tar-

get c, w
(c,m)
i,j

is state transition probability from state

i to the j for the index frame m of target c, and θi

are the parameters of observation model associated

with corresponding state i (c Î {1, ..., C}, m Î {1, ...,

Mc}, i, j Î {1, ..., I}). The detailed learning procedure

of the parameters of MTL TSB-HMM with HRRP

spectrogram feature are discussed in Section 4.3 and

the Appendix.

(4) Store the parameters of initial state probability
{

w
(c,m)

0,s
(c,m)
1

}Mc

m=1

, state transition probability
{

w(c,m)
}Mc

m=1

and the parameters of observation model {θi}
I
i=1 for

each target c with c = 1, 2, ..., C.

4.3.2. Classification phase

(1) The amplitude normalized HRRP testing sample

is time-shift compensated with respect to the aver-

aged HRRP of each frame model via the slide corre-

lation processing [23].

(2) Extract the spectrogram feature
{

Y
(c,m)
test

}C,Mc

c=1,m=1
of

the slide-correlated HRRP testing sample xtest, where

Y
(c,m)
test = {[y

(c,m)
test (1), y

(c,m)
test (2), . . . , y

(c,m)
test (Ly)]} denotes

the spectrogram feature of HRRP testing sample cor-

related with mth frame of target c as defined in (2).

(3) The frame-conditional likelihood of target can be

calculated as

p(Y
(c,m)
test |c, m) =

∑

s

〈

w
(c,m)

0,s
(c,m)
1

〉 Ly
∏

l=2

〈

w
(c,m)

s
(c,m)

l−1 ,s
(c,m)

l

〉 Ly
∏

l=1

f (c,m)(y
(c,m)
test (l)|

〈

θ
s
(c,m)
l

〉

) (11)

where 〈·〉 means the posterior expectation for the

latent variable over the corresponding distribution

on it, e.g.,

〈

w
(c,m)

0,s
(c,m)
1

〉

denotes the posterior expecta-

tions of initial state probability,

〈

w
(c,m)

s
(c,m)

l−1 ,s
(c,m)

l

〉

denotes

the posterior expectations of state transition prob-

ability from state s
(c,m)
l−1

to the s
(c,m)
l

for the frame m

of target c, and
〈

θ
s
(c,m)

l

〉

denotes the posterior expec-

tations of the observation model parameters
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associated with state s
(c,m)
l

, with the corresponding

state indicator for the lth time chunk

s
(c,m)
l ∈ {1, · · · , I} . Then, p(Y

(c,m)
test |c, m) can be calcu-

lated by forward-backward procedure [24] for each

m (m Î {1, ..., Mc}) and c (c Î {1, ..., C}).

(4) We calculate the class-conditional likelihood

p(Y
(c)
test|c) for each target c

p(Y
(c)
test|c) = arg max

m
p(Y

(c,m)
test |c, m); m = 1, . . . Mc (12)

(5) As discussed in Section 1, the testing HRRP sam-

ple will be assigned to the class with the maximum

class-conditional likelihood, with the assumption

that the prior class probabilities are same for all tar-

gets of interests,

k = arg max
c

p(Y
(c)
test|c); c = 1, · · · , C (13)

5. Experimental results

5.1 Measured data

We examine the performance of the TSB-HMM on the

3-class measured data, including three actual aircrafts (a

propeller plane An-26, a small yet plane Cessna Citation

S/II, and a big yet plane Yark-42), the radar works on a

C band with bandwidth of 400 MHz, the range resolu-

tion of the HRRP is about 0.375 m.

The parameters of the targets and radar are shown in

Table 1, and the projections of target trajectories onto

the ground plane are displayed in Figure 5, from which

the aspect angle of the airplane can be estimated

according to its relative position to radar. As shown in

Figure 5, all aspects of targets were measured repeatedly

several times in this dataset. The requirements of choos-

ing training data and test data are that the training data

and the test data are from different data segments, and

the training data cover almost all of target-aspect angles

of the test data, but their elevation angles are different.

The second and the fifth segments of Yark-42, the sixth

and the seventh segments of Cessna Citation S/II and

the fifth and the sixth segments of An-26 are taken as

the training samples while the remaining data are left

for testing. These training data almost cover all of the

target-aspect angles. Also, we need test data from differ-

ent target to measure the rejection performance of our

model. Here, we use 18,000 truck HRRP samples gener-

ated by the electromagnetic simulator software,

XPATCH, as a confuser target. In addition, the HRRP

samples are 128-dimensional vectors.

As discussed in the literature [11,12], it is a prerequisite

for radar target recognition to deal with the target-aspect,

time-shift, and amplitude-scale sensitivity. According to

radar parameters and the condition of aspect sectors

without MTRC, for training data from 3 targets we

totally have 135 HRRP frames, of which 35 from Yark-42,

50 from Cessna Citation S/II and 50 from An-26. Similar

to the previous study [11-13], HRRP training samples

should be aligned by the time-shift compensation techni-

ques in ISAR imaging [23] to avoid the influence of time-

shift sensitivity. Each HRRP sample is normalized by L2
normalization algorithm to avoid the amplitude-scale

sensitivity. In the rest of the article, the training HRRPs

in each frame are assumed to have been aligned and

normalized.

Nine training datasets are considered for training: 1 ×

135, 2 × 135, 4 × 135, 8 × 135, 16 × 135, 32 × 135, 64 ×

135, 128 × 135 and 1024 × 135, where 2 × 135 means

2 HRRP samples randomly selected from each of the 135

target-aspect frames, i.e., there are totally 2 × 135 = 270

HRRP training samples, similar meaning for other size of

HRRP datasets. Since MTL needs load the whole HRRP

training dataset of a target to share the information

among them, it requires more memory resource than STL.

Due to the limited memory resource of our computer, we

do not consider 1024 × 135 training dataset in MTL. Since

there is no prior knowledge about how many states we

should use, and how to set these states, the HMM states

are not manually set like [31]. We set a large truncation

number in our model to learn the meaningful states auto-

matically. In the following experiments, we set the trunca-

tion level I to 40 for both spectrogram feature and time

domain feature in STL, and I to 60 for both spectrogram

feature and time domain feature in MTL. Similar results

were found for lager truncations. In our model, since the

parameter bi controls the prior distribution on the number

of states, we set the hyper-parameters aa = ba = 10-6 for

each bi to promote sparseness on states.

5.2 Time domain feature versus spectrogram feature

In this experiment, STL TSB-HMM and MTL TSB-

HMM of HRRP training datasets within each frame are

learned, respectively, and the two features, i.e., time

domain and spectrogram features, are compared. When

using the HRRP time domain feature, we can just sub-

stitute the scalar x(c, m, n)(l) for the vector y(c, m, n)(l) in

(6), where x(c, m, n)(l) represents the nth HRRP sample

Table 1 Parameters of planes and radar in the

experiment

Radar parameters Center frequency 5520 MHz

Bandwidth 400 MHz

Planes Length (m) Width (m) Height (m)

An-26 23.80 26.20 9.83

Cessna Citation S/II 14.40 15.90 4.57

Yark-42 36.38 34.88 9.83
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in the mth frame of target c, with l denoting the corre-

sponding range cell in the HRRP sample.

Figure 6 shows that the performances of STL TSB-

HMMs based on time domain feature are better than

those based on spectrogram feature when training data-

set no more than 32 × 135. The reason is that more

parameters need to be estimated for the model with

spectrogram feature than that with time domain feature.

For example, for a target-aspect frame with 32 training

samples, we need to estimate the 40 16-dimensional

states for the model with spectrogram feature; while 25

1-dimensional states for the model with time domain

feature. When training data size larger than 32 × 135,

spectrogram feature obtains obviously better perfor-

mance. Table 2 further compares the confusion matrices

and average recognition rates of using time domain fea-

ture and spectrogram feature with 1024 × 135 training

samples via STL. We can clearly find that the average

recognition rate obtained by spectrogram feature is

about 6.6% points larger than that obtained by the time

domain feature. The performances of MTL TSB-HMMs

are shown in Figure 7. Since MTL sharing states

between different tasks of a target, which is better for

parameter learning with small training data size, spec-

trogram domain feature outperforms time domain fea-

ture even with few training data.

The posterior state distributions of MTL TSB-HMM

with spectrogram feature for all the three plane targets

with 128 × 135 training data are shown in Figure 8. In this

example, the state truncation level of I = 60 is employed

for each plane. Further for each plane, the 60 hidden states

are shared across all aspect-frames, and there are 46, 48,

and 49 meaningful states with the posterior state usage

larger than zero for Yark-42, Cessna Citation S/II, and

An-26, respectively, and those of other 14, 12, and 11

states are zero, which justifies using the truncated version

stick-breaking prior for our data.

Next, we consider the target rejection problem. Three

planes targets are considered as “in-class targets”, while

the simulated data consists of 18,000 truck HRRP sam-

ples are considered as confuser targets. Two examples of

confuser targets HRRP samples are shown in Figure 9.

Our goal is to test whether a new data is in the family of

the in-class targets or not. Figure 10 presents the rejec-

tion performance evaluated by the receiver operation

characteristic (ROC) curves. The ROC curve depicts the
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Figure 5 Projections of target trajectories onto the ground plane: (a) An-26. (b) Cessna Citation S/II. (c) Yark-42.
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spectrogram feature.
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detection probability versus the false alarm probability.

For a fixed false alarm probability, a method with the

higher detection probability is better. The dataset size is

selected as 128 × 135 in the training phase. The ROC

curves are shown in Figure 10. The spectrogram feature-

based TSB-HMMs outperforms the time domain feature-

based TSB-HMMs, especially for Yark-42. Figure 11

shows the test likelihoods of 1,200 Yark-42 samples and

18,000 confuser target samples obtained with STL TSB-

HMM. As shown in Figure 11a, when using the time

domain feature, the test likelihoods of Yark-42 samples

are relative low, and many confuser samples have higher

test likelihoods than Yark-42 samples. That is to say,

when we set a high discrimination threshold, the detec-

tion probability is very low, and the false alarm probabil-

ity is high. By contrast, from Figure 11b, we can find that

when using the spectrogram feature, the test likelihoods

of Yark-42 samples are higher than most of the test likeli-

hoods of the confuser samples. Therefore, the detection

performance of the spectrogram feature is much better

than that of the time domain feature for Yark-42.

5.3 STL versus MTL

In order to model spectrogram feature, two parameters

need to be set first, i.e., the width of window function

and the length of the overlapped window.

In the feature space, the spectrogram varies with the

width of the window function and the overlap across

the windows. For HRRP data analysis, a wide window

function provides better frequency resolution, but wor-

sens the time resolution, and vice versa. Physically, since

the width of a window function determines the length

of segments of a target, the longer the segment we

divide a target into, the more physical composition of

the target will be contained in the each component of

the observation vector; meanwhile, the overlap across

the windows determines the redundancy of the

segments.

We build a set of MTL TSB-HMMs to search these

two parameters. The width of the window function is

chosen from 10 to 40 range cells with an increment of 1

range cells, and the overlap length is fixed as typically

half width of the window function. In this experiment,

we use 64 × 135 training samples. As demonstrated in

Figure 12, the optimal width of the window function is

33 range cells. We then fix the optimal window function

width, and set the overlap length from 1 range cell to 29

range cells to determine the optimal overlap length.

From Figure 13, the optimal overlap length is 16 range

cells. Therefore, we extract the spectrogram feature with

the window function width of 33 range cells and the

overlap length of 16 range cells for training.

Table 2 Confusion matrices and average recognition rates of time domain feature and spectrogram feature based on

STL TSB-HMMs with 1,024 training samples per target-aspect frame

1024 × 135 training samples Time domain feature Spectrogram feature

An-26 Cessna Citation S/II Yark-42 An-26 Cessna Citation S/II Yark-42

An-26 90.8 9.8 3.5 97.3 1.1 1.2

Cessna citation S/II 8.7 83.0 2.0 1.1 92.8 0.8

Yark-42 0.5 7.2 94.5 1.6 6.1 98.0

Average recognition rates (%) 89.4 96.0
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Figure 7 Average recognition rates of MTL TSB-HMMs versus the number of training samples for time domain feature and

spectrogram feature.
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We compare two methods for spectrogram feature

based TSB-HMM: (i) the proposed MTL TSB-HMMs

method, for which we learn target-aspect frames of a

target collectively; (ii) the STL TSB-HMMs method, for

which each target-aspect frame of targets modeled

separately. As shown in Figure 14, the proposed MTL

TSB-HMMs method consistently outperforms the STL

TSB-HMMs method and the improvement is more sig-

nificant when there is only a small amount of training

data available. This is because MTL exploits the sharing

states between different tasks and uses the sharing infor-

mation to enhance the overall performance. In addition,

in the state truncation level of I = 60 is employed for

each of the three planes. For each plane, the 60 states

are shared across the aspect-frames. Therefore, we only

impose 60 × 3 = 180 states in the MTL TSB-HMMs.

However, in the training phase of STL model, the state

truncation level of I = 40 is employed for each aspect-

frame. As discussed in Section 5.1, we have 50 + 50 +

35 = 135 aspect-frames from the three targets. There-

fore, we totally impose 40 × 135 = 5400 states in the

STL TSB-HMMs. Table 3 summarizes the confusion
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Figure 8 The hidden state distributions for all the three plane targets with 128 × 135 training data, generated via a run of the MTL

TSB-HMM with spectrogram feature. In this example, the state truncation level of I = 60 is employed for each plane. For each plane, 60

hidden states are shared across all aspect-frames, and 46, 48, and 49 meaningful states are inferred for Yark-42, Cessna Citation S/II, and An-26,
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feature (average AUC: 0.738). (b) STL TSB-HMM with spectrogram feature (Average AUC: 0.924).
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matrix and average recognition performance of STL

TSB-HMMs and MTL TSB-HMMs, with 2 × 135 and

128 × 135 training samples. Note that when we only use

2 × 135 samples for training, the average recognition

rate of STL TSB-HMMs is only 52.7%, while the average

recognition rate of MTL TSB-HMMs is 88.0%. With the

training data increasing, the performance of STL

becomes close to that of MTL. The average recognition

rate obtained by MTL is about 2.3% higher than that by

STL for 128 × 135 training samples.

We also consider the target rejection problem here.

The ROC curves of MTL TSB-HMMs are presented in

Figure 15. Compare with Figure 10, the area under

curve (AUC) of STL are slightly larger than that of

MTL.

5.4 MTL with power transformed spectrogram feature

We employ the power transform metric for all the

observation vectors (the vectors in each fixed time) of

the spectrogram. Figure 16 show that the optimal para-

meter a* = 0.4. Figure 17 shows the performance of

MTL TSB-HMMs is better than STL-HMMs for power

transformed spectrogram feature. Compared with the

average recognition rate of original spectrogram feature

in Figure 14, that of power transformed spectrogram

feature shown in Figure 17 are much larger, especially

for small training data sets.

The confusion matrix and average recognition rates of

STL TSB-HMMs and MTL TSB-HMMs with power

transformed spectrogram feature are shown in Table 4,

where 2 × 135 and 128 × 135 training samples are used

for learning the models. Note that, when we consider 2

× 135 training samples for MTL TSB-HMMs based on

spectrogram feature with the optimal power transforma-

tion, the average of recognition rate is nearly equivalent

to the case of considering 128 × 135 training samples

for that based on original spectrogram feature. When

using 128 training samples per target-aspect frame for

STL TSB-HMMs, the average recognition rate is gained

by 4.3% via power transformation; while for MTL TSB-

HMMs the gain is 2.5%.

Similarly, as shown in Figure 18, we obtained the ROC

curve for power transformed spectrogram feature in the

same experimental environment as that we mentioned

in Section 5.3. The AUC of STL and MTL with trans-

formed spectrogram features are gained by 3.3 and 5.0%;

therefore, the model of using the transformed spectro-

gram features can improve the rejection performance.

5.5 Computation burden

All experiments have been performed in nonoptimized

programme written in Matlab, on a Pentium PC with

3.2-GHz CPU and 2 GB RAM. In our VB algorithm,

when the relative change of lower bound between two

consecutive iterations is less than the threshold 10-6, we

believe our algorithm converges. Generally, in a practical

application, the larger training dataset requires the

huger computational burden in the training phase.

When the training dataset contains 128 × 135 training

samples, the VB algorithm of the MTL TSB-HMM with

time domain feature and the truncation number I = 60

converges after about 400 iterations and requires about

14 h, and the VB algorithm of MTL TSB-HMMs with

spectrogram feature and the truncation number I = 60

converges after about 200 iterations and requires about

2 h. Although the above computation is pretty expen-

sive, we know that the computation cost in the training

phase can be ignored for an off-line learning (or train-

ing) system, and it is more important to evaluate the

computation cost in the classification phase. The MTL

TSB-HMMs with time domain feature and spectrogram

feature require 0.6680 and 1.5893 s, respectively, to

match a test sample with all frame models. The compu-

tation time given here is averaged over ten runs.
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different width of the window function via MTL TSB-HMMs.
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Figure 13 Average recognition rate of spectrogram features

with different overlap length via MTL TSB-HMMs. The width of

the window function is 33 range cells.
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Figure 14 Average recognition rates of the STL TSB-HMMs and MTL TSB-HMMs with spectrogram feature versus the number of

training samples.

Table 3 Confusion matrices and average recognition rates of spectrogram feature based on STL TSB-HMMs and MTL

TSB-HMMs with 2 training samples and 128 training samples per target-aspect frame

STL TSB-HMMs MTL TSB-HMMs

An-26 Cessna Citation S/II Yark-42 An-26 Cessna Citation S/II Yark-42

2 × 135 training samples

An-26 81.0 87.0 14.1 86.3 1.3 4.9

Cessna citation S/II 8.0 3.5 12.2 12.2 88.0 5.4

Yark-42 11.0 9.5 73.7 1.5 10.7 89.7

Average recognition rates (%) 52.7 88.0

128*135 training samples

An-26 93.8 0.7 2.5 95.8 0.4 1.9

Cessna citation S/II 4.4 88.3 1.1 3.5 92.3 0.8

Yark-42 1.8 11.0 96.4 0.7 7.3 97.3

Average recognition rates (%) 92.8 95.1
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Figure 15 Rejection results for different sets of targets using MTL TSB-HMMs with different features. (a) MTL TSB-HMM with time

domain feature (average AUC: 0.724). (b) MTL TSB-HMM with spectrogram feature (Average AUC: 0.905).
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6. Conclusion

We have utilized spectrogram feature of HRRP data and

presented an MTL-based hidden Markov model with

truncated stick-breaking prior (MTL TSB-HMM) for

radar HRRP target recognition. The construction of this

model allows VB inference, which extremely decreases

the computational burden.

After resolving the three sensitivity problems, i.e., the

target-aspect, time-shift, and amplitude scale sensitivity

of HRRP, respectively, we first compare the spectrogram

feature of HRRP with the time domain feature of HRRP

data via single-task and multi-task learning-based hid-

den Markov model with truncated stick-breaking prior

(STL and MTL TSB-HMM). Second, we measure the
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Figure 16 Average recognition rate of spectrogram features with different power transformed via MTL TSB-HMMs.

Figure 17 Average recognition rates of the STL TSB-HMMs and MTL TSB-HMMs with spectrogram feature transformed by optimal

power (0.4) versus the number of training samples.

Table 4 Confusion matrices and average recognition rates of power transformed spectrogram feature (power

parameter is 0.4) based on STL TSB-HMMs and MTL TSB-HMMs with 2 training samples and 128 training samples per

target-aspect frame

STL TSB-HMMs MTL TSB-HMMs

An-26 Cessna Citation S/II Yark-42 An-26 Cessna Citation S/II Yark-42

2 × 135 training samples

An-26 90.4 5.3 42.3 95.8 1.4 5.0

Cessna Citation S/II 9.4 93.0 34.5 3.9 96.7 5.0

Yark-42 0.2 1.7 23.2 0.3 1.9 90.0

Average recognition rates (%) 68.9 94.2

128 × 135 training samples

An-26 99.2 3.3 1.2 98.9 1.2 1.4

Cessna Citation S/II 0.4 94.3 1.0 0.9 96.0 0.6

Yark-42 0.4 2.4 97.8 0.2 2.8 98.0

Average recognition rates (%) 97.1 97.6
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performance of STL TSB-HMM and MTL TSB-HMM

with spectrogram feature, where in MTL TSB-HMM,

the multiple tasks are linked by different target-aspects.

Finally, we introduce power transformation metric to

improve the recognition performance of spectrogram

feature. It is shown that using spectrogram feature not

only have a better ROC, but also obtain a better recog-

nition performance than using HRRP time domain fea-

ture. MTL shares the underlying state information

among different target-aspects, and can provide a better

recognition performance compared to STL. In addition,

the power transformation metric can enhance both aver-

age recognition rate and ROC. It is worth to point out

that our MTL model with spectrogram feature can

obtain a good recognition performance with much fewer

training data compared with the conventional radar

HRRP-based statistical recognition methods, which is a

good property for RATR.

Appendix
Derivation of update equations in VB approach

1. Update q(θi):

For the MTL TSB-HMM model introduced in Section

4.3 and the corresponding mean-field variational distri-

bution described in (9), q(θi) is defined by the specific

application:

log q(θi) ∝ log H(θi|θ̃i) +

Mc
∑

m=1

N
∑

n=1

Ly
∑

l=1

< s
(c,m,n)
l,i > log f (y(c,m,n)(l)|θi) i = 1, . . . , I (14)

where q(θi) is defined by the specific application, and

θ̃i denotes the parameters in the q(θi), < s
(c,m,n)
l,i >

represents the expected number of state indicator

s
(c,m,n)
l

with outcome i. If model is conjugate exponen-

tial, that is, H(·) is conjugate to the likelihood f(·), we

can readily obtain the update equation for q(θi).

2. Update q(bi)

In MTL model, we assume q(βi) = Ga(ã(i)
α , b̃(i)

α ) , the

updating equation for q(bi) with m = 1, ..., Mc are

expressed as follows:

⎧

⎪

⎨

⎪

⎩

ã
(i)
α = aα + Mc(I − 1)

b̃
(i)
α = bα −

Mc
∑

m=1

I−1
∑

j=1

[ψ(β̃
(c,m)
i,j |2) − ψ(β̃

(c,m)
i,j |1 + β̃

(c,m)
i,j |2)]

; i = 1, · · · , I (15)

where ψ(·) is the digamma function.

3. Update q(w
(c,m)
0 ) and q(w

(c,m)
i )

For the given prior p(w
(c,m)
0 ) = GDD(1(I−1)×1, [β0](I−1)×1)

and p(w
(c,m)
i ) = GDD(1(I−1)×1, [βi](I−1)×1) , with m = 1,

..., Mc and i = 1, ..., I, assume

q(w
(c,m)
0 ) = GDD(β̃

(c,m)

0 |1, β̃
(c,m)

0 |2) and

q(w
(c,m)
i ) = GDD(β̃

(c,m)

i |1, β̃
(c,m)

i |2) . The updating equa-

tion for q(w
(c,m)
0 ) and q(w

(c,m)
i ) are given as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

β̃
(c,m)
0,j |1 = 1 +

N
∑

n=1

< s
(c,m,n)
1,j >

β̃
(c,m)
0,j |2 =

ã
(0)
α

b̃
(0)
α

+
N
∑

n=1

I
∑

h=j+1

< s
(c,m,n)
1,h >

; j = 1, . . . , I − 1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

β̃
(c,m)
i,j |1 = 1 +

N
∑

n=1

Ly
∑

l=2

< s
(c,m,n)
l−1,i >< s

(c,m,n)
l,j >

β̃
(c,m)
i,j |2 =

ã
(i)
α

b̃
(i)
α

+
N
∑

n=1

I
∑

h=j+1

Ly
∑

l=2

< s
(c,m,n)
l−1,i >< s

(c,m,n)
l,h >

; i = 1, · · · , I; j = 1, . . . , I − 1

(16)

4. Update log q(s)

Given the approximate distribution of the other vari-

ables, the update equation for q(s(c, m, n)) are given as

follows:

(a)                            (b) 

Figure 18 Rejection results for different sets of targets using STL TSB-HMMs and MTL TSB-HMMs with spectrogram feature

transformed via the optimal power. (a) STL TSB-HMMs (average AUC: 0.955). (b) MTL TSB-HMMs (Average AUC 0.955).
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log q(s(c,m,n)) ∝< log w
(c,m)

0,s
(c,m,n)
1

> +

Ly−1
∑

l=1

< log w
(c,m)

s
(c,m,n)

l ,s
(c,m,n)

l+1

> +

Ly
∑

l=1

< log f (y(c,m,n)(l)|θ
s
(c,m,n)
l

) >;

m = 1, . . . , Mc, n = 1, . . . , N

(17)

where < · > denotes the expectation of the associated

variables function. One may derive that

< log w
(c,m)
i,j >=

j−1
∑

h=1

[ψ(β̃
(c,m)
i,h |2) − ψ(β̃

(c,m)
i,h |1 + β̃

(c,m)
i,h |2)] + [ψ(β̃

(c,m)
i,j |1) − ψ(β̃

(c,m)
i,j |1 + β̃

(c,m)
i,j |2)];

i = 0, . . . , I, j = 1, . . . , I

(18)
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