
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4545–4553
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4545

Multi-Task Label Embedding for Text Classification

Honglun Zhang1, Liqiang Xiao1, Wenqing Chen1, Yongkun Wang2, Yaohui Jin1

1State Key Lab of Advanced Optical Communication System and Network

MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
2Network and Information Center, Shanghai Jiao Tong University

{jinyh}@sjtu.edu.cn

Abstract

Multi-task learning in text classification lever-

ages implicit correlations among related tasks

to extract common features and yield perfor-

mance gains. However, a large body of pre-

vious work treats labels of each task as in-

dependent and meaningless one-hot vectors,

which cause a loss of potential label informa-

tion. In this paper, we propose Multi-Task

Label Embedding to convert labels in text

classification into semantic vectors, thereby

turning the original tasks into vector match-

ing tasks. Our model utilizes semantic corre-

lations among tasks and makes it convenient

to scale or transfer when new tasks are in-

volved. Extensive experiments on five bench-

mark datasets for text classification show that

our model can effectively improve the perfor-

mances of related tasks with semantic repre-

sentations of labels and additional information

from each other.

1 Introduction

Text classification is a common Natural Language

Processing (NLP) issue that tries to infer the most

appropriate label for a given sentence or docu-

ment, for example, sentiment analysis, topic clas-

sification and so on. With the developments

and prosperities of Deep Learning (Bengio et al.,

2013), many neural network based models have

been exploited by a large body of literature and

achieved inspiring performance gains on various

text classification tasks. These models are robust

at feature engineering and can represent word se-

quences as fixed-length vectors with rich seman-

tic information, which are notably ideal for subse-

quent NLP tasks.

Due to numerous parameters to train, neu-

ral network based models rely heavily on ade-

quate amounts of annotated corpora, which can-

not always be met as constructions of large-scale

high-quality labeled datasets are extremely time-

consuming and labor-intensive. Multi-Task Learn-

ing (MTL) solves this problem by jointly train-

ing multiple related tasks and leveraging poten-

tial correlations among them to increase corpora

size implicitly, extract common features and yield

performance gains. Inspired by (Caruana, 1997),

there is a large body of research dedicated to MTL

with neural network based models (Collobert and

Weston, 2008; Liu et al., 2015b, 2016a,b; Zhang

et al., 2017). These models usually contain a pre-

trained lookup layer that map words into dense,

low-dimension and real-value vectors with seman-

tic implications, namely known as Word Embed-

ding (Mikolov et al., 2013b), and utilize some

lower layers to capture common features that are

further fed to follow-up task-specific layers. How-

ever, many existing models may have at least one

of the following three disadvantages:

• Lack of Label Information. Labels of

each task are represented by independent and

meaningless one-hot vectors, for example,

positive and negative in sentiment analysis

encoded as [1, 0] and [0, 1], which may cause

a loss of potential label information.

• Inability to Scale. Network structures are

elaborately designed to model various corre-

lations for MTL, but many of them are struc-

turally fixed and some can only deal with in-

teractions between two tasks, namely pair-

wise interactions. When new tasks are in-

volved, the network structures have to be

modified and all networks have to be trained

again.

• Inability to Transfer. Human beings can

handle a completely new task without any-

more efforts after learning with several re-

lated tasks, which can be called the ability

4546

of Transfer Learning (Ling et al., 2008). As

discussed above, the network structures of

many previous models are fixed and there are

no layers specially designed for unannotated

new tasks.

In this paper, we proposed Multi-Task Label

Embedding (MTLE) to map labels of each task

into semantic vectors, similar to how Word Em-

bedding deals with word sequences, thereby turn-

ing the original tasks into vector matching tasks.

The idea of embedding label is not new and is

primarily designed to improve general neural text

classification models (Bengio et al., 2010; Norouzi

et al., 2013; Ma et al., 2016), but here we mainly

focus on integrating label embedding to enhance

MTL. MTLE utilizes semantic correlations among

tasks and effectively solves the problems of scal-

ing and transferring when new tasks are involved.

We conduct extensive experiments on five

benchmark datasets for text classification. Com-

pared to learning separately, jointly learning mul-

tiple related tasks based on MTLE demonstrates

significant performance gains for each task.

Our contributions are four-fold:

• Our model efficiently leverages label infor-

mation of each task by mapping labels into

dense, low-dimension and real-value vectors

with semantic implications.

• It is particularly convenient for our model to

scale for new tasks. The network structures

need no modifications and only samples from

the new tasks require training.

• After training on several related tasks, our

model can also naturally transfer to deal with

new tasks without anymore training, while

still achieving appreciable performances.

• We consider different scenarios of MTL and

demonstrate strong results on several bench-

mark datasets for text classification. Our

model outperforms most of the state-of-the-

art baselines.

2 Problem Statements

2.1 Single-Task Learning

For a text classification task, the Input is a word

sequence x = {x1, x2, ..., xT }, where T is the

sequence length and we need to output the most

appropriate Label from the set {y1, y2, ..., yC},

or their one-hot representation {y1,y2, ...,yC},
where C is the number of classes. In the super-

vised case, we have the Annotation, that is, the

corresponding ground truth label ỹ for each input,

while in the unsupervised case, we only know the

label set but lack the specific annotations.

A pre-trained lookup layer is used to get the

embedding vector xt ∈ R
d for each word xt.

A text classification model f is trained to pro-

duce the predicted distribution ŷ for each x =
{x1,x2, ...,xT }.

f(x1,x2, ...,xT) = ŷ (1)

and the learning objective is to minimize the over-

all cross-entropy on the training set.

l = −

N∑

i=1

C∑

j=1

ỹij log ŷij (2)

where N denotes the number of training samples.

2.2 Multi-Task Learning

Given K supervised text classification tasks,

T1, T2, ..., TK , a multi-task learning model F is

trained to transform each x(k) from Tk into mul-

tiple predicted distributions {ŷ(1), ..., ŷ(K)}.

F (x
(k)
1 , ...,x

(k)
T) = {ŷ(1), ..., ŷ(K)} (3)

where only ŷ(k) is used for loss computation. The

overall training loss is a weighted combination of

costs for each task.

L = −

K∑

k=1

λk

Nk∑

i=1

Ck∑

j=1

ỹ
(k)
ij log ŷ

(k)
ij (4)

where λk, Nk and Ck denote the weight, the num-

ber of training samples and the number of classes

for each task Tk.

2.3 Ability to Scale

When new tasks are involved, for ex-

ample, given K ′ more supervised tasks

TK+1, TK+2, ..., TK+K′ , the MTL model F ,

which has been trained on the old K tasks, should

be able to scale with few structural modifications.

F (x
(k)
1 , ...,x

(k)
T) = {ŷ(1), ..., ŷ(K+K′)} (5)

where x(k) denotes samples from not only the old

tasks but also the new ones.

4547

There are mainly two scaling methods for F to

deal with the new tasks. We can continue training

F and further tune the model parameters based on

samples from the new tasks, which we define as

Hot Update, or re-train F again based on training

samples from all tasks, which is defined as Cold

Update.

2.4 Ability to Transfer

Given K ′′ more completely unannotated new tasks

T ◦

K+1, T
◦

K+2, ..., T
◦

K+K′′ , F should be able to

transfer what it learned from the old tasks, which

is defined as Zero Update, as no more training

samples are available and the model parameters

are not updated anymore.

For each x(k) from the K ′′ tasks, F should pro-

duce the corresponding predicted distributions for

the new tasks, even if the annotations of these new

tasks are not provided at all.

F (x
(k)
1 , ...,x

(k)
T) = {ŷ(K+1), ..., ŷ(K+K′′)} (6)

which requires that F should be able to understand

the meanings of each label from the new tasks and

infer the most appropriate one.

3 Methodology

In text classification tasks, labels can be single-

word or double-word, for example, positive and

negative in binary sentiment classification, very

positive, positive, neutral, negative and very neg-

ative in 5-category sentiment classification, but

there are few labels that contain three words or

more. Inspired by Word Embedding, we pro-

pose Multi-Task Label Embedding (MTLE) to

convert labels of each task of MTL into dense,

low-dimension and real-value vectors with seman-

tic implications, thereby disclosing potential intra-

task and inter-task correlations from both texts and

labels.

3.1 Architecture

Figure 1 illustrates the general idea of MTLE,

which mainly consists of three parts, the Input

Encoder, the Label Encoder and the Matcher.

In the Input Encoder, each input sequence x(k)

from Tk is transformed into embedding represen-

tation x(k) = {x
(k)
1 ,x

(k)
2 , ...,x

(k)
T } by the Embed-

ding Layer (EI). The Learning Layer (LI) is ap-

plied to recurrently comprehend x(k) and generate

a fixed-length vector X(k), which can be regarded

Label Encoder

T
1

x
1

(1)
, x

2

(1)
,..., x

T

(1)

T
2

x
1

(2)
, x

2

(2)
,..., x

T

(2)

T
K

x
1

(K)
, x

2

(K)
,..., x

T

(K)

Input Sequences

T
1

Y
C1

(1)

T
2

T
K

Labels

Y
1

(1)

Y
C2

(2)

Y
1

(2)

Y
C
K

(K)

Y
1

(K)

Matcher

Input Encoder

Embedding

Layer

Learning

Layer

Embedding

Layer

Learning

Layer

Figure 1: General Architecture of MTLE

as an overall representation of the original input

sequence x(k).

In the Label Encoder, there are Ck labels in Tk,

where each y
(k)
j (1 ≤ j ≤ Ck) consists of one

word or two words, and is mapped into the vector

representation y
(k)
j by the Embedding Layer (EL).

The Learning Layer (LL) absorbs y
(k)
j to generate

a fixed-length vector Y
(k)
j , which can be utilized

as an overall semantic representation of the origi-

nal label y
(k)
j .

In order to classify a sample x(k) from Tk, the

Matcher obtains the corresponding X(k) from the

Input Encoder, all Y
(k)
j (1 ≤ j ≤ Ck) from the

Label Encoder, and conducts vector matching to

select the most appropriate class label.

In MTLE, EI and EL obtain understandings of

words from texts and labels respectively, while LI

and LL achieve representation abilities of vector

sequences. All these four modules are learned

within and shared among tasks.

3.2 Implementation Details

We can explore different embedding methods and

neural networks to achieve EI , EL and LI , LL re-

spectively, but here we choose to implement them

in an easier way and spend more efforts to investi-

gate the effectiveness of MTLE.

The implementation details of MTLE are illus-

trated in Figure 2. LI and LL are both fully-

connection layers with the weights WI and WL

of |V | × d, where |V | denotes the vocabulary size

and d is the embedding size. We can get a pre-

trained lookup table based on open domain cor-

pora to initialize WI ,WL and further tune them

during training.

4548

x
(k)

y j
(k)

this

is

a

fantastic

movie

very

positive

WI

WL

d

LI

LL

m
M

2m×1

sigmoid s j
(k)

d

Figure 2: Implementation Details of MTLE

LI and LL should be trainable models that can

transform a vector sequence of arbitrary length

into a fixed-length vector, which can be im-

plemented by a Bi-directional Long Short-Term

Memory Network (BiLSTM) that can recurrently

process vector sequences and learn long-term de-

pendencies.

While there are numerous variants of the stan-

dard LSTM (Hochreiter and Schmidhuber, 1997),

here we follow the implementation of (Graves,

2013). At each time step t, states of the LSTM

can be fully described by five vectors in R
m, an

input gate it, a forget gate ft, an output gate ot,

the hidden state ht and the memory cell ct, which

adhere to the following transition equations.

it = σ(Wixt +Uiht−1 +Vict−1 + bi) (7)

ft = σ(Wfxt +Ufht−1 +Vfct−1 + bf) (8)

ot = σ(Woxt +Uoht−1 +Voct−1 + bo) (9)

c̃t = tanh(Wcxt +Ucht−1) (10)

ct = ft ⊙ ct−1 + it ⊙ c̃t (11)

ht = ot ⊙ tanh(ct) (12)

where xt is the current input, σ denotes logis-

tic sigmoid function and ⊙ denotes element-wise

multiplication.

A BiLSTM consists of two LSTM layers that

process the input sequences in original and re-

versed orders, and its output is the concatenation

of hidden states from the forward and backward

LSTM at each time step.

ht =
−→
h t ⊕

←−
h t (13)

where ⊕ denotes vector concatenation.

We apply the above equations to implement LI

with hidden size m. However, it is inappropriate

to apply a BiLSTM for LL, as most labels contain

only one or two words. Instead, LL accepts the

embedding vectors of each word from a label and

calculate the average.

For an input sample x(k) and all Ck labels y
(k)
j

from Tk, the corresponding X(k) ∈ R
2m and

Y
(k)
j ∈ R

d are calculated as follows.

X(k) = LI(WI(x
(k))) (14)

Y
(k)
j = LL(WL(y

(k)
j)) (15)

In this paper, we mainly focus on the idea and

effects of MTLE, so rather than exploring some

useful mechanisms like gating, external mem-

ory or attention for stronger abilities of sequence

learning, we choose the vanilla BiLSTM for quick

implementations and spend most of our efforts on

investigating the effectiveness of MTLE.

We concatenate X(k),Y
(k)
j and apply another

fully-connection layer with only one neuron, de-

noted by M , to implement the Matcher, which ac-

cepts outputs from LI and LL to produce a score

of matching. Given the matching scores of each

label, we refer to the idea of cross-entropy and cal-

culate the loss function for a sample x(k) from Tk

as follows.

s
(k)
j = σ(M(X(k) ⊕Y

(k)
j)) (16)

ŷ
(k)
j =

exp(s
(k)
j)

∑Ck

c=1 exp(s
(k)
c)

(17)

l(k) = −

Ck∑

j=1

ỹ
(k)
j log ŷ

(k)
j (18)

The overall training objective is to minimize the

weighted linear combination of costs for each task.

L = −
K∑

k=1

λk

Nk∑

i=1

l
(k)
i (19)

MTLE provides an easy and intuitive way to re-

alize MTL, where input texts and class labels from

different tasks are jointly learned and compactly

fused. During training, EI and EL learn better un-

derstanding of word semantics for different tasks,

LI and LL obtain stronger abilities of sequence

representation, while M produces more accurate

scores for vector matching.

3.3 Scaling and Transferring

When new tasks are involved, it is particularly

convenient for MTLE to scale or transfer as the

network structure needs no modifications. For in-

put samples x(k) and class labels y
(k)
j from the

new tasks, we can apply EI , EL, LI , LL to get

4549

their vector representations X(k) and Y
(k)
j , calcu-

late the matching scores and find the most appro-

priate label.

MTLE

Task A

Task B

Task C Task D

Before Update

Hot Update Cold Update Zero Update

LabelInput Annotation

Figure 3: Three different updating methods

If the new tasks are annotated, we can apply Hot

Update or Cold Update for scaling and better tune

the parameters. If the new tasks are completely

unannotated, we can use Zero Update for transfer-

ring and produce reasonable predictions.

The differences among Hot Update, Cold Up-

date and Zero Update are illustrated in Figure 3,

where Before Update denotes the state of MTLE

trained on the old tasks before the new tasks are in-

troduced. We will further compare these updating

methods in the Experiment Section.

4 Experiment

In this section, we design extensive experiments

with multi-task learning based on five benchmark

datasets for text classification. We investigate the

empirical performances of MTLE and compare

them with existing state-of-the-art baselines.

4.1 Datasets

As Table 1 shows, we select five benchmark

datasets for text classification, which are com-

monly used in a large body of research on MTL.

We design three experiment scenarios to evaluate

the performances of MTLE. Larger text classifica-

tion datasets (Zhang et al., 2015) are not chosen

as there are already enough samples to train and

MTL may increase computation workloads. We

use the accuracy for evaluations as samples from

these datasets are mostly well balanced.

• Multi-Cardinality Movie review datasets

with different average lengths and class num-

bers, including SST-1 (Socher et al., 2013),

SST-2, IMDB (Maas et al., 2011).

• Multi-Domain Product review datasets on

different domains from Multi-Domain Senti-

ment Dataset (Blitzer et al., 2007).

• Multi-Objective Text classification datasets

with different objectives, including IMDB,

RN (Apté et al., 1994), QC (Li and Roth,

2002).

4.2 Hyperparameters and Training

Training of MTLE is conducted through back

propagation with batch gradient descent (Amari,

1993). We obtain a pre-trained lookup table by

applying Word2Vec (Mikolov et al., 2013a) on the

Google News corpus, which contains more than

100B words with a vocabulary size of about 3M.

During each epoch, we randomly divide training

samples from different tasks into batches of fixed

size. For each iteration, we randomly select one

task and choose an untrained batch, calculate the

gradient and update the parameters accordingly.

Parameters of the neural layers are randomly

initialized with the Xavier initializer (Glorot and

Bengio, 2010). We apply 10-fold cross-validation

and different combinations of hyperparameters are

investigated, of which the best one is described in

Table 2.

4.3 Results of MTLE vs. Single Task

In Table 3, we compare the performances of

MTLE with single-task learning, where only a

BiLSTM layer is applied.

MTLE achieves significant performance gains

with label information and additional correla-

tions from related tasks. Multi-Domain, Multi-

Cardinality and Multi-Objective benefit from

MTLE with average improvements of 5.5%, 2.7%

and 1.2%, as they contain increasingly weaker rel-

evance among tasks. The result of IMDB in Multi-

Cardinality is slightly better than that in Multi-

Objective (91.3 against 90.9), as SST-1 and SST-2

share more semantically useful information with

IMDB than RN and QC.

4.4 Abilities to Scale and Transfer

In order to investigate the abilities of MTLE to

scale and transfer, we use A + B → C to de-

note the case where MTLE is trained on task A

and B, while C is the newly involved one. We de-

sign three cases based on different scenarios and

4550

Table 1: Five benchmark text classification datasets

Dataset Description Type Average Length Class Objective

SST

Movie reviews in Stan-

ford Sentiment Treebank

including SST-1 and SST-2

Sentence 19 / 19 5 / 2 Sentiment

IMDB Internet Movie Database Document 279 2 Sentiment

MDSD

Product reviews on books,

DVDs, electronics and

kitchen (BDEK)

Document 176 / 189 / 115 / 97 2 Sentiment

RN
Reuters Newswire topics

classification
Document 146 46 Topics

QC Question Classification Sentence 10 6 Question Types

Table 2: Hyperparameter settings

Embedding size d = 300

Hidden layer size of LSTM m = 100

Batch size δ = 32

Initial learning rate η = 0.1

Regularization weight λ = 10−5

compare the influences of Hot Update, Cold Up-

date, Zero Update on each task.

• Case 1 SST-1 + SST-2→ IMDB.

• Case 2 B + D + E→ K.

• Case 3 RN + QC→ IMDB.

where in Zero Update, we ignore the training set

of C and just evaluate our model on the testing set.

As Table 4 shows, Before Update denotes the

model trained on the old tasks before the new tasks

are involved, so only evaluations on the old tasks

are conducted.

Cold Update re-trains the model of Before Up-

date with both the old tasks and the new tasks, thus

achieving similar performances with the last line

in Table 3. Different from Cold Update, Hot Up-

date resumes training only on the new tasks, re-

quires much less training time, while still obtains

competitive results for all tasks. The new tasks

like IMDB and Kitchen benefit more from Hot

Update than the old tasks, as the parameters are

further tuned according to annotations from these

new tasks.

Zero Update provides inspiring possibilities for

completely unannotated tasks. There are no more

annotations for additional training from the new

tasks, so we just apply the model of Before Update

for evaluations on the testing sets of the new tasks.

Zero Update achieves competitive performances

in Case 1 (90.9 for IMDB) and Case 2 (86.7 for

Kitchen), as tasks from these two cases all be-

long to sentiment datasets of different cardinalities

or domains that contain rich semantic correlations

with each other. However, the result for IMDB in

Case 3 is only 74.2, as sentiment shares less rel-

evance with topic and question type, thus leading

to poor transferring performances.

4.5 Multi-Task or Label Embedding

MTLE mainly employs two mechanisms, label

embedding and multi-task learning, so both im-

plicit information from labels and potential cor-

relations from other tasks make differences. In

this section, we conduct experiments to explore

the contributions of label embedding and multi-

task learning respectively.

We choose the four tasks from Multi-Domain

scenario and train MTLE on each task separately,

so their performances are only influenced by label

embedding. Then we re-train MTLE from scratch

for every two tasks, every three tasks from them

and record the performances of each task in differ-

ent cases, where both label embedding and multi-

task learning matter.

The results are illustrated in Figure 4. The first

three graphs show the results of MTLE trained on

every one, every two and every three tasks. In the

first graph, the four tasks are trained separately

and achieve improvements of 3.0%, 3.1%, 3.3%,

2.3% compared to the single task in Table 3. As

more tasks are added step by step, MTLE produces

increasing performance gains for each task and

achieves an average improvement of 5.5% when

all the four tasks are trained together. So it can

4551

Table 3: Results of MTLE on different scenarios

Model
Multi-Cardinality Multi-Domain Multi-Objective

Avg∆
SST-1 SST-2 IMDB B D E K IMDB RN QC

Single Task 46.2 86.1 88.9 78.3 79.8 81.5 82.3 89.0 84.2 92.7 -

MTLE 49.8 88.4 91.3 84.5 85.2 87.3 86.9 90.9 85.5 93.2 +3.4

Table 4: Results of Hot Update, Cold Update and Zero Update in different cases

Model
Case 1 Case 2 Case 3

SST-1 SST-2 IMDB B D E K RN QC IMDB

Before Update 48.6 87.6 - 83.7 84.5 85.9 - 84.8 93.4 -

Cold Update 49.8 88.5 91.2 84.4 85.2 87.2 86.9 85.5 93.2 91.0

Hot Update 49.6 88.1 91.4 84.2 84.9 87.0 87.1 85.2 92.9 91.1

Zero Update - - 90.9 - - - 86.7 - - 74.2

be concluded that both information from labels as

well as correlations from other tasks account for

considerable parts of contributions.

In the last graph, diagonal cells denote improve-

ments of every one task, while off-diagonal cells

denote average improvements of every two tasks,

so an off-diagonal cell of darker color indicates

stronger correlation between the two tasks. An

interesting finding is that Books is more related

with DVDs and Electronics is more relevant to

Kitchen. A possible reason may be that Books and

DVDs are products targeted for reading or watch-

ing, while customers care more about appearances

and functionalities when talking about Electronics

and Kitchen.

Figure 4: Performance gains of each task in differ-

ent cases

4.6 Comparisons with State-of-the-art

Models

We compare MTLE against the following models.

• NBOW Neural Bag-of-Words that sums up

embedding vectors of all words and applies a

non-linearity followed by a softmax layer.

• PV Paragraph Vectors followed by logistic

regression (Le and Mikolov, 2014).

• CNN Convolutional Neural Networks for

Sentence Classification (Kim, 2014).

• MT-CNN Multi-Task learning with Convo-

lutional Neural Networks (Collobert and We-

ston, 2008) where lookup tables are partially

shared.

• MT-DNN Multi-Task learning with Deep

Neural Networks (Liu et al., 2015b) that uti-

lizes bag-of-word representations and a hid-

den shared layer.

• MT-RNN Multi-Task learning with Re-

current Neural Networks with a shared-

layer (Liu et al., 2016b).

• DSM Deep multi-task learning with Shared

Memory (Liu et al., 2016a) where a exter-

nal memory and a reading/writing mecha-

nism are introduced.

• GRNN Gated Recursive Neural Network

for sentence modeling and text classifica-

tion (Chen et al., 2015).

• Tree-LSTM A generalization of LSTMs to

tree-structured network topologies (Tai et al.,

2015).

As Table 5 shows, MTLE achieves competi-

tive or better performances on most tasks except

4552

Table 5: Comparisons of MTLE against state-of-the-art models

Model SST-1 SST-2 IMDB Books DVDs Electronics Kitchen QC

NBOW 42.4 80.5 83.6 - - - - 88.2

PV 44.6 82.7 91.7 - - - - 91.8

CNN 48.0 88.1 - - - - - 93.6

MT-CNN - - - 80.2 81.0 83.4 83.0 -

MT-DNN - - - 79.7 80.5 82.5 82.8 -

MT-RNN 49.6 87.9 91.3 - - - - -

DSM 49.5 87.8 91.2 82.8 83.0 85.5 84.0 -

GRNN 47.5 85.5 - - - - - 93.8

Tree-LSTM 50.6 86.9 - - - - - -

MTLE 49.8 88.4 91.3 84.5 85.2 87.3 86.9 93.2

for QC, as it contains less correlations with other

tasks. Tree-LSTM outperforms our model on SST-

1 (50.6 against 49.8), but it requires an exter-

nal parser to get the sentence topological struc-

ture and utilizes treebank annotations. PV slightly

surpasses MTLE on IMDB (91.7 against 91.3),

as sentences from IMDB are much longer than

SST and MDSD, which require stronger abilities

of long-term dependency learning.

In this paper, we mainly focus the idea and ef-

fects of integrating label embedding to enhance

multi-task learning, so we apply the BiLSTM to

realize LI , which can be further implemented

by other more powerful sequence learning mod-

els (Liu et al., 2015a; Chen et al., 2015; Tai et al.,

2015) and produce better performances. Explo-

rations of other embedding layers and learning

layers may be appreciated, but due to limited

pages we choose to research these contents in fu-

ture work.

5 Related Work

There is a large body of literature related to multi-

task learning with neural networks in NLP (Col-

lobert and Weston, 2008; Liu et al., 2015b,

2016a,b; Zhang et al., 2017).

(Collobert and Weston, 2008) use a shared

lookup layer for common features, followed by

task-specific layers for several traditional NLP

tasks including part-of-speech tagging and seman-

tic parsing. They use a fix-size window to solve

the problem of variable-length input sequences,

which can be better addressed by RNN.

(Liu et al., 2015b, 2016a,b; Zhang et al., 2017)

all investigate MTL for text classification. (Liu

et al., 2015b) apply bag-of-word representation,

but information on word order is lost. (Liu et al.,

2016a) introduce an external memory for informa-

tion sharing with a reading/writing mechanism for

communications. (Liu et al., 2016b) propose three

different models for MTL with RNN and (Zhang

et al., 2017) constructs a generalized architecture

for RNN based MTL. However, models of these

papers ignore essential information of labels and

mostly can only address pairwise interactions be-

tween two tasks. Their network structures are also

fixed, thereby failing to scale or transfer when new

tasks are involved.

Different from the above work, MTLE maps la-

bels of text classification tasks into semantic vec-

tors and provide a more intuitive way to realize

MTL with the abilities to scale and transfer. In-

put sequences from three or more tasks are jointly

learned together with their labels, benefitting from

each other and obtaining better sequence represen-

tations.

6 Conclusion and Future Work

In this paper, we propose Multi-Task Label Em-

bedding to map labels of text classification tasks

into semantic vectors. MTLE utilizes semantic

correlations among tasks and effectively solves the

problems of scaling and transferring when new

tasks are involved. We explore three different

scenarios of MTL and MTLE can improve per-

formances of most tasks with semantic represen-

tations of labels and additional information from

others in all scenarios.

In future work, we would like to explore other

learning layers and generalize MTLE to address

other NLP tasks, for example, sequence labeling

and sequence-to-sequence learning.

4553

References

Shun-ichi Amari. 1993. Backpropagation and stochas-
tic gradient descent method. Neurocomputing,
5(3):185–196.

Chidanand Apté, Fred Damerau, and Sholom M.
Weiss. 1994. Automated Learning of Decision
Rules for Text Categorization. ACM Trans. Inf.
Syst., 12(3):233–251.

Samy Bengio, Jason Weston, and David Grangier.
2010. Label embedding trees for large multi-class
tasks. In NIPS, pages 163–171.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation Learning: A Review and
New Perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Clas-
sification. In ACL.

Rich Caruana. 1997. Multitask Learning. Machine
Learning, 28(1):41–75.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu, and
Xuanjing Huang. 2015. Sentence Modeling with
Gated Recursive Neural Network. In EMNLP, pages
793–798.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In ICML,
pages 160–167.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS, pages 249–256.

Alex Graves. 2013. Generating Sequences With Re-
current Neural Networks. CoRR, abs/1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
Representations of Sentences and Documents. In
ICML, pages 1188–1196.

Xin Li and Dan Roth. 2002. Learning Question Classi-
fiers. In COLING.

Xiao Ling, Wenyuan Dai, Gui-Rong Xue, Qiang Yang,
and Yong Yu. 2008. Spectral domain-transfer learn-
ing. In ACM SIGKDD, pages 488–496.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu,
and Xuanjing Huang. 2015a. Multi-Timescale Long
Short-Term Memory Neural Network for Modelling
Sentences and Documents. In EMNLP, pages 2326–
2335.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016a.
Deep Multi-Task Learning with Shared Memory for
Text Classification. In EMNLP, pages 118–127.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016b.
Recurrent Neural Network for Text Classification
with Multi-Task Learning. In IJCAI, pages 2873–
2879.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015b. Representa-
tion Learning Using Multi-Task Deep Neural Net-
works for Semantic Classification and Information
Retrieval. In NAACL HLT, pages 912–921.

Yukun Ma, Erik Cambria, and Sa Gao. 2016. Label
embedding for zero-shot fine-grained named entity
typing. In COLING, pages 171–180.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analy-
sis. In NAACL HLT, pages 142–150. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed Rep-
resentations of Words and Phrases and their Compo-
sitionality. In NIPS, pages 3111–3119.

Mohammad Norouzi, Tomas Mikolov, Samy Bengio,
Yoram Singer, Jonathon Shlens, Andrea Frome,
Greg Corrado, and Jeffrey Dean. 2013. Zero-shot
learning by convex combination of semantic embed-
dings. CoRR, abs/1312.5650.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment
Treebank. In EMNLP, pages 1631–1642, Strouds-
burg, PA. Association for Computational Linguis-
tics.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In ACL, pages 1556–1566.

Honglun Zhang, Liqiang Xiao, Yongkun Wang, and
Yaohui Jin. 2017. A generalized recurrent neural
architecture for text classification with multi-task
learning. In IJCAI-17, pages 3385–3391.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. In NIPS, pages 649–657.

