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Networks, such as social networks, biochemical networks, and protein-protein

interaction networks are ubiquitous in the real world. Network representation learning

aims to embed nodes in a network as low-dimensional, dense, real-valued vectors, and

facilitate downstream network analysis. The existing embedding methods commonly

endeavor to capture structure information in a network, but lack of consideration of

subsequent tasks and synergies between these tasks, which are of equal importance for

learning desirable network representations. To address this issue, we propose a novel

multi-task network representation learning (MTNRL) framework, which is end-to-end and

more effective for underlying tasks. The original network and the incomplete network

share a unified embedding layer followed by node classification and link prediction tasks

that simultaneously perform on the embedding vectors. By optimizing the multi-task loss

function, our framework jointly learns task-oriented embedding representations for each

node. Besides, our framework is suitable for all network embedding methods, and the

experiment results on several benchmark datasets demonstrate the effectiveness of the

proposed framework compared with state-of-the-art methods.

Keywords: multi-task learning, representation learning, node classification, link prediction, graph neural network

1. INTRODUCTION

Networks are ubiquitous in the real world, and can be organized in the form of graphs where nodes
represent various objects and edges represent relationships between objects. For examples, in a
protein-protein interaction network (Wang et al., 2019), the physical interactions among proteins
constitute the networks of protein complexes where each individual protein is an independent
node and the interaction represents an edge. In medical practice (Litjens et al., 2017), analyzing
protein-protein networks can gain new insights into biochemical cascades and guide the discovery
of putative protein targets of therapeutic interest. For efficiently mining these complex networks,
it is necessary to learn an informative and discriminative representation for each node in the
complex network. Therefore, network representation learning (Cui et al., 2019), also known as
graph embedding (Yan et al., 2005), has attracted a great deal of attention in recent years.

Existing network representation learning methods can be generally divided into two categories,
including unsupervised and semi-supervised methods. Unsupervised network representation
learning methods (Khosla et al., 2019), such as DeepWalk (Perozzi et al., 2014), node2vec (Grover
and Leskovec, 2016), and GraphGAN (Wang et al., 2018), explore specific proximities and
topological information in a complex network and optimize the carefully designed unsupervised
loss for learning node representations, which can be used for subsequent node classification
(Kazienko and Kajdanowicz, 2011) and link prediction (Liben-Nowell and Kleinberg, 2007; Lü
and Zhou, 2011). Semi-supervised network representation learning methods (Li et al., 2017), such
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as GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2018), and so on, develop end-to-end graph neural
network architectures for semi-supervised node classification
based on the partial labeled nodes and other unlabeled
nodes in hand. However, all of these methods are lack of
adequate consideration for subsequent network analysis tasks.
More specifically, unsupervised network representation learning
methods inherently ignore the category attributes of nodes.
Both unsupervised and semi-supervised network representation
learning methods are not supervised by the link prediction
task in the process of learning desirable node representations.
The only existing work is that, Tran et al. presented a
densely connected autoencoder architecture (Zhu et al., 2016),
namely local neighborhood graph autoencoder (LoNGAE,
αLoNGAE) (Tran, 2018), to learn a joint representation of
both local graph structure and available external node features
for the multi-task learning (Yu and Qiang, 2017) of node
classification and link prediction. Nevertheless, it has poor
scalability on general network embeddingmethods due to the use
of autoencoder.

As a bridge between the graph structured network data and
the underlying network analysis task, network representation
learning algorithms should not only preserve the proximities
and complex topological structure, but also learn high-quality
node representations for enhancing the performance of relevant
tasks. Fortunately, multi-task learning (MTL) is a standard
paradigm that takes full advantage of the synergy among
tasks to make multiple learning tasks promote each other
(Yu and Qiang, 2017). In deep learning (LeCun et al., 2015),
multi-task learning (Caruana, 1993) is usually implemented
by sharing the soft or hard parameters of the hidden layer.
Each task has its own parameters and models when sharing
soft parameters. The distance between model parameters is
regularized to encourage parameter similarity. Sharing the
hard parameter is the most common method of multi-task
learning on neural networks, which significantly reduces the risk
of overfitting.

Inspired by this, we attempt to propose a universal multi-
task network representation learning (MTNRL) framework,
which can be implemented on general network embedding
methods for link prediction and node classification. To enable
the traditional network embedding methods to effectively learn
multiple tasks synchronously, two different network analysis
tasks share parameters of the feature extraction module and
retain its own task-specific module in our framework. The shared
feature extraction module is utilized for learning the latent low-
dimensional representations of nodes in a complex network. The
task-specific module takes the obtained node representations as
input and incorporates the losses of node classification and link
prediction tasks. Through jointly optimizing the overall losses,
we can learn the desirable network representations and improve
the classification or prediction results of different tasks. Besides,
our proposed MTNRL framework has good universality and can
be applied to almost all of the existing network representation
learning approaches.

The main contributions of this paper are summarized
as follows:

• We propose a novel multi-task network representation
learning (MTNRL) framework, which simultaneously
performs multiple tasks including node classification and
link prediction by sharing the intermediate embedding
representations of nodes.

• The proposed framework is implemented on state-of-the-art
graph attention neural networks in detail for illustration.

• We conduct empirical evaluation on three datasets and
the experimental results demonstrate that the proposed
framework achieves similar or even better results than existing
original network representation learning methods.

The rest of this paper is arranged as follows. We first summarize
related works in section 2. Section 3 presents our proposed
multi-task network representation learning framework for node
classification and link prediction. Section 4 describes the
experimental settings and results, while conclusions are discussed
in section 5.

2. RELATED WORK AND MOTIVATION

2.1. Network Representation Learning
Recently, network representation learning has attracted an
increasing research attention in various fields. Existing network
representation learning techniques can roughly be divided as
unsupervised and semi-supervised. Given a complex network
with all nodes being unlabeled, unsupervised methods learn
node representations through optimizing the carefully designed
objective to capture proximities and topology in the network
graph, which can facilitate identifying the class labels for the
nodes. Deepwalk (Perozzi et al., 2014) regards the sequence
of nodes generated by random walk (Tong et al., 2006) as
a sentence, the nodes in the sequence as words in the text,
and obtains node representations through optimizing the Skip-
Gram model (Lazaridou et al., 2015). LINE (Tang et al.,
2015) characterizes the first-order proximity observed from
the connections among nodes, and preserves the second-
order proximity through calculating the number of common
neighbors for two nodes without direct connection. Node2vec
(Grover and Leskovec, 2016) extends the Deepwalk algorithm by
introducing a pair of hyper-parameters for adding flexibility in
exploring neighborhoods, and generates random walk sequences
by breadth-first search (Beamer et al., 2013) and depth-first
search (Barták, 2004).

Unsupervised learning begins with clustering and then
characterization, while supervised learning is carried out
simultaneously with classification and characterization. Semi-
supervised learning is a classic paradigm of machine learning
between supervised learning and unsupervised learning. In this
paradigm, a small amount of labeled data and a large number of
unlabeled data are used to train the learning model. In practice,
it is arduous to obtain a great deal of labeled data and semi-
supervised learning is capable of improving the performance
of purely supervised learning algorithms through modeling
the distribution of unlabeled data. Therefore, semi-supervised
learning has received considerable attention in recent years.
Semi-supervised learning methods utilize partial nodes being
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labeled and others remaining unlabeled to learn high-quality
node representations supervised by partial nodes. For examples,
graph convolution networks (GCN) (Kipf and Welling, 2017)
generalizes the original convolutional neural networks on grid-
like images to non-grid graphs through considering the localized
first-order approximation of spectral graph convolutions for
encoding graph structure and optimizing the cross-entropy
loss over labeled node examples for semi-supervised node
classification. Given a graph composed of instance nodes,
Planetoid (Yang et al., 2016) presents a semi-supervised learning
framework based on graph embeddings which can train an
embedding for each instance to jointly predict the class label
and the neighborhood context in the graph. This method
has both transduction variables and induction variables. While
in the inductive variant, the embeddings are defined as a
parametric function of the feature vectors, so predictions can
be made on instances not seen during training. GraphSAGE
(Hamilton et al., 2017) is an inductive network representation
learning framework that learns an embedding function for
generating node representations through sampling a fixed-size
set of neighbors of each node, and then performing a specific
aggregator over neighboring nodes (such as the mean over all the
sampled neighbors’ feature vectors, or the result of feeding them
through a recurrent neural network). Graph attention networks
(GAT) (Veličković et al., 2018) operate on graph-structured data,
leveraging masked self-attentional layers (Zhang et al., 2018)
to address the shortcomings of prior methods based on graph
convolutions. Thesemethods are all implemented as a single task,
but multi-task learning can be used to improve the performance
of multiple tasks simultaneously.

2.2. Multi-Task Learning
Multi-task learning is a promising area of machine learning
that leverages the useful information contained in multiple
learning tasks to help learn each task more accurately. Multi-
task learning is capable of learning more than one learning task
simultaneously, because each task can take advantage of the
knowledge of other related tasks. Traditional multi-task learning
methods (Doersch and Zisserman, 2017) can be classified into
many kinds, including multi-task supervised learning, multi-task
unsupervised learning (Kim et al., 2017), and multi-task semi-
supervised learning (Zhuang et al., 2015). Multi-task supervised
learning implies that each task in multi-task learning is a
supervised learning task, which models the function mapping
from examples to labels. Different from the multi-task supervised
learning with labeled examples, the training set of multi-task
unsupervised learning only consists of unlabeled examples to
mine the information contained in the dataset.

2.3. Motivation
In many practical applications, there is usually only a small
amount of labeled graph data, because manual annotation
wastes labor and time considerably (Navon and Goldschmidt,
2003). For example, in biology, the structure and function
analysis of a protein network may take a long time, while
large amounts of unlabeled data are easily available. Hence,
semi-supervised learning methods are widely used to improve

learning performance of graph analysis. Unfortunately, all of the
aforementioned semi-supervised learning methods applied on
graphs, such as GCN, GraphSAGE, and GAT only learn the latent
node representations in a single-task oriented manner and lack
consideration of the synergy among subsequent graph analytic
tasks. In reality, tasks of node classification and link prediction
usually share some common characteristics and can be conducted
simultaneously for facilitating each other.

As far as we know, the only existing work is the local
neighborhood graph autoencoder (LoNGAE, αLoNGAE), which
implements the multi-task network representation learning
based on a densely connected symmetrical autoencoder and
is model dependent. The model utilizes the parameter sharing
between encoders and decoders to learn expressive non-linear
latent node representations from local graph neighborhoods.
Motivated by this, we innovatively propose a general multi-task
network representation learning (MTNRL) framework, which
is model-agnostic and can be applied on arbitrary network
representation models. It optimizes the losses of two tasks jointly
to learn the desirable node representations followed by node
classification and link prediction tasks that performed on the
embedding vectors.

3. METHODOLOGY

In this section, we formally define the problems of network
representation learning and multi-task learning. Then the
proposed MTNRL framework and its implementation on graph
attention networks are elaborated in detail.

3.1. Problem Formulation and Notations
A network is usually denoted as G = (V ,E), where V =
{v1, · · · , vn} represents a set of nodes and n is the number of
nodes. E =

{

ei,j
}n

i,j=1
denotes the set of edges between any two

nodes. Each edge ei,j can be associated with a weight ai,j ≥ 0,
which is an element of the adjacency matrix A for the network G.
In an unweighted graph, for nodes vi and vj not linked by an edge,
ai,j = 0, otherwise, ai,j = 1. Formally, we define the following two
problems closely related to our work.

Definition 1 (Network representation learning). Given a
network G = (V ,E), network representation learning aims to
learn a function f :V → Rn×d, that maps each node into a
d-dimensional embedding space. Meanwhile, d is the dimension
of latent representations and d ≪ n.

Definition 2 (Multi-task learning). Given multiple related
learning tasks, the goal of multi-task learning is to improve the
performance of each task by jointly learning these related tasks
and mining the useful information contained in these tasks.

The main symbols used throughout this paper are listed
in Table 1.

3.2. Framework
Aiming to obtain the compact and expressive representation of
a complex network, network representation learning is widely
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TABLE 1 | Notations and their descriptions.

Notations Descriptions

G The given network

V Set of nodes in the given network

E Set of edges in the given network

v A node v ∈ V

ei,j An edge between nodes vi and vj

n Number of nodes in the given network

c The number of class labels for nodes in V

A The adjacency matrix of G

d The dimension of learned node representations

Z The initial feature matrix of nodes

H The embedding representation matrix of nodes

used in a variety of applications, including node classification,
link predication, and so on.

As one of the most important application for network
representation learning, node classification attempts to assign
the predicted class label to each node in the network based on
the patterns learnt from the partially labeled nodes. Intuitively,
similar nodes in a complex network should have the same
labels. The results of node classification are often used in
recommendation systems and data mining systems. Because in
these practical applications, nodes in a complex network are only
partially labeled due to high labeling costs, and a large portion of
vertices in networks do not have ground truth. According to the
number of labels of each node in a network, node classification
can be categorized into multi-class node classification and multi-
label node classification. In multi-label node classification, each
node may correspond multiple labels, while each node only has
one label in multi-class node classification. Essentially, node
classification based on existing network representation learning
techniques typically consist of two stages: representation learning
and node classification.

With the carefully designed network embedding algorithm, a
network graph G can be taken as input to the embedding model
f for learning the low-dimensional dense representation H in an
unsupervised or semi-supervised manner, which is expressed as:

H = f (A,Z) (1)

A denotes the adjacency matrix of G and Z is the initial feature
representation of nodes, which can be represented by nodes’
feature property or other properties. For unsupervised network
representation learning, the obtained node representations are
then utilized to train a supervised classifier for node classification.
Semi-supervised network representation learning directly trains
a classifier well for classification while training the embedding
model. With the well-trained classifier, we can infer the labels
of the remaining nodes. The performance of node classification
is reflected by the predicted accuracy for node labels. The loss
function of node classification can be defined as follow:

LNC = −
∑

v∈VL

c
∑

k = 1

yv,k ∗ log(Pv,k) (2)

where VL is the set of labeled nodes and c denotes the number
of class labels. yv,k represents an indicator variable of node v,
which is equal to 1 if node v belongs to class k, otherwise 0. Pv is
the predicted probability vector of node v and can be calculated
by Pv = softmax(WThv + b), in which hv is the embedding
representation of node v, W is the weight matrix, and b is the
bias in the final fully connected layer.

Another fundamental application for network representation
learning is link predication. Link prediction endeavors to predict
the existing possibility of edges between two nodes in a network
that are unobserved or missing by utilizing available network
nodes and topological structure. In general, we randomly hide
a portion of the existing links for simulation and use the left
edges to train an unsupervised network embedding model.
To seamlessly integrate the tasks of link prediction and node
classification, we design a loss function for link prediction as:

LLP = −

n
∑

i = 1

n
∑

j = 1

[

Ai,j ∗ log
(

Si,j
)

+
(

1− Ai,j

)

∗ log
(

1− Si,j
)]

(3)
where Ai,j is an element of the adjacency matrix of a network
G and n indicates the number of nodes. Si,j = s(hi, hj) is a
score of the predicted link between nodes vi and vj, which can
be calculated with the inner product or other similarity measure
between embedding representations hi and hj. A larger score
usually implies that the two nodes may have a higher likelihood
to be linked. With the loss in Equation (3), we can learn the
structural representations for each node in the network graph
and then utilize the obtained representations to predict the
unobserved link.

To benefit subsequent tasks of both node classification and
link prediction, we learn informative and discriminative graph
representations collaboratively supervised by these two tasks.
More specifically, the overall loss function for multi-task network
representation learning (MTNRL) can be formulated as:

L = LNC + αLLP (4)

where α is a tradeoff factor for balancing losses of node
classification and link prediction. For illustration, our MTNRL
framework is shown in Figure 1. A network graph is taken as the
input to a network representation learning model. By virtue of
the network representation learning model for graph-structured
data, the proximity and topological structure will be preserved in
the embedding representations. Furthermore, we simultaneously
perform node classification and link prediction tasks through
optimizing the carefully designed multi-task loss function on the
node representations obtained from the representation learning
module. As a result, we jointly learn task-oriented embedding
representations for each node, which are capable of improving
the performance of a variety of graph analytics applications.

3.3. Implementation on Graph Attention
Networks
Graph attention networks (GAT) (Veličković et al., 2018)
introduce an attention-based architecture to learn the
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FIGURE 1 | Graphical illustrations of our proposed multi-task network representation learning framework.

node-focused representations for node classification on
graph-structured data. GAT is based on the classical neighbor
aggregation schema for generating low-dimensional node
representations and extends the pioneering graph convolutional
networks through exploring the importance of different
neighboring nodes. Based on the attention mechanism widely
used in sequence-based tasks, GAT calculates an attention

coefficient eij = a
(

WEhi,WEhj

)

for pairwise nodes. Suppose

h =
{

Eh1, Eh2, . . . , EhN

}

, Ehi ∈ R
F is a set of node features used as

the input to the attention layer, where N is the number of nodes,
and F is the number of features for each node. A shared linear
transformation, parameterized by a weight matrix, W ∈ R

F′×F ,
is applied to every node. Then the shared attentional mechanism

a :RF′ ×R
F′ → R is utilized to calculate eij. With the normalized

attention coefficients αij = softmaxj
(

eij
)

=
exp(eij)

∑

k∈Ni
exp(eik)

, we can

pay different attention to the neighboring nodes when attending
over its neighbors for generating the latent representation of
each node. Therefore, the normalized attention coefficients
are used to compute a linear combination of the features
corresponding to them, to serve as the final output features for
every node (after potentially applying a non-linear function σ ):

Eh′i = σ

(

∑

j∈Ni
αijWEhj

)

, where h′ =
{

Eh′1,
Eh′2, . . . ,

Eh′N

}

, Eh′i ∈ R
F′

is a new set of node features produced by the attention layer. By
optimizing the loss of semi-supervised node classification, GAT
learns the representation of nodes. By stacking to multiple layers,
a deep graph attention network can be constructed for capturing
the high-order topological relationship among nodes in a graph.

The proposed MTNRL framework can be implemented on
arbitrary network representation learning methods. In this
subsection, we introduce an implementation of the MTNRL
framework on graph attention networks (MT-GAT) as an
example. The original graph attention networks adopt a two-
layer GAT model for inductive learning, which can predict
the labels of nodes in a semi-supervised manner based on
the masked self-attention operated on graph-structured data.

In our implementation of MT-GAT, node classification and
link prediction tasks are predicted simultaneously. As shown in
Figure 2, a network graph is taken as input to graph attention
networks that can output compact embedding representations
of nodes. Then we use the learned low-dimensional node
representations for multi-task learning. In the MT-GAT, all
parameters in the network except the softmax layer for node
classification are shared. In this implementation, the loss function
of node classification employs a negative log likelihood loss and
the loss function of link prediction adopts a two-class cross
entropy loss, which is in consistent with Equations (2) and (3).

3.4. Discussion
To further demonstrate that our MTNRL is a universal
framework, we explain how it can be used in Graph
Convolutional Networks (GCN) (Kipf and Welling, 2017). GCN
is a classical convolutional neural network architecture applied to
graph-structured data, which can explicitly characterize the first-
order neighboring structure and be stacked to multiple layers
for encoding high-order proximities in a network. The original
GCN only optimizes the semi-supervised node classification loss
for learning latent node representations. Under the proposed
MTNRL framework, we can optimize the loss functions of both
node classification and link prediction tasks at the same time.
Through further assigning the proper weights to the losses of
two tasks, we can complete the implementation of our MTNRL
framework on GCN.

4. EXPERIMENT

We conduct the experimental evaluation of the proposed multi-
task network representation learning framework on graph
attention networks (MT-GAT), compared with state-of-the-
art methods. This section first introduces the specifics of
experimental datasets and several baselines. Then, we present the
details of the implementation, followed by experimental results
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FIGURE 2 | Schematic depiction of implementation of the proposed framework on graph attention networks.

TABLE 2 | Statistics of benchmark datasets used in our experiments.

Datasets Cora Citeseer Pubmed

Nodes 2,708 3,327 19,717

Edges 5,429 4,732 44,338

Text feature dimension 1,433 3,703 500

Classes 7 6 3

and analysis of different algorithms. Finally, we analyze the
sensitivity of the hyperparameters.

4.1. Datasets
We adopt three benchmark citation network datasets for
evaluation, including Cora, Citeseer, and Pubmed (Sen et al.,
2008), whose detailed statistics are summarized in Table 2. For
these citation networks, each paper is denoted as a node and
the words of each paper are encoded as the features of nodes
which is a vocabulary containing multiple words. Each node only
corresponds a class label. The features of the paper consist of a
string of binary codes, which indicate whether the paper contains
this word.

• The Cora dataset consists of 2,708 papers from machine
learning area and these papers are divided into the
seven categories: Case Based, Genetic Algorithms, Neural
Networks, Probabilistic Methods, Reinforcement Learning,
Rule Learning, Theory. The citation network consists of
5,429 edges that represent citation relationships. The text
information of each publication is encoded by a tf-idf
vector of 1,433 dimensions indicating the importance of the
corresponding words.

• The Citeseer dataset consists of 3,312 scientific publications
from the CiteSeer web database, and are categorized into six
classes: Agents, Artificial Intelligence, Data Base, Information
Retrieval, Machine Language, and HCI. The citation network

consists of 4,732 links. Each publication in the dataset
is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the
dictionary. The dictionary consists of 3,703 unique words.

• The Pubmed dataset consists of 19,717 scientific publications
from PubMed database pertaining to diabetes classified
into three classes: Diabetes Mellitus Experimental, Diabetes
Mellitus Type 1, Diabetes Mellitus Type 2. The citation
network consists of 44,338 links. Each publication in the
dataset form a dictionary which is made up of 500
unique words.

4.2. Baselines
We compare our MT-GAT against the following baselines: graph
convolution networks (GCN), graph autoencoder (GAE, VGAE),
graph attention networks (GAT), local neighborhood graph
autoencoder (LoNGAE, αLoNGAE).

• GCN (Kipf and Welling, 2017) performs a convolution
operation on each node’s neighbors for feature aggregation in
each graph convolutional layer, which can be stacked to deeper
networks for semi-supervised node classification tasks.

• GAE and VGAE (Kipf and Welling, 2016) utilize a graph
convolutional network (GCN) encoder and a simple inner
product decoder. The advantage of this method is that it can
naturally incorporate node features compared to most existing
unsupervised models for link prediction.

• GAT (Veličković et al., 2018) is a novel neural network
architecture that operates on graph-structured data,
leveraging masked self-attentional layers to address the
shortcomings of prior methods based on graph convolution
or their approximation.

• LoNGAE and αLoNGAE (Tran, 2018) introduce a densely
connected autoencoder architecture to learn a joint
representation of both local graph structure and available
external node features for the multi-task learning of link
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TABLE 3 | Accuracy of semi-supervised node classification on Cora.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.842 0.842 0.828 0.828 0.821 0.821 0.807 0.807 0.800

αLoNGAE 0.803 0.793 0.790 0.783 0.780 0.777 0.770 0.767 0.763

GAT 0.824 0.822 0.816 0.808 0.806 0.804 0.798 0.796 0.794

MT-GAT (ours) 0.874 0.864 0.861 0.856 0.855 0.850 0.848 0.832 0.827

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

TABLE 4 | Accuracy of semi-supervised node classification on Citeseer.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.846 0.824 0.824 0.824 0.813 0.802 0.802 0.780 0.780

αLoNGAE 0.733 0.727 0.723 0.716 0.710 0.706 0.697 0.690 0.683

GAT 0.718 0.716 0.710 0.708 0.706 0.704 0.700 0.698 0.696

MT-GAT (ours) 0.852 0.845 0.841 0.835 0.830 0.820 0.816 0.800 0.780

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

prediction and node classification. LoNGAE and αLoNGAE
adopt the densely connected symmetrical autoencoder, where
αLoNGAE uses node features and LoNGAE does not. In our
node classification experiments, we only adopt αLoNGAE for
comparison due to its superiority.

4.3. Experimental Settings
We implement our MT-GAT with the Pytorch-GPU backend,
along with several additional details. Gradient descent
optimization is employed with a fixed learning rate of 0.005. Two
layers of dropout are used in the model with dropout rate of 0.1
to prevent the problem of overfitting. The number of attention
heads in the graph attention layer is set to 8, consistent with
the setting for transductive learning in GAT. We train for 300
epochs for MT-GAT. The loss of node classification is negative
log likelihood loss while the loss of link prediction is binary cross
entropy. The tradeoff factor between node classification and
link prediction tasks α is 1. For fair comparison, we use mean
classification accuracy to measure the performance of the node
classification task, and use AUC and AP to evaluate the results
of link prediction. The evaluation metric AUC is the area under
the ROC curve. In the context of unbalanced categories, even
if the number of certain categories increases significantly, the
growth of the curve is not obvious, and therefore we choose it to
eliminate the impact of a lot of imbalanced classes. AP is just the
average accuracy score.

4.4. Results and Analysis
We use different methods to obtain embedding vectors of nodes,
and adopt softmax as classifier. For comparison, the training
ratio of the classifier is ranged from 10 to 90% with a step
of 10% in each dataset for all methods. We run each method
10 times, respectively at a given training ratio and report the
average performance.

Tables 3–5 demonstrate the comparison ofmean classification
accuracy on semi-supervised node classification for GCN,
αLoNGAE, GAT, and our MT-GAT. For clarity, the best results

TABLE 5 | Accuracy of semi-supervised node classification on Pubmed.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.871 0.838 0.838 0.806 0.806 0.774 0.774 0.741 0.741

αLoNGAE 0.807 0.803 0.800 0.797 0.796 0.793 0.790 0.787 0.786

GAT 0.794 0.792 0.790 0.788 0.786 0.784 0.782 0.780 0.788

MT-GAT (ours) 0.854 0.847 0.843 0.836 0.831 0.824 0.822 0.816 0.806

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

TABLE 6 | AUC and AP performance of different methods on link prediction.

Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

GAE 0.910 0.920 0.895 0.899 0.964 0.965

VGAE 0.914 0.926 0.908 0.920 0.944 0.947

LoNGAE 0.896 0.915 0.860 0.892 0.926 0.930

αLoNGAE 0.943 0.952 0.956 0.964 0.960 0.963

GCN 0.809 0.811 0.811 0.822 0.828 0.834

MT-GAT (ours) 0.930 0.963 0.931 0.963 0.968 0.970

The best results are shown in bold.

are shown in bold. For node classification, GCN and our MT-
GAT exhibit better performance compared with LoNGAE and
GAT. Although GCN occasionally outperforms our MT-GAT
on the Pubmed dataset when the training ratio is 90%, it is
inferior to our MT-GAT in all other cases. It is shown that on
this task, the performance of our MT-GAT is relatively stable
and splendid compared with baselines, which fully demonstrates
the superiority of our multi-task network representation learning
framework. Furthermore, we conduct the t-test in Tables 3–
5 and our MT-GAT with significant improvements over the
baselines is shown with underline as measured by a t-test with
a p-value6 0.05.

Table 6 shows the comparison of AUC and AP performance
on link prediction for GAE, VGAE, LoNGAE, αLoNGAE, GCN,
and MT-GAT. For link prediction, the LoNGAE that only
captures graph structure without node features is less than
satisfactory, but the αLoNGAE with node features performs
slightly better. Although αLoNGAE occasionally outperforms
our MT-GAT on the Cora and Citeseer datasets, αLoNGAE
is restrictive and obviously provides no flexibility in extending
to general network representation learning methods. In the
meantime, the performance of GAE and VGAE is mediocre
because it is potentially a poor choice in combination with
an inner product decoder, and the generative model is not
flexible enough. Note that in this task, our MT-GAT performs
comparable or more excellent than other methods, due to the
capability of our framework for collaboratively learning task-
oriented embedding representations.

Overall, our MT-GAT achieves more outstanding and stable
performance on both tasks of node classification and link
prediction. However, these baselines mostly learn network
representations based on a model-dependent framework without
careful consideration of the follow-up tasks to optimize the
embedding model. Our MT-GAT is simultaneously supervised
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FIGURE 3 | The effect of different hyperparameters α on the Cora dataset. We choose the AUC and AP scores of link prediction and the classification accuracy of

node classification to demonstrate the effect of different hyperparameters for the experiments.

by node classification and link prediction tasks, and is capable
of learning comprehensive and desirable node representations.
Through the joint learning of two different loss functions,
our model is able to achieve more effective, complete, and
stable predictions.

4.5. Parameter Sensitivity
The parameter sensitivity of MT-GAT is investigated in this
section. More specifically, we evaluate how different values
of hyperparameter α can affect the performance of node
classification and link prediction. The hyperparameter α is
varied from 0 to 1 with an increment of 0.1. We report the
three evaluation metrics: mean classification accuracy for node
classification, AUC score for link prediction, and AP scores for
link prediction. The histogram in Figure 3 displays the results of
evaluation metrics with different parameter settings for the Cora
dataset. We notice that the performance of node classification
and link prediction on the Cora dataset fluctuates from α = 0
to 1. It slightly boosts at first and reaches the local optimum at
α = 0.3. After the value of α is over 0.3, it gradually declines
and slightly increases to the peak at α = 1. The AUC and AP
scores of link prediction are more sensitive to parameters than
the classification accuracy of node classification. Especially, when
parameter α is 0, the optimization of the link prediction loss is
completely separated from that of the network embeddingmodel,
thus causing AUC and AP scores of link prediction to always
float around the starting value of 0.5. It empirically suggests
that the consideration of the weight parameter α between node
classification and link prediction tasks can facilitate learning
network representations more effectively.

5. CONCLUSION

In this paper, we propose a multi-task network representation
learning framework, namely MTNRL, which exploits the synergy

among the node classification and link prediction tasks for
facilitating their individual performance. The experimental
results demonstrate the MTNRL framework on GAT is well-
performed on a range of graph-structured network datasets
for both node classification and link prediction. Besides,
the proposed method can soundly outperform the state-of-
the-art network representation learning methods. The main
advantage of our MT-GAT is the performance improvement
brought by the extensive parameter sharing between link
prediction and node classification tasks. The proposed
framework solves the single-task limitations of traditional
network representation learning methods. In particular, our
framework is universal and can be implemented on any arbitrary
network embedding methods to improve performance. In
future work, we will investigate the implementation of our
framework on heterogeneous network representation methods
and explore the scalability of our framework on other network
analysis tasks.
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