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Abstract

Automatic prediction of the peer-review as-

pect scores of academic papers can be a use-

ful assistant tool for both reviewers and au-

thors. To handle the small size of published

datasets on the target aspect of scores, we pro-

pose a multi-task approach to leverage addi-

tional information from other aspects of scores

for improving the performance of the target as-

pect. Because one of the problems of build-

ing multi-task models is how to select the

proper resources of auxiliary tasks and how

to select the proper shared structures, we thus

propose a multi-task shared structure encod-

ing approach that automatically selects good

shared network structures as well as good aux-

iliary resources. The experiments based on

peer-review datasets show that our approach

is effective and has better performance on the

target scores than the single-task method and

naı̈ve multi-task methods.

1 Introduction

Automatic prediction of the peer-review aspect

scores (e.g. “clarity” and “originality”) of aca-

demic papers can be a useful assistant tool for both

reviewers and authors. On the one hand, because

the number of submissions to AI-related interna-

tional conferences has significantly increased in re-

cent years, it is challenging for the review process.

Rejecting some papers with evidently low quality

can reduce the workload. On the other hand, sug-

gesting the weak aspects to the authors can also

help them improve their papers.

There are several existing works related to the

paper review which concentrate on the quality of

the review (De Silva and Vance, 2017; Langford

and Guzdial, 2015). Huang (2018) et al. predicted

the acceptance of a paper only based on a paper’s

visual appearance (Huang, 2018). Automatic essay

scoring (Dong and Zhang, 2016; Dong et al., 2017;

Amorim et al., 2018) can be regarded as a related

sub-topic that mainly focus on the grammatical

and syntactic features in short essays. PeerRead is

the first public dataset of scientific peer reviews for

research purposes (Kang et al., 2018), which can be

used for paper acceptance classification and review

aspect score prediction. It provides detailed peer-

reviews including the final decisions, the aspect

scores such as clarity and originality, and the review

contents. It raises two NLP tasks, paper acceptance

classification and review aspect score prediction.

We focus on the later one in this paper. However,

the dataset is relatively small; the set of papers for

each review aspect can be different. To improve the

performance of aspect score prediction, we propose

a solution based on the multi-task learning that

can leverage additional rich information from the

resources obtained by other aspect scores. We treat

the prediction of each aspect as a separate task.

The multi-task model for each aspect score has a

main-auxiliary manner.

Multi-task methods have been widely utilized

in many NLP tasks, such as summarization (Ison-

uma et al., 2017; Guo et al., 2018), classification

(Liu et al., 2017b; Shimura et al., 2019), parsing

(Hershcovich et al., 2018), sequence labeling (Lin

et al., 2018), and Entity and Relation (Luan et al.,

2018). When building a multi-task model, there are

two critical issues, i.e., which auxiliary resources

(tasks) can be used for sharing useful information

and how to share the information among the tasks.

In these previous studies, researchers always se-

lect specific auxiliary resources, and design hand-

crafted shared structure in the model for a particular

NLP topic.

However, for different datasets and tasks, there

may exist other better auxiliary resources and

shared structures. We thus propose an approach se-

lecting the shared structures automatically as well

as the auxiliary resources that are more beneficial
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Figure 1: Basic model CNN Figure 2: Example of Multi-task CNN with Shared Structure Encoding (SSE)

for the main task. There are diverse parameter shar-

ing manners in the multi-task methods for deep

neural networks (Ruder, 2017). How to define the

exploration space for automatic selection is a prob-

lem. Our approach encodes the multi-task shared

structures in the manner of hard parameter sharing

and defines the exploration space. We also propose

a strategy to search the optimal structures and auxil-

iaries from the candidate models. It is also flexible

to add more auxiliary tasks.

Our approach can be integrated with hyperpa-

rameter optimization methods (Snoek et al., 2012)

or network architecture search methods (Zoph and

Le, 2016) for searching. Furthermore, our method

is capable for not only review score prediction but

also some other NLP tasks such as text classifica-

tion. Our main contributions can be summarized

as follows. (1). We address an application that

predicting the peer-review aspect scores of papers

which can be a useful assistant tool for both re-

viewers and authors. (2). We propose a multi-task

shared structure encoding method which automati-

cally selects good shared network structures as well

as good auxiliary resources. (3). The experiments

based on real paper peer-review datasets show that

our approach can build a multi-task model with

effective structures and auxiliaries which has better

performance than the single-task model and naı̈ve

multi-task models.

2 Our Approach

2.1 Preliminary

Peer-review aspect score prediction is a regres-

sion problem with text data. We can utilize ex-

isting text classification methods (Kim, 2014; Liu

et al., 2017a) based on deep neural network for

this problem by changing the loss function from

cross-entropy for classification to mean squared

error for regression. Without loss of generality, we

use the basic CNN-based text classification model

(Kim, 2014) as the example to facilitate the descrip-

tion of our multi-task approach. Figure 1 shows

the architecture of this model for predicting the

aspect score. It includes the embedding layer, con-

volutional and pooling layer, and fully connected

layers. The multi-task approach we propose is not

limited to be adapted with this model. It can be

integrated with similar neural network structures in

this example, e.g., XML-CNN (Liu et al., 2017a)

and DPCNN (Johnson and Zhang, 2017).

We have n single tasks (i.e., aspect scores) and

assume that they have the same network structures

with k layers. For each task, we regard it as the

main task and search the proper shared structures

and auxiliary tasks.

2.2 Multi-task Shared Structures

To automatically search the proper shared struc-

tures and auxiliary tasks, we need to define the

exploration space. Because it is difficult to mix

diverse parameter sharing manners proposed in var-

ious multi-task methods (Ruder, 2017), we utilize

the typical manner of hard parameter sharing as

the starting point to implement our idea. Other

manners of parameter sharing will be addressed in

future work.

Figure 2 shows an example of the shared struc-

ture encoding (SSE) that we propose with three

tasks (one main task and two auxiliary tasks).

Given a main task t0, for each auxiliary task ti,

if the jth layer of ti is shared with t0, then we en-

code this shared structure as lij = 1; if the jth layer

is not shared, then lij = 0. We do not encode the

shared structures among auxiliary tasks to decrease

the complexity of the model. It is flexible to add

more auxiliary tasks to a model. There are two

special cases of this SSE. One is lij = 1 for all aux-
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iliary tasks. The corresponding model is equivalent

to one single model for all tasks. Another is lij = 0
for all auxiliary tasks. It is equivalent to a single-

task model for the main task. In other words, in the

search stage, these models are also included. Lu

et al. (2017) adaptively generate the feature shar-

ing structure by splitting the network into branches

without merging. Its exploration space is a subset

of our approach.

Our multi-task approach utilizes a main-

auxiliary manner, rather than a manner which

equally treats all tasks. The later manner makes a

sum of the weighted losses of all tasks and requires

a trade-off among the tasks (Sener and Koltun,

2018), which may not be able to reach optimal

results for a specific task. In our approach, we thus

use every single task as the main task respectively

and other tasks as the candidates for auxiliary tasks.

It is flexible for us to define all candidate shared

structures in the exploration space and decrease the

size of the exploration space.

2.2.1 Shared Structure and Auxiliary Task

Search

In our search strategy, we denote the number of

auxiliary tasks in a model as m, m ≤ n− 1. There

are
(n−1

m

)

combinations of the auxiliary tasks. For

each combination of auxiliary tasks, we search the

shared structures and select the one with minimized

loss. For the selection criterion, because the dataset

is too small, we use the loss on both the training set

and validation set rather than only using the loss of

validation set.

After selecting the shared structures for all com-

binations of the auxiliary tasks, we select the com-

bination of which the average loss of all candi-

date shared structures is minimum. For a main

task, the number of candidate multi-task models

is Nm =
(n−1

m

)

× 2km. When m = n − 1, i.e.,

using all other tasks as the auxiliary tasks, this

number is Nn−1 = 2k(n−1). If m ≪ n − 1, then

Nm ≪ Nn−1.

If Nm is small, we can explore all candidates.

Otherwise, we need to refer some other methods

to search in the exploration space, for example,

the hyperparameter optimization methods based

on Bayesian optimization (Snoek et al., 2012); the

network architecture search (NAS) methods based

on reinforcement learning (Zoph and Le, 2016;

Zoph et al., 2018; Liu et al., 2018). Random search

is also possible to be used.

Dataset Aspects Train Valid Test

ICLR

Clarity 65 8 6
Originality 72 11 5
Correctness 64 6 4
Comparison 27 6 2
Substance 38 7 2

Impact 51 9 4

ACL All six 137 7 7

Table 1: Statistics of Datasets

Settings CNN XMN-CNN

Input word vectors fastText fastText

Embedding Dimension 200 200

Stride size 1 2

Filter region size 2 2

Feature maps (m) 64 64

Pooling max pooling dynamic max pooling

Activation function ReLu ReLu

Hidden layers 1024 512

Batch sizes 8 8

Dropout rate 1 0.25 0.25

Dropout rate 2 0.5 0.5

Optimizer Adam Adam

Loss function MSE MSE

Epoch 40 40

Table 2: Settings of basic models CNN and XML-

CNN: Dropout rate 1 is for the embedding layer, and

Dropout rate 2 is for the fully connected layers.

3 Experiments

3.1 Experimental Settings

We use the ICLR and ACL datasets in the Peer-

Read Dataset (Kang et al., 2018) because they pro-

vide the scores of the peer-review aspects. Table

1 shows the statistics of these datasets. We utilize

the papers which have the scores in some of the

six aspects (n = 6), i.e., Clarity (cla), Originality

(ori), Correctness (cor), Comparison (com), Sub-

stance (sub) and Impact (imp). The scale of these

scores is from 1 to 5. We utilize the dataset split-

ting provided by PeerRead. Because not all papers

contain all six aspects in the ICLR dataset, the num-

ber of papers for each aspect are diverse. For the

ground truth, we use the mean score of multiple

reviews which is the general method of multiple

score aggregation without considering the review

bias. Analyzing the review bias among different

reviewers is out of the scope of this paper.

Note that although PeerRead contains both paper

text and review text, we only used the paper text

because the purpose of this work is to predict the

aspect scores before review progress. Moreover,

because in the PeerRead (Kang et al., 2018) article,

the authors utilized the first 1,000 tokens because

the paper text was extremely long; and we used
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full paper text with our own text pre-processing in

the experiments, the results obtained by our exper-

iments and that reported in PeerRead are thus not

exactly comparable.

We remove the stop words and use stemming

to the words in the papers. The initial word em-

beddings in the models are pre-trained by fastText

(Bojanowski et al., 2016; Joulin et al., 2016) from

each dataset. The hyperparameters of the CNN

structures for the approaches refer to the common

ones used in exiting work (Shimura et al., 2018).

Table 2 shows the parameter settings of CNN and

XML-CNN, which are used as basic models of the

proposed multi-task approach in the paper.

The baselines are as follows.

Single task model: It is equivalent to the case

that SSEs of all auxiliary tasks are “000”. It uses

one network for one aspect score like the models

in (Dong and Zhang, 2016; Dong et al., 2017).

All-in-one (Ain1): It builds a single model that

the main task and m auxiliary tasks use same net-

work like the models in the PeerRead (Kang et al.,

2018). It is equivalent to treating the prediction of

all aspects as one task or as a multi-task that SSEs

of all auxiliary tasks are “111”.

Average performance of all explored Multi-

Task models (AMT): It is equivalent to the expec-

tation of the performance if randomly selecting a

multi-task model from all candidates.

We select the aspect of Clarity, which has most

test data as the main task for the evaluation in this

paper. The evaluation metric is the Root Mean

Square Error (RMSE). We first verify our approach

by using CNN (Kim, 2014) as the basic model. We

set m ∈ [1, 2, n − 1]. When m = n − 1, the

Nm = 85 is very huge. We use random search

method by exploring 1000 candidate models and

evaluate the mean performance of five times.

3.2 Experimental Results

We first verify whether our SSE method can select

a good shared structure for a given combination

of auxiliary tasks. Table 3.(a) shows the results in

the case of m = 1. It shows that our method suc-

cessfully builds a better model than the single task

model and the model in which all tasks completely

share with each other. The comparison result with

AMT shows our method can select a better shared

structure from all candidate structures.

Table 3.(b) shows the results in the case of

m = 2. Our method can select a better shared

Auxiliary Our (SSE) AMT Ain1
ori 0.801 (001) 0.931 1.027

cor 0.839 (111) 0.951 0.858

com 0.792 (100) 0.913 0.908

sub 0.782 (100) 0.916 0.981

imp 0.831 (100) 0.924 0.970

(a). m = 1

Auxiliaries Our (SSEs) AMT Ain1

ori,cor 0.881 (001,110) 0.957 1.036

ori,com 0.946 (111,101) 0.976 1.136

ori,sub 0.849 (001,101) 0.971 1.211

ori,imp 0.853 (001,100) 0.977 1.046

cor,com 0.996 (111,101) 0.965 1.226

cor,sub 0.761 (101,001) 0.967 1.143

cor,imp 0.799 (101,001) 0.965 1.189

com,sub 0.892 (001,001) 0.979 1.243

com,imp 0.732 (101,101) 0.981 0.918

sub,imp 0.932 (001,101) 0.969 1.087

(b). m = 2

Table 3: Results (Performance and SSEs) of shared

structure selection for each combination of auxiliary

tasks. Main task: “Clarity”; basic model: CNN;

dataset: ICLR; metric: RMSE; performance of single

task model: 0.849. Bold marks the best performance

(including performance of the single task model). Italic

marks the better one between “Our” and “AMT”.

m
Our

AMT
N

′

m
Selected (SSEs) RMSE

1 40 com (100) 0.792 0.927
2 640 ori, imp (101,101) 0.732 0.971

5 1000 All (5 times) 0.841 1.001

Table 4: Results of selecting both shared structures

and auxiliary tasks. Main task: “Clarity”; basic

model: CNN; dataset: ICLR; performance of single

task model: 0.849. Bold marks the best performance.

Italic marks the better one between “Our” and “AMT”.

structure from all candidate structures. But it can-

not always be better than the single task model this

time. It is because that the corresponding combi-

nations of auxiliaries are not proper. After using

our search strategy to select the combinations of

auxiliaries, in 2nd row of Table 4, our method can

select the auxiliaries and structures with better per-

formance. In addition, in Table 4, the performance

for m = 2 is better than m = 1, it shows that in-

creasing m is possible to improve the performance.

However, a large m results in a large Nm. In the

case of m = 5, although it is possible to obtain

a better model than m = 1 or 2 if exploring all

N5 = 85 candidate models, only exploring a sub-

set (N ′

5 = 1000) cannot reach better performance

even though N ′

5 has been larger than N2. With-

out a better search method, using a small m (e.g.,

m = 2) rather than a large m (e.g., m = 5, all
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Changed Settings m
Our

AMT Single
Nm Selected (SSEs) RMSE

Basic model: XML-CNN
1 40 cor (111) 0.939 1.144

0.976
2 640 ori,cor (100,100) 0.842 1.201

Main Task: Originality
1 40 sub (101) 0.725 1.032

1.004
2 640 com,imp(111,001) 0.887 1.017

Dataset: ACL
1 40 cor (101) 1.296 1.414

1.332
2 640 cor,sub (001,100) 1.237 1.455

Embedding: Wikipedia
1 40 com (101) 1.151 1.272

1.241
2 640 com,sub (101,001) 0.992 1.280

Table 5: Results of selecting both shared structures and auxiliary tasks, by changing four settings respectively

other aspects as auxiliaries) is recommended.

Furthermore, we also respectively change the

following four settings while keeping other set-

tings unchanged to verify our approach in different

conditions, (1). basic model: one of the SOTA

text classification methods XML-CNN (Liu et al.,

2017a); (2). main task: Originality, besides the

clarity aspect, we also show the results when an-

other aspect is the main task; (3). dataset: ACL.

(4). embedding: the pre-trained embeddings by

fastText are initialized by the embeddings trained

from Wikipedia data.

Table 5 shows that our approach can robustly

generate better results in different settings. Table

4 and 5 also show that the selected auxiliary tasks

and shared structures are diverse in different set-

tings. It would be better to automatically select

them rather than manually decide them. For the

underlying characteristics of review aspects in this

dataset, there is no apparent observation that one as-

pect is exactly related to the main aspect and must

be the auxiliary. Finally, from the results of “origi-

nality” aspect in Table 5, it shows that “substance”,

“comparison” and “impact” support “originality”,

the selected aspects by SSEs is reasonable and fit

human intuitions.

4 Conclusion

In this paper, we focus on the peer-review score pre-

diction for papers. We propose a multi-task shared

structure encoding approach which automatically

selects good shared network structures as well as

good auxiliary resources. There are some issues in

the future work, e.g., trying search methods such as

network architecture search and finding evidences

of the score predictions.
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