Multi-Task Reinforcement Learning:
Shaping and Feature Selection

Matthijs Snel and Shimon Whiteson

Intelligent Systems Lab Amsterdam (ISLA),
University of Amsterdam, 1090 GE Amsterdam, Netherlands
m.snel, s.a.whiteson@uva.nl

Abstract. Shaping functions can be used in multi-task reinforcement
learning (RL) to incorporate knowledge from previously experienced
source tasks to speed up learning on a new target task. Earlier work has
not clearly motivated choices for the shaping function. This paper dis-
cusses and empirically compares several alternatives, and demonstrates
that the most intuive one may not always be the best option. In addition,
we extend previous work on identifying good representations for the value
and shaping functions, and show that selecting the right representation
results in improved generalization over tasks.

1 Introduction

Transfer learning approaches to reinforcement learning (RL) aim to improve
performance on some target tasks by leveraging experience from some source
tasks. Clearly, the target tasks must be related to the source tasks in order
for transfer to be beneficial. In multi-task reinforcement learning (MTRL), this
relationship is formalized with a domain, a distribution over tasks from which
the source and target tasks are independently drawn [18]. For example, consider
a domain consisting of a fixed goal location in a room with obstacles, where each
obstacle configuration constitutes a different task. In this case, the agent could
exploit the fact that the goal is always in the same place to learn new tasks more
quickly.

Various approaches to MTRL exist, such as using the source tasks to form a
prior for Bayesian RL [7, 21] or transfering state abstractions [19] (see [18] for
an overview of transfer learning approaches for RL). In this paper, we consider a
different approach in which the source tasks are used to learn a shaping function
that guides learning in the target tasks. Shaping functions [10] augment a task’s
base reward function, which is often sparse, with additional artificial rewards. By
capturing prior knowledge about the task, manually designed shaping functions
have proven successful at speeding learning in single-task RL (e.g. [1, 3, 20]). In
MTRL, a shaping function can be learned automatically from the source tasks.
In the above example, an agent that observes that the goal location is fixed in
the source tasks could learn a shaping function that rewards approaching this
location.

This paper makes two contributions. First, it investigates several strategies
for learning shaping functions. Earlier work learned a shaping function based on
an approximation of the optimal value function V* or Q* for each source task
[14, 6, 17]. While these approaches are intuitive, they have never been explicitly
motivated. We discuss and compare several alternatives, and demonstrate that
approximating the optimal value function across tasks may not always be the
best option.

Second, this paper also considers what representation the shaping function
should employ. Konidaris and Barto observed that the best state features to
use for shaping can be different from those used to represent the value function
for each task. However, their experiments relied on manually selecting these
features. Snel and Whiteson proposed a definition of the relevance of a feature
for shaping and provided a method that uses this definition to automatically
construct a shaping function representation. However, while their experiments
validate their definition, they do not demonstrate that automatically finding the
right shaping features can improve performance. We extend this work by casting
the problem of learning a shaping function as a regression problem to which
feature selection methods from supervised learning can be applied. Using this
approach, we demonstrate that effective feature selection improves generalization
from the source tasks, which in turn improves the shaping function’s ability to
speed target task learning.

2 Background and Notation

An MDP is a tuple m = (Sp, Am, By P, Rim,y) with set of states Sp,, set of
actions A,,, and set of admissable action pairs B,, C S,, X A,,. A transition
from s to s’ given a has probability P,ffs' and results in expected reward Rf,‘jsl.
The expected ~-discounted return in m when taking a in s under policy m,, is
QT (s,a), and under the optimal policy 7%, it is Q% (s, a).

A domain d is a distribution Pr(m), where m € M, a set of MDPs. The
domain has state set Sg = |J,, Sm, action set A; = U,, A and admissable
action pairs By = ,, Bm, allowing for MDPs with different state and action
spaces.

This paper considers potential-based shaping functions of the form F3%, =
Y¥P(s',a’) — P(s,a), where & : S x A — R is a potential function that assigns
a measure of “desirability” of a state-action pair and s’ and o’ are the next
state and action. Ng et al. [10] showed that such shaping functions preserve the
optimal policy of the MDP and Wiewiora et al. [20] showed that using them is
equivalent to initializing the agent’s Q-table to &.

3 Approximating the Optimal Shaping Function

In this section, we formulate a definition of an optimal potential-based shaping
function and propose four different ways of approximating it. We focus on a
transfer learning scenario in which the agent aims to maximize the total reward
accrued while learning on a set of target tasks; this measure also implicitly

captures the time to reach a good policy. Furthermore, for simplicity we assume
a tabular learning algorithm L is employed on each target task. In this setting,
an optimal shaping function is one based on a potential function that maximizes
expected return across target tasks:

@7 = argmax E [R,,|P, L] = argmax Pr(m)E Yrem|®, L, (1)
: AR

where R, is the return accrued in task m and 7 ,, is the immediate reward
obtained on timestep t in task m. Note that the task should be seen as a hid-
den variable since the potential function does not take it as input. This means
that the best potential function may perform poorly in some tasks; however, on
average across tasks, it will do better than any other function.

Since shaping with & is equivalent to initializing the Q-table with it, solv-
ing (1) is equivalent to finding the best cross-task initialization of the Q-table.
Unfortunately, there is no obvious way to compute such a solution efficiently,
and search approaches quickly become impractical. Therefore, in the following
sections we discuss four strategies for efficiently approximating &7 .

3.1 Initialization Closest to Q7.

Intuitively, a good initialization of the Q-function is the one that is closest in
expectation to the optimal value function @), of the target task m the agent will
face. Since choosing @ is equivalent to choosing such an initialization, one way
to approximate @7 is by minimizing the expected mean squared error (EMSE)
across tasks:

EMSE(®) = Y Pr(m) Y Pr(s,alm)|Q},(s,a) — &(s,a) 2, (2)

meM s,a€EB,,

where Pr(s,a|lm) is a task-dependent weighting over state-action pairs that de-
termines how much each pair contributes to the error.

It is not immediately clear how to select Pr(s,a|m), though a minimal re-
quirement is that Pr(s,a|lm) = 0 for all (s,a) ¢ B,,. The simplest option is to
set Pr(s,alm) = 1/|B,,]| for all (s,a) € B,,. Since the EMSE(®) averages over
@7, , another option is to use the distribution induced by 7,. However, this may
be problematic as it represents only the distribution over (s,a) after learning.
There may be state-action pairs that are never visited under 7}, but that are
visited during learning and for which EMSE(®P) is thus important. The best
choice of Pr(s, alm) may thus be the distribution over (s,a) during learning. A
disadvantage is that this requires applying L to all m € M.

Given a choice of Pr(s, alm), we can find &,, = argming EMSE(®) by setting
the gradient of (2) to zero and solving, yielding:

b.(s,a) = Y Pr(mls,a)Q},(s,a) Vs,a€ By (3)
meM

The notation @ indicates an approximation to @7 . The subscript indicates that
this approximation averages over the optimal solution for each m. For (s,a) in
B4 but not in B,, for a given m, we define Q7,(s,a) = 0. In any case, these values
are already excluded from the average by the weighting Pr(m|s, a).

While approaches similar to (3) have been used successfully in previous work
[6, 14, 17], they are not guaranteed to be optimal. Since they minimize error
with respect to the optimal value function that results from learning, they may
be too optimistic during learning, which the shaping function is meant to guide.
Consequently, they may cause the agent to over-explore the target task, to the
detriment of total reward. Section 4 will provide experimental support for this
claim.

3.2 Initialization Closest to Qm

In some cases (e.g., when using function approximation or an on-policy algorithm
with a soft policy), the agent’s Q-function on a sournce or target task m will
never reach)7, , even after learning. When this occurs, it may be better to base
the potential function on an average over Qum, the value function to which the
learning algorithm converges. The derivation is the same as for the previous
section, yielding:

Pp(s) = Z Pr(ml|s, a)Qm (s, a) Vs,a € Bg. (4)
meM

3.3 Best Fixed Cross-Task Policy

While @Q is less optimistic than é*, it may still be too optimistic since it is
also based on minimizing error with respect to a value function after learning.
To address this issue, we can instead base the potential function on the optimal
cross-task value function. A cross-task value function describes the expected
return for a fixed cross-task policy, i.e., one that assigns the same probability to
a given state-action pair regardless of what task it is used in.

We define p* to be the policy that maximizes expected total reward given
the initial state distribution Pr(Sy = s):

S Pr(So = 5) 3 (s, a)Qh (s,) (5)
Qi(s,a) = 3 Pr(mls, a)Ql (s.a). (6)

meM

v

where V' is the domain-wide value of u, Pr(m|s,a) is a weighting term like in
section 3.1, and Q¥ (s, a) is the value of pair (s,a) in m under p. Unfortunately,
it seems that no Bellman-like equation can be derived from (6), so we are left
with a dependency on Q¥ (s, a). One consequence of this is that we are restricted
to policy search methods for trying to find p*.

Using these definitions, we can define a potential function based on the op-
timal cross-task value function:

B, (s,a) = Qg*(s, a) Vs,a € By. (7)

The key distinction between this potential function and both é@ and &, (s, a)
is that it averages expected return of a single fixed policy. In contrast, in @Q(s)

and &, (s,a) averages are computed over different policies for each task.

3.4 Averaging MDP

A potential drawback of the previous approaches is that solutions to all tasks
must be computed, or a policy search must be done to find p*. If the task models
are available, then we could take the average of these models according to Pr(m),
and compute the solution to this averaging MDP, defined as

R = Z Pr(mls, a) R (8)
meM

pses’ = Z Pr(ml|s,a) P . (9)
meM

It might not be immediately clear what the difference, if any, between the solu-
tion to the averaging MDP and for example equation 3 is. As section 4 will show,
it turns out that they are not necessarily the same, although there exist tasks for
which they are. Furthermore, the solution to the averaging MDP does usually
not correspond to p*, since the latter may not be deterministic (analogous to a
reactive policy for a POMDP).

The potential function equals the solution to the averaging MDP:

Dove(s,a) = Q" (s, a) Vs,a € By. (10)
Finally, it should be clear that in this case we should use Pr(s, alm) = 1/|B,,|.

4 Shaping Function Evaluation

This section empirically compares the four different potential functions pro-
posed in the previous sections to a baseline agent that does not use shaping. For
comparison purposes, we assume we have perfect knowledge of the domain and
compute each potential function using all tasks in the domain !. Evaluation oc-
curs using a sample of tasks from the same domain. This enables us to compare
the potential functions’ maximum potential, untainted by sampling error. In the
next sections, we discuss and evaluate cases in which only a sample of tasks from
the domain is available.

=
@
G %

(a) Example cliff task (b) Example task from sect. 6

Fig. 1: Example tasks from the domains used for evaluation in section 4 (a) and 6 (b).
In (b), line types solid, dashed, and dotted represents actions 1, 2, and 3; grey square
is terminal.

4.1 Domain

To illustrate a scenario in which @*, the average over optimal value functions, is
not the optimal potential function, we define a cliff domain based on the episodic
cliff-walking grid world from Sutton and Barto [16]. One task from this domain
is shown in Fig. la. The agent starts in S and needs to reach the goal location
G, while avoiding stepping into the cliff represented by the black area.

The domain consists of all permutations with the goal and start state in
opposite corners of the same row or column with a cliff between them (8 tasks
in total). Each task is a 4x4 grid world with deterministic actions N, E, S, W,
states (z,y), and a -1 step penalty. Falling down the cliff results in -1000 reward
and teleportation to the start state. The distribution over tasks is uniform.

4.2 Method

We compute each potential function according to the definitions given in sec-
tion 3. Since we cannot compute the cross-task policy pu* exactly, we use an
evolutionary algorithm (EA) to approximate it.

To illustrate how performance of a given ¢ depends on the learning algorithm,
we use two standard RL algorithms, Sarsa(0) and Q(0). Since for Q-Learning,
@Q(s) = &,(s), we use Sarsa’s solution for @Q(s) for both algorithms. Both
algorithms use an e-greedy policy with ¢ = 0.1, v = 1, and the learning rate
a = 1 for Q-Learning and o = 0.4 for Sarsa, maximizing the performance of
both algorithms for the given e.

We also run an additional set of experiments in which the agent is given a
“cliff sensor” that indicates the direction of the cliff (N, E, S, W) if the agent
is standing right next to it. Note that the addition of this sensor makes no
difference for learning a single task: it does not change the optimal policy, nor
does the number of states per task increase. However, the number of states in

! With perfect knowledge of the domain, a better approach would be to store the
optimal policies for each task and select the appropriate one while interacting with
the target task. However, our current approach serves to demonstrate the theoretical
advantages of each potential function type.

the domain does increase: one result of adding the sensor is that tasks no longer
have identical state spaces.

For each potential function, we report the mean total reward incurred by
sampling a task from the domain, running the agent for 500 episodes, and re-
peating this 100 times.

4.3 Results
Q-Learning Sarsa
D+ —19.77 £2.43| —512+ 130 Q-Learning Sarsa
Pavg —5.83+0.13 |—4.48 £ 0.11| |No shaping|—5.85+0.13|—3.96 = 0.11
No shaping| —5.86 £ 0.12 |—3.86 + 0.10| |P. —5.44 £0.12|-3.67+0.12
D, —5.13+£0.17 |-3.96 £ 0.11] |94 —4.75+£0.17(-3.37+£0.13
@5 —4.74+0.19 |—3.93 £ 0.11 (b) With sensor

(a) Without sensor
Table 1: Mean total reward for various shaping configurations and learning algorithms
on the cliff domain. All numbers x10*. Intervals represent the 95% confidence interval.

Table 1a shows the performance for the scenario without cliff sensor. On this
domain, @g performs very poorly; one reason for this may be that the EA did
not find p*, but a more likely one is that due to the structure of the domain,
even p* would incur a very low return for each state and thus lead to a very
pessimistic potential function.

As expected, Sarsa outperforms Q-Learning on this domain due to its on-
policy nature: because Q-Learning learns the optimal policy directly, it tends to
take the path right next to the cliff and is thus more likely to fall in. For both
algorithms, @avg does not outperform the baseline agent without shaping. For
Q-Learning, &, and @Q(s) do better than the baseline, with the latter doing

significantly better. Inspection of the learning curves shows that for QASQ(S)7 Q-
Learning initially incurs high average reward because it is driven away from
the cliff by the potential function (remember that this is the average Sarsa
solution to the domain), but thereafter a regress occurs as it returns to its risky
behavior. For Sarsa, there is no significant difference between the baseline and
either potential function. This is slightly surprising, since an initial gain would
be expected.

The situation changes when the cliff sensor is added (we did not retest the two
potential functions that did worse than the baseline), see table 1b. Although the
sensor does not help speed learning within a given task, across tasks it provides
consistent information. Whenever the grid sensor provides a signal, the agent
should not step in that direction. This information is reflected in the average of
the value functions and thus in the potential function (technically, what happens
is that the state-action space By is enlarged, and fewer state-action pairs are

shared between tasks). Under these circumstances, both &, and 43@ significantly
outperform baseline Sarsa, with the latter, again, doing best. The picture for
Q-Learning remains largely the same.

5 Shaping Function Representations

We now turn to the case where only a sample of N tasks is available, and our
goal is to maximize the expected total return while learning on a number of
target tasks, sampled from the same domain. That is, the goal is to find the @}
that satisfies (1), where M is the set of possible target tasks.

One option is to compute a & that exactly matches the sample data, by
letting the set M of tasks that we average over (see the definitions in section 3)
be the set of sample tasks. However, it is not desirable to do so since such an
overfit & will usually generalize poorly to unseen tasks and state-action pairs.
Generalization over state-action pairs requires a function approximator (note
that if the state-action space is the same for every task and sufficiently small, this
is not necessary). Generalization over tasks requires the identification of state-
action pair properties that result in a more consistent (low-variance) estimator
@ across tasks. For factored state spaces, this amounts to doing feature selection;
in the general case, it amounts to state abstraction (e.g., [8]).

While the connection with state abstraction methods is interesting, space
constraints preclude an in-depth discussion. Therefore, we will focus on factored
state spaces, since it is more intuitive and most problems fall in this category.
For example, in the cliff domain, which has factored states, the addition of
a cliff sensor increases the impact of the potential functions on performance.
This is because, whichever task the agent is in, the correlation between the cliff
sensor feature and expected return is consistent: whenever there is a cliff to the
north, large negative return follows when stepping north. The expected return
associated with position, on the other hand, varies greatly per task. Thus, the
cliff sensor seems like a good feature to use for Qﬁ, while position does not.

Both feature selection (FS) and state abstraction methods have been applied
to single-task RL, with especially F'S seeing a recent surge in interest [11, 12, 4, 9].
Although similar methods have also been applied to transfer learning, most of
these seek to reduce the state space of the target task, or find good representa-
tions for value functions or policies, by identifying features or abstractions that
are useful within tasks [5, 19, 15].

None of these approaches applies the insight that features that are not useful
for transferring a value function or policy might be useful in some other way, for
example for learning a shaping function. Although previous work on shaping in
MTRL exists that does apply this insight [6, 13], it circumvents the feature selec-
tion problem by manually designing a representation for the value and shaping
function. Thus, these papers do not make clear what makes a feature set useful
for the shaping function. Snel and Whiteson [14] use an information-theoretic
metric to define task-relevant features as features that provide information on
value within tasks, and domain-relevant features to be those that provide infor-
mation on value across tasks. The latter are the ones that should be used for

the shaping function. While experiments validate their definitions, the authors
do not demonstrate that automatically finding the right features for shaping can
improve generalization performance. Furthermore, their definition might not be
the best for a regression setting, since their metric does not take error magnitude
into account.

This paper casts the problem as a supervised regression problem to which
supervised learning and feature selection algorithms can be applied to identify
the relative importance of features. Various learning algorithms are suitable, but
for this paper we use a random forest [2] of regression trees. This suits our current
purposes nicely since it is a method with a proven track record that is easy to
interpret in terms of the original features, and offers ways to estimate relative
feature importance in terms of the impact on squared error of the estimate. In
the next section, we show how this method can be applied to find task- and
domain-relevant features and to find a potential function that generalizes well
over tasks.

6 Evaluation of Representations

Consider the episodic domain of which an example task is shown in figure 1b,
with a step penalty of -1. In addition to feature x;, which corresponds to the
state numbers shown, the agent perceives two additional features xzo and x3.
Feature x5 is the inverse of the square of the shortest distance to the goal, i.e.
in the figure, the states would be (1,0.25), (2, 1), (3,0.25). Feature x3 is a binary
feature that indicates whether the task is one in which it is undesirable to stay in
one place (1) or not (0); if 1, the agent receives a -10 penalty for self-transitions.
x3 is constant within a task, but may change from one task to the next. The goal
may be at either of the three states, and the effect of actions 1 and 2 (see figure
caption) may be reversed. Action 3 always results in either a self-transition or a
goal-transition (when the goal is next to the current state). This amounts to 12
possible tasks in total.

The domain is kept small in order to facilitate computing all potential func-
tion types exactly, and to illustrate the main points of the paper. Furthermore,
the features are chosen such that they represent three categories: the x; feature
is task relevant, only providing information within a task (because its relation to
return changes in each task); x3 is useless within a task, but useful to distinguish
classes of tasks, and therefore domain relevant. The x5 feature, finally, is both
task and domain relevant. The next subsection will justify and illustrate these
claims experimentally.

6.1 Feature Relevance

To compute feature relevance, we choose @*, the average over optimal value
functions, as the target potential function (experiments showed that for this
domain, it does not matter which potential function we choose for this). Thus,
we first solve N sample tasks, then use the N|S,,||A:m| = 9N state-action-value
examples to train a random forest as estimator of P, .

Feature relevance

Mean Total Return
0
S
—a—

-30

K
.

V-9

MR Y T S S S S A ‘ ‘ ‘

4 6 8 10 12 “ 16 18 Table TableFS Forest ForestFS
N Pntential Fiinetinn Tuna

5
I
2

Fig.2: Left: Feature relevance per sample size N, where a indicates action. Right:
Comparison of shaping functions without and with feature selection. Error bars indi-
cate 95% confidence interval. Horizontal solid (dashed) line is mean (95% confidence
interval) of a potential function with complete domain knowledge.

Fig. 2a shows how the estimated importance of each feature changes with
increasing sample size. For each tree in the forest, feature importance is the
weighted (by tree node probability) sum in changes in error for each split on the
feature. A change is computed as the difference between the error of the parent
node and the total error of the two children. This roughly means that the more
a feature contributes to reduction of the squared error in prediction of optimal
value, the more important it is. Each feature score then is averaged over all trees
in the forest. Final score is computed by repeating each measurement 10 times
for each sample size and taking the mean.

The changes in feature relevance with increasing sample size clearly demon-
strate the difference between task and domain relevance. For a single task (N =
1), 3 is irrelevant since it is constant within a task. The action is most relevant,
followed by x; and x5. As sample size increases, o and x3 gain in importance,
while x; loses importance. This pattern makes sense: while x; has strong cor-
relation with return in a single task, this correlation decreases for increasing
sample size (when all tasks in the domain are sampled perfectly uniformly, it is
0). Thus z; is task relevant, but not domain relevant. Feature x5 is both task
and domain relevant: it is relevant for N = 1, but remains so as sample size
increases. This makes sense since decreasing distance to the goal leads to higher
expected return both within and across tasks. x3 is only domain relevant: it can
be used to distinguish classes of tasks, but is not useful within a single task.
Finally, the importance of the action suggests a shaping function of the form
@(s,a); if actions did not provide any information, we might also use a potential
over just states, @(s).

6.2 Generalization

To asses the impact on generalization, we next compare four different potential
types: a table-based one without FS (table) and with FS (tableFS), and a random
forest without (forest) and with (forestF'S) FS. Before doing so, we computed all
potential types of section 3, assuming full knowledge of the domain. This should

provide an upper bound on the performance of the potential functions computed
based on samples. In this domain, it turns out there is no significant difference
between the potential types, so we use ®, in all experiments.

Performance of each potential function is assessed by computing the poten-
tial function on 4 samples (25% of the domain size), sampling a task from the
domain and recording the total reward incurred by a Q-Learning agent run for 10
episodes. Final performance is the average over 100 such trials. Fig. 2b displays
the results. The horizontal line indicates performance of the shaping function
computed assuming complete domain knowledge, with the dashed line indicat-
ing the 95% confidence interval. The table-based function without FS does worst;
performance is improved by deselecting the z; feature as per fig. 2a, indicating
that leaving this task-relevant feature out improves generalization across tasks.
The random forests significantly outperform the table-based functions, while
the performance difference between them is not significant. The advantage of
the forests over the tables is, as noted before, their capacity to also generalize
to unseen state-action pairs. The fact that FS does not have a great impact on
random forest performance stems from the fact that, by averaging over many
independently grown trees, this method has some inherent protection against
overfitting.

7 Conclusion

This paper makes two contributions to the multi-task RL (MTRL) literature.
First, while shaping functions have been used in MTRL before, this paper is
the first to provide an extensive discussion and empirical comparison of different
types of shaping functions that could be useful to improve target task perfor-
mance. While some previous work on shaping in MTRL has used the average
over optimal value functions of the source tasks as potential function [14, 6, 17],
our results demonstrate that this is not always the best option: the best po-
tential function highly depends on the domain and learning algorithm under
consideration.

Second, by casting the problem of finding a shaping function as a supervised
regression problem, we can automatically detect which features are relevant for
the shaping function, by measuring each feature’s influence on the squared error
in prediction of cross-task value. We further demonstrate that feature selection
improves generalization from the source tasks, which in turn improves the shap-
ing function’s ability to speed target task learning. Future work should extend
these results to domains with larger feature and state spaces, and assess the
impact of shaping functions on more advanced learning algorithms.

(11]

(12]
(13]
(14]
(15]
[16]
(17]
(18]
(19]
(20]

(21]

Bibliography

J. Asmuth, M. Littman, and R. Zinkov. Potential-based shaping in model-based reinforcement
learning. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 604—
609. The AAAI Press, 2008.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

S. Elfwing, E. Uchibe, K. Doya, and H. Christensen. Co-evolution of shaping: Rewards and
meta-parameters in reinforcement learning. Adaptive Behavior, 16(6):400-412, 2008.

H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating implicit
state-reward dependency via conditional mutual information. In ECML/PKDD, pages 474-489,
2010.

N. K. Jong and P. Stone. State abstraction discovery from irrelevant state variables. In IJCAI-
05, 2005.

G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforcement learning.
In Proc. 23rd International Conference on Machine Learning, pages 489—496, 2006.

A. Lazaric and M. Ghavamzadeh. Bayesian multi-task reinforcement learning. In ICML, pages
599-606, 2010.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps.
In Aritificial Intelligence and Mathematics, 2006.

S. Mahadevan. Representation discovery in sequential decision making. In AAAI, 2010.

A. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and
application to reward shaping. In Proc. 16th International Conference on Machine Learning,
1999.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of linear
models, linear value-function approximation, and feature selection for reinforcement learning.
In ICML, pages 752759, 2008.

M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization in
approximate linear programs for markov decision processes. In ICML, pages 871-878, 2010.
S. Singh, R. Lewis, and A. Barto. Where do rewards come from? In Proc. 31st Annual
Conference of the Cognitive Science Society, pages 2601-2606, 2009.

M. Snel and S. Whiteson. Multi-task evolutionary shaping without pre-specified representations.
In Genetic and Evolutionary Computation Conference (GECCO’10), 2010.

J. Sorg and S. Singh. Transfer via soft homomorphisms. In Proc. 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), pages 741-748, 2009.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.
F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution of mdps. In
Proc. 2003 IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA 2003), pages 1108-113, 2003.

M. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(1):1633-1685, 2009.

T. J. Walsh, L. Li, and M. L. Littman. Transferring state abstractions between mdps. In
ICML-06 Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

E. Wiewiora, G. Cottrell, and C. Elkan. Principled methods for advising reinforcement learning
agents. In Proc. 20th International Conference on Machine Learning, pages 792—799, 2003.
A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a hierarchical
bayesian approach. In ICML, pages 1015-1022, 2007.

