
Multi-task transfer learning deep convolutional neural network: 
Application to computer-aided diagnosis of breast cancer on 
mammograms

Ravi K Samala, Heang-Ping Chan, Lubomir M Hadjiiski, Mark A Helvie, Kenny H Cha, and 
Caleb D Richter
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-5842

Abstract

Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its 

application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the 

aims of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks 

through supervised training and increasing the generalization capabilities of DCNNs by 

simultaneously learning auxiliary tasks. We studied this approach in an important application: 

classification of malignant and benign breast masses. With IRB approval, digitized screen-film 

mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and 

additional SFMs were obtained from the Digital Database for Screening Mammography. The data 

set consisted of 2,242 views with 2,454 masses (1,057 malignant, 1,397 benign). In single-task 

transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, 

SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-

validation with the training set was used for training and parameter optimization. On the 

independent test set, the multitask transfer learning DCNN was found to have significantly 

(p=0.007) higher performance compared to the single-task transfer learning DCNN. This study 

demonstrates that multitask transfer learning may be an effective approach for training DCNN in 

medical imaging applications when training samples from a single modality are limited.
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1. INTRODUCTION

Transfer learning and multi-task learning are machine learning methods aiming at 

generalization to new classes, tasks or distributions.(Bengio, 2012; Deng and Yu, 2014) 

Transfer learning is a deep learning technique used to transfer the knowledge learned from 

the source tasks to the target tasks. Multitask learning is based on the assumption that 

learning interrelated concepts might force the classification methods to develop broad 

generalizations resulting in improved performance compared to single-task learning.

(Caruana, 1998) In this work, we propose an approach with the aim to interpret medical 
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imaging tasks through transfer learning while improving the generalization capabilities by 

learning auxiliary tasks.

In a trained deep convolutional neural network (DCNN), the first layer features are generic, 

in the sense that they are not task specific, and the last layer features are specific to the task 

with a gradual transition from generic to specific in the middle layers forming a hierarchical 

multilayer architecture.(Yosinski et al., 2014) In a transfer learning approach for DCNNs, 

the first few generic layers of a DCNN trained on source data are copied to a DCNN to be 

trained on the target data where source and target data can be from different imaging 

domains. The specific layers in the target DCNN are randomly initialized and fine-tuned to 

the target task.(Tajbakhsh et al., 2016; Shin et al., 2016) This approach in medical imaging is 

largely motivated by the lack of large data sets for training deep and wide convolutional 

neural networks (CNNs). Transfer learning also has the potential to help improve the 

convergence rate by speeding up the target learning tasks and improve the generalization 

capability that will lead to better independent test performance in comparison to training 

DCNNs without transfer learning.(Torrey and Shavlik, 2009). A review article by Pan and 

Yang on transfer learning gives a survey of different types of transfer learning approaches 

and its applications.(Pan and Yang, 2010)

Our goal of using transfer learning is to append the “knowledge” of vast number of features 

learned through non-medical images to the “interpretation” of medical images via fine-

tuning. This type of knowledge transfer is extensively studied in the machine learning field 

with many rapid new developments.(Pan and Yang, 2010; Fernando et al., 2017) In this 

study, we use inductive variation of transfer learning (Pan and Yang, 2010) where the source 

and the target tasks are different and completely labeled, i.e., ImageNet DCNN is trained to 

classify 1000 class daily life images while the target task is classification of masses on 

mammograms into two classes. Multi-task learning has been widely studied in machine 

learning with many studies showing increased performance compared to learning a single 

task.(Argyriou et al., 2007) This type of learning in CNNs is also sometimes referred to as 

parameter sharing (Bengio, 2012) or a feature-representation-transfer type of inductive 

transfer learning method.(Pan and Yang, 2010)

A recent article from Litjens et al (Litjens et al., 2017) provides an excellent review of the 

current trends in application of deep learning techniques to medical image analysis. In breast 

imaging, CNNs have been used in mammography for segmentation, detection, diagnosis of 

masses and breast density risk assessment. The first implementation of CNN for 

mammography was for classification of microcalcifications (Chan et al., 1993; Chan et al., 

1995b) and masses using CNN and texture features (Chan et al., 1994; Sahiner et al., 1996) 

in computer-aided detection systems for these breast lesions.

In this study, we investigated the training of DCNN for computer-aided classification of 

malignant and benign masses on mammograms with transfer learning from non-medical 

images while simultaneously learning multiple related tasks. Classification of masses from 

digitized-screen film mammography (SFM) and digital mammography (DM) from two 

sources were treated as multiple but similar tasks for transfer leaning of the DCNN. Our goal 

is to understand the process of adapting the deep and wide CNNs to medical imaging tasks 
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using available data, as well as the differences in multi-task and single-task transfer learning. 

N-fold cross-validation with the training set was used to study the effects of stochastic 

initializations and different levels of transfer learning, and the feature distributions at 

different layers of a trained DCNN were analyzed with a dimensionality reduction 

technique.

The manuscript is organized as follows: Section 2 describes the three heterogeneous 

mammography data sets from two sources for training and testing DCNN, the DCNN 

architecture, our approach to transfer learning, cross-validation in the training and validation 

data sets and sensitivity analysis of the selection of the best transfer network, Section 3 

describes the results for various analyses and the independent test results, Section 4 

discusses our observations from the results and conclusion.

2. MATERIALS AND METHODS

Fig. 1. gives an overview of our approach to train a DCNN using transfer learning for 

classification of masses on SFM. The experimental setup is broadly divided into three 

stages: (a) finding the representative N-fold split of the training set in transfer learning, (b) 

compare multi-task transfer learning to single-task transfer learning and finding the best N-

fold classifier and (c) verify the training/validation observations using an independent test 

set.

2. 1. Data sets

For this study, three sets of mammography data were collected from two different sources. A 

total of 1,655 SFM views and 310 DM views were collected with the approval of the 

Institutional Review Board (IRB) at the University of Michigan Health System (UM). 

Another 277 SFM views were collected from the Digital Database for Screening 

Mammography (DDSM).(Heath et al., 2001) The DM images were acquired with a GE 

Senographe 2000D FFDM system at a pixel size of 100 μm x 100 μm and 14 bits/pixel. The 

DM data was acquired at UM from the year 2001 to 2006. The patient’s age ranged from 24 

to 82 with a mean of 51.7 years. The mammograms for the SFM-UM set were digitized 

using a Lumiscan 85 laser scanner with an optical density range of 0–4.0. The SFM-DDSM 

set were acquired using a Lumisys 200 laser scanner with an optical density range of 0–3.6. 

Both sets of the SFM images were digitized at 12 bits/pixel. Table 1 and 2 summarize the 

data set information, the number of views and lesions in each image set and the distribution 

of malignant and benign cases. To simplify the notations in the following discussion, we will 

refer to the three types of data set, SFM-UM, SFM-DDSM, and DM-UM as SFM, DDSM, 

and DM, respectively. The 1,655 SFM views are divided by case into a training set of 748 

views and an independent test set of 907 views. For each mass on each view, a bounding box 

was marked by a Mammography Quality Standards Act (MQSA) qualified radiologist with 

over 30 years of experience in breast imaging, using all the available clinical information. 

The DM images were acquired in raw format at 14 bits/pixel and processed using simple 

inverse logarithmic transformation and scaled to 12 bits/pixel. (Burgess, 2004) All images 

were downsampled to 200 μm x 200 μm resolution by averaging adjacent N x N pixels, 

where N depends on the original image pixel size. A previously developed background 
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correction method was used to normalize the background gray levels that depended on the 

overlapping breast tissue and to reduce the variations due to x-ray exposure conditions. The 

background correction also had the advantage of normalizing the SFM and DM data sets. 

Detailed information of the method can be found elsewhere (Chan et al., 1995a; Sahiner et 

al., 1996), and our previous work (Samala et al., 2016) includes additional information on 

the results for background correction on SFM, DDSM, DM and digital breast tomosynthesis.

2. 2. Deep Convolutional Neural Networks

In this study, we used the DCNN network developed for the ImageNet LSVRC-2010 

(Krizhevsky et al., 2012) contest in which 1.2 million images were classified into 1000 

classes. The architecture won the ILSVRC-2012 competition with a top-5 error rate of 

15.3%. This architecture was extensively studied and used for many transfer learning tasks 

among other networks such as VGG, ZFnet, GoogLeNet and Microsoft ResNet.(Zeiler and 

Fergus, 2014; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016) Most of 

these networks other than ImageNet and ZFnet, are very deep with complex architecture; it 

is difficult to analyze the intermediate steps and will require long computation time to find 

the optimal approach for transfer learning. Hence we chose to use ImageNet for transfer 

learning to classify masses on mammograms. The CUDA-CONVNET2 software package 

(Krizhevsky et al., 2012) was trained on an NVIDIA Tesla K40 GPU.

The ImageNet DCNN contains five convolutional layers and three fully connected layers 

with rectified linear units, max-pooling layers and local response normalization layer, as 

shown in fig. 2. The structure characteristics are shown in Table 3. ImageNet was trained 

with an input region-of-interest (ROI) size of 256 x 256 pixels RGB channel while the 

extracted mammographic ROIs were 128 x 128-pixel gray-scale images. Using a 128 x 128 

input in place of a 256 x 256 input would not affect the convolution layer setup except for 

the fully connected layers due to the change in the number of connections between the last 

convolution layer and the first fully connected layer. We could therefore freeze the weights 

of the ImageNet at the first n convolution layers to carry the pre-trained features from these 

layers for transfer learning while re-training the remaining convolution layers and the fully 

connected layers even when the input ROI size was different from 256 x 256 pixels. The 128 

x 128 ROIs were repeated into the 3 channels and passed as input to the DCNN for transfer 

learning. Data augmentation and dropout methods were used to reduce overfitting. Each ROI 

was flipped and rotated four times to obtain eight augmented samples per ROI. For our 

malignant-versus-benign mass classification task in mammography, two additional fully 

connected layers (fc100 and fc2) were added to the ImageNet structure to drop down the 

1000-node fully connected layer to a 2-node softmax classifier. All the fully connected layer 

weights and biases were randomly initialized for retraining. Stochastic gradient descent was 

used with a batch size of 128 samples, momentum of 0.9, weight decay of 0.0005 and base 

learning rate of 0.001 exponentially reducing to 0.00004. Only the learning rate was adjusted 

heuristically for the mammography training while the rest of the parameters were set based 

on the work by Krizhevsky et al.(Krizhevsky et al., 2012) Since none of the transfer 

networks were trained from scratch, we observed that 200 iterations were sufficient for the 

training and validation to stabilize. The training epochs was therefore fixed at 200 iterations 

for all conditions.
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2. 3. Transfer Learning and Sensitivity Analysis

For transfer learning with the ImageNet (fig. 2), we first studied how many of the 

convolution layers should be frozen during training with mammography data. DCNN is a 

hierarchical multilayer architecture where the early layers are more generic and the deeper 

layers are more specific. The generic layers are typically used to extract local edge features 

which are similar to Gabor filters. When a pre-trained DCNN structure is fine-tuned with 

transfer learning, the layers have to be frozen consecutively in order so that any weight 

updates in the early layers that are not frozen can be propagated to the weight updates in 

deeper layers. Hence, for our current DCNN structure, we compared six transfer networks 

(C0, C1, C1–C2, C1–C3, C1–C4 and C1–C5), where Ci–Cj denotes a CNN retrained with the 

weights in the Ci to Cj convolution layers frozen, and C1 and C0 denotes a CNN retrained 

with only the weights in C1 or none (C0) of the convolution layers frozen, respectively. 

Transfer learning can result in an increase in performance (positive transfer) or decrease in 

performance (negative transfer) in the target task. Analyzing the performance difference 

while changing the depth at which the convolution layers are frozen will identify the best 

among the studied transfer networks for the target task and may indicate what levels of 

generic to specific features are useful. To assess the robustness of the DCNN network for 

classifying benign and malignant masses and the dependence on the stochastic initialization 

of the DCNN weights and biases, the experiments were repeated for multiple random seeds. 

For N-fold case-based cross validation described in Section 2.4, the experiments were 

repeated for two random seeds, and all the cross-validation experiments were repeated for 

ten random seeds. The mean and standard deviation of the performance measures were 

presented where applicable.

2. 4. N-fold case-based cross-validation

For N-fold cross-validation, the stratified partitioning can be performed manually or 

automatically using a random seed. We split the malignant and benign data sets separately 

by case into four partitions randomly ten times using ten random seeds. A partition of 

malignant cases and a partition of benign cases were combined to form a random partition so 

that the proportions of malignant and benign cases were kept similar in the four random 

partitions each time. The motivation behind analyzing different random splits is to select a 

split that is more uniform and representative of the entire data set used in this study. The 

observed trends from the four folds are then expected to be more consistent across the 

subsequent experiments.

2.5. Multi-task transfer learning

Multi-task learning has for a long time been associated with the assumption that multiple-

class associations can be used to constrain the learning towards a better solution and also is 

characterized as an innovative way to introduce knowledge into a high-capacity network.

(Intrator and Edelman, 1996) In multi-task transfer learning, the objective is to 

simultaneously learn multiple related tasks and exploit their similarity to improve the 

performance in comparison to a single-task transfer learning. For this study, our multiple 

tasks were classification of malignant and benign breast masses on three similar but different 

image sets (SFM, DDSM, and DM). The heterogeneous data from DDSM and DM are 
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added into each N-fold SFM data during transfer learning. Multi-task learning assumes that 

the learning tasks share features. In our study with the three image types, the domain is the 

same among the tasks and the target being classified is breast mass but acquired using 

different imaging technologies.

2. 6. Validation methods

To visualize the distribution of features extracted at different fully connected layers, we used 

the t-Distributed Stochastic Neighbor Embedding (t-SNE) method. It is an unsupervised 

dimensionality reduction technique that maps the distance relationships between 

multidimensional feature vectors to a two-dimensional rotation-invariant Euclidean space. 

Similar clusters are represented by closer points while dissimilar clusters are represented by 

distant points. It is particularly suited for visualizing high-dimensional correlated data that 

lie on several different low-dimensional manifolds (Maaten and Hinton, 2008). We used the 

t-SNE technique to visualize the high-dimensional features extracted from a fully connected 

layer of DCNN for mass images representing malignant and benign classes acquired with 

slightly different technologies or image devices.

The classification performance of DCNN in each cross-validation fold and in the 

independent test set were assessed using receiver operating characteristic (ROC) curves. A 

‘proper’ binormal model of the ROC analysis (Metz and Pan, 1999) implemented in 

ROCKIT version 1.B2 (August 2006) was used to fit the ROC curves and to evaluate the 

statistical significance difference between the ROC curves. Both view-based and lesion-

based ROC curves were calculated. For view-based analysis, each lesion on each view was 

counted as a single target, and for lesion-based analysis, each lesion on all views of each 

case was counted as a single target and the scores from all views of a given lesion were 

averaged to obtain a lesion-based score. In all analyses, the average score of the eight 

augmented samples from each ROI was used as the score of the ROI.

3. RESULTS

3. 1. N-fold split for training/validation

For the selection of a representative split for the N-fold case-based cross-validation, we used 

the SFM data with two transfer networks, C1 and C1–C3. For each random fold split, the 

DCNN training and validation was repeated for two stochastic initialized DCNNs. Fig. 3 

shows the two validation AUC values of each fold for the ten random splits. We chose the 

random split N2 from the graph as the representative split based on the relatively small 

variation across the four folds and the relatively high average AUC within each split. N2 was 

then used for all transfer networks in the subsequent analyses.

3. 2 Transfer learning

We investigated six transfer networks using cross-validation and sensitivity analysis. Cross-

validation for each of the transfer networks was performed for ten stochastic initializations 

using the chosen N-fold split of the SFM training set (N2). The mean and the standard 

deviation of the validation AUC estimated from the 10 repeated experiments for the six 

transfer networks are shown in fig. 4. The transfer network C1 consistently performed better 
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than other networks for three but worse for one of the four folds. The variation in the 

average AUC over the four folds obtained with C1 was the lowest among the six transfer 

networks.

3. 3. Multi-task transfer learning and Independent testing

For the results discussed above, single-task transfer learning with only the SFM training set 

was used for retraining the ImageNet DCNN. For the multi-task transfer learning, we used 

the SFM training set together with the DDSM and DM data sets for retraining. In the latter 

experiments, during the cross-validation, the SFM training set was split into N-folds but the 

DDSM and DM data were appended in its entirety to each fold. The premise to this variation 

is that our final goal is to test the performance on an independent SFM set only.

To visualize the geometric representation of the features extracted at different fully-

connected layers using the t-SNE technique, we varied the perplexity parameter, which is the 

approximate number of nearest neighbor masses associated with a given cluster, in the range 

of 10 to 100. Perplexity of value 30 was then chosen because consistent mapping of the 

features was observed between 30 and 100. We experimentally chose the t-SNE parameters 

including the learning rate (η), number of iterations, and momentum (α) to be 500, 5000 and 

0.5, respectively, and the t-SNE was repeated ten times with different random seeds. The 

mapping with the lowest value of the cost function was chosen for analysis. The average 

feature score from eight flipped-and-rotated augmented version of each ROI was used as the 

feature value of each sample for this analysis. Fig. 5 shows the t-SNE plots of the structure 

and embedding relationships between the malignant-vs-benign and SFM-vs-DM-vs-DDSM 

training samples at the four fully connected feature layers for the single-task and multi-task 

approaches. Note that all t-SNE plots are shown without axes because the values on the axes 

do not have any intrinsic meaning; the main application of the method is for visualization of 

high-dimensional feature spaces.

After the selection of CNN re-training scheme and feature analysis described above, the 

selected C1 transfer network was re-trained on the entire available training/validation data to 

maximize the training samples before final testing on the independent test set. The output of 

the DCNN softmax function was used as the decision variable to generate ROC curves. The 

view-based and lesion-based ROC curves for the independent test set are shown in fig. 6. To 

visualize the features in the DCNN, we used the deconvolutional network (Zeiler and 

Fergus, 2014) to project the features back to the input image space for the five convolutional 

layers as shown in fig. 7. The number of feature maps is equal to the number of convolution 

kernels in each layer but only six feature maps per layer are shown as examples for each 

mass.

4. DISCUSSION

We conducted studies to reduce biases among the folds in the N-fold cross-validation, assess 

different transfer networks for effective knowledge transfer of generic features from non-

medical images to medical images, append the additional heterogeneous data by taking 

advantage of multi-task learning to boost the classification performance, and verify the 

process with an independent test set. This work provides a deeper understanding of DCNN 
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transfer learning, examines the variabilities in different steps of the process and robustness 

of the observed results, and demonstrates the potential of multi-task learning to improve the 

generalizability.

We split the training data randomly by case 10 times for the 4-fold cross-validation to 

evaluate the dependence of the performance of the trained DCNN on the training subsets. As 

smaller variations and higher average AUC on the validation folds indicate that the 

characteristics of the cases among the partitions are more uniform, i.e., the training set (any 

combination of three of the folds) is more representative of the “population (validation set)” 

to which the trained DCNN will be applied. Although the 10-time splitting was only a small 

number among the infinite possibilities and it most likely did not include the optimum, the 

process illustrated how we selected a more balanced splitting (N2 in fig. 3) for the 

subsequent analyses.

For all the transfer networks, the convolution layers were copied from the ImageNet trained 

DCNN while the fully connected layers are randomly initialized. Transfer learning by 

freezing the first convolution layer alone (C1) provided the best training as shown in fig. 4. 

With the C0 transfer network, where all the convolutional layers were re-trained with 

mammography data, the variation of the four fold AUCs was higher than all other transfer 

networks.

In our previous work on computer-aided detection of masses in digital breast tomosynthesis 

(DBT), we showed that when a DCNN trained on true positive (TP) and false positive (FP) 

mass ROIs from SFM and DM was tested directly on ROIs from DBT without any transfer 

learning, it obtained an AUC of 0.81.(Samala et al., 2016) This result motivated us that 

similarities between mass representation using different mammography modalities can be 

exploited to append data sets for DCNN training. Through multi-task transfer learning, the 

DCNN can learn intermediate representations that are shared across tasks, thereby 

increasing the feature representation and resulting in improved performance. Fig. 6 shows 

that the independent test AUC for single- and multi-task transfer learning reached 0.78±0.02 

and 0.82±0.02, respectively, for lesion-based performance and 0.76±0.01 and 0.79±0.01, 

respectively, for view-based performance. The AUC difference between the two methods for 

lesion-based performance is statistically significant (p-value=0.007). Fig. 8 shows the 

misclassified ROIs, the top row are biopsy-proven benign lesions and the bottom row are 

biopsy-proven malignant lesions.

We used the t-SNE technique to reduce the feature space from as large as 4096 to 100 

dimensions to a two-dimensional map as shown in fig. 5. The t-SNE embedding maps reveal 

some interesting properties regarding the DCNN features for different transfer networks and 

across heterogeneous data: (a) From the multi-task embedding, the features for each class 

(malignant or benign) from each type of images (SFM, DM, DDSM) clustered closely but 

were relatively separated from the other types, indicating the three types of images have 

different characteristics. (b) The clusters of the same class from the three types of images 

moved closer and closer as they were extracted further along the fully connected layers, 

indicating that the features converged for the more specific malignant and benign 

classification task, regardless of the image type. (c) The converging trend of the three types 
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of image features indicates that the wider feature representation from the multi-task 

approach regularized the DCNN training to accommodate variations in the input images, 

potentially contributing to the generalizability of the DCNN for the mass classification task. 

The independent test results in fig. 6 reveal a boost in the discriminatory power with the 

multi-task transfer learning. (d) Considering that the t-SNE maps are rotation-invariant, the 

shape and separation for the malignant and benign classes of the SFM set on the maps 

between the single- and multi-task are relatively similar at all fully connected layers. (e) 

While the features from the SFM and DDSM cases show differences, they are closer to each 

other than to the DM cases, suggesting the differences between the digitized screen-film and 

digital image acquisition systems.

The feature maps visualized with the deconvolutional network from the trained DCNN in the 

mass classification process is shown in fig. 7. The feature maps from the malignant and 

benign mass examples indicate that: (a) the features extracted between the first and the last 

convolutional layer vary from generic to more specific as the layer goes deeper, (b) the mass 

spiculations are highlighted in the malignant mass while the lesion boundary is enhanced in 

the benign mass, and (c) the image pattern in the region surrounding the malignant mass 

appears to be more complex than that surrounding the benign mass in most of the feature 

maps.

There are limitations in this study. First, we did not compare different combinations of 

layers, nodes and hyperparameters in the DCNN structure. Because of the numerous 

combinations that can be studied, the computation time and resource are prohibitive at this 

time. However, our study has demonstrated the potential of multi-task transfer learning that 

it may be a useful approach for improving the generalizability of the trained DCNN when 

the data for a given task are limited while data from other related tasks are available. Second, 

we chose to use ImageNet in this study, it is not known if other DCNNs such as VGG, 

GoogLeNet may exhibit similar flexibility in multi-task transfer learning. The evaluation of 

other larger DCNN structures will require larger data sets for transfer learning using either 

the single-task or multi-task approaches. Third, we did not compare the performance from 

the DCNN with those from conventional machine learning techniques consisting of feature 

extraction, feature selection and classification steps because our focus of this study was to 

study the DCNN training process. Such comparative studies are of interest and will be 

pursued in the future. Fourth, our DM data set was small so that we could only use SFM as 

an independent test set. In addition, the DM set was collected with a single vendor DM 

system. Nevertheless, our study with the available data sets has accomplished the purpose of 

demonstrating the potential of multi-task transfer learning in medical imaging. We plan to 

extend the study to include DMs from different vendors as additional tasks and further 

compare the test performances on DM sets when such data sets become available.

5. CONCLUSION

A multi-task transfer learning DCNN was formulated to translate the ‘knowledge’ learned 

from non-medical images to medical diagnostic tasks through supervised training and to 

increase the generalization capabilities of DCNNs by simultaneously learning auxiliary 

tasks. We compared the multitask approach to traditional single-task transfer learning 
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method for classification of malignant and benign masses in mammography. With transfer 

learning for DCNNs, multi-task supervised learning achieved better generalization to 

unknown cases than single-task learning. The proposed multi-task transfer learning DCNN 

framework shows the strong potential that the lesion classification task in mammography 

can be extended to similar task in digital breast tomosynthesis while utilizing auxiliary tasks 

from large SFM and DM data sets.
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Fig. 1. 

Overview of our process to train DCNN using transfer learning from digitized screen-film 

mammograms (SFM) from two sources (UM and DDSM) and digital mammograms (DM).
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Fig. 2. 

ImageNet DCNN structure used for transfer learning with the addition of two fully 

connected layers (fc100 and fc2) to be used with the mammography data. The six transfer 

networks are indicated at the five convolution layers. A transfer network re-trained with Ci 

to Cj convolution layers frozen is denoted by Ci-Cj. C0 denotes that none of the layers was 

frozen.
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Fig. 3. 

Variation of the validation AUCs among 10 random splits for the four-fold case-based cross-

validation and repeated DCNN training using two random initializations. (a) The ImageNet 

structure is frozen for C1 layer only. (b) The ImageNet structure is frozen for C1–C3 layers.
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Fig. 4. 

Performance measure of each validation fold in the N-fold case-based cross-validation 

across the six transfer networks studied.
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Fig. 5. 

2D t-SNE maps of the training samples obtained from the single-task and multi-task 

approaches for transfer networks at four fully connected layers. The legend indicates 

malignant and benign classes and SFM, DM, and DDSM data sets.

Samala et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 

ROC curves for the independent test set using the two selected C1 transfer networks: STTL: 

single-task transfer learning, MTTL: multi-task transfer learning. The difference in the 

AUCs was statistically significant between the two lesion-based curves (p-value = 0.007) 

and between the two view-based curves (p-value = 0.008).

Samala et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Samala et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 

Features maps from the deconvolutional network to visualize the features of DCNN trained 

on mammography data when projected back to the input image. Six feature maps were 

selected for each convolutional layer. The corresponding feature maps for the malignant (M) 

and benign (B) mass are shown in the upper and lower rows in each layer.
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Fig. 8. 

Misclassified ROIs from the independent test set. Top row lesions are biopsy-proven benign 

and bottom row lesions are biopsy-proven malignant. Each ROI is 128 x 128 pixels in size.
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Table 3

DCNN structure showing the number of weights, biases and parameters.

Layer Number of nodes Filter size

C1 64 11 × 11

C2 192 5 × 5

C3 384 3 × 3

C4 256 3 × 3

C5 256 3 × 3

F1 4096

F2 4096

F3 1000

F4 100

F5 2

Total 10,446
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