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Abstract

Starting from a Boltzmann kinetic model for a gas mixture with bimolecular
chemical reaction, hydrodynamic equations at Euler level are deduced by a consis-
tent hydrodynamic limit in the presence of resonance, namely when the fast process
driving evolution is constituted by elastic scattering between particles of the same
species. The structure of the resulting multi–temperature and multi–velocity fluid–
dynamic description is briefly commented on, and some results in closed analytical
form are given for the special case of Maxwellian collision kernel.

1 Introduction

It is well known that, in thermally non–equilibrium conditions, when vibrational relax-
ation and chemical reactions proceed at the gas–dynamic time scale, a one–temperature
gas flow description is not valid, and more rigorous models of kinetics, gas dynamics and
transport properties are required [1]. On the other hand, a multi–temperature approach
naturally arises when atomic masses of the constituents are different, or in plasmas at
high temperature [2], as well as in several problems of aerothermodynamics, like in the
flow field around hypersonic vehicles at high altitude [3]. Even though multi–temperature
models entail practical difficulties with measuring the temperature of each component, the
macroscopic theory of homogeneous mixtures is well developed in the framework of ratio-
nal thermodynamics [4] on the assumption that each constituent obeys the same balance
laws as a single fluid. In this frame, several papers have been published in recent years,
and we may quote for instance, without being exhaustive, [5, 6]. Indeed, the matter seems
to attract a broad and intensive attention nowadays, and, as usual, a consistent formal
derivation as suitable hydrodynamic limit of a kinetic theory description would be highly
desirable [7]. The task is quite uneasy if one wants to include into the picture an essential
ingredient like the occurrence of chemical reactions. Such types of interactions involve a
rather heavy machinery at the Boltzmann level [8], one can see for instance the kinetic
models proposed in [9] and [10], where the internal molecular structure was taken into ac-
count by a discrete or continuous energy variable. The hydrodynamic limit following from
the reactive Boltzmann equations depends crucially, of course, on the fast processes driv-
ing the evolution, whose collision operators are labeled, upon scaling, by an inverse small
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parameter (typically, a Knudsen number). In [11] it was shown that, when the dominant
operator is made up by all mechanical encounters preserving kinetic energy, including
possible “resonant” collisions with change of internal state within the same species, as
allowed by some form of degeneracy in the energy levels, hydrodynamic variables (apart
from the usual mass densities) turn out to be given by a unique mass velocity and a
unique translational temperature for the mixture, plus an internal (typically, vibrational)
temperature for each species. The hydrodynamic limit is thus of multi–temperature type,
and seems to fit formulae of common practical use in physics [11]. The slow gas–dynamic
relaxation will lead eventually to equalization of all temperatures, and to a mass action
law for chemical equilibrium. A more detailed fluid–dynamic description could involve
the presence of two temperatures for each species (one translational and one internal) as
well as of single mass velocities. It is just this formidable task that we start addressing
here, where, to begin with, we shall confine ourselves to the simplifying assumption that
all species are mono–atomic like (endowed with only translational degrees of freedom). It
is assumed that fast resonant collisions driving the overall evolution are constituted by
elastic collisions between particles of the same species. Still for simplicity, a single re-
versible bimolecular reaction A1+A2 � A3+A4 is dealt with, and only four participating
species are considered. The Euler equations for the 20 hydrodynamic variables (densities,
velocities, and temperatures of each component) are derived and briefly discussed. Closed
form analytical expressions for the slow collision contributions in the balance equations
may be achieved under additional assumptions, like Maxwell collision model or negligible
heat of reaction.

2 Kinetic equations

The starting point of our analysis is the set of integro–differential Boltzmann–like equa-
tions governing the distribution functions of the four participating species, reading, in our
assumptions [12],

∂fi
∂t

+ v · ∇xfi =
1

ε
Iii[fi, fi] +

∑
j ̸=i

Iij[fi, fj] + Ji[f˜] (1)

where ∫
φi(v) Iij[fi, fj](v) d3v =

∫∫∫
Bij(g, n̂ · n̂′)

×
[
φi(vij)− φi(v)

]
fi(v) fj(w) d3v d3w d2n̂

′
(2)
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is the elastic scattering operator (in weak form) for (i, j) encounters, and∫
φi(v) Ji[f˜](v) d3v =

∫∫∫
φi(v

ij
hk)U(g2 − δijhk)

×
(
µij

µhk

)3/2
(
1 +

µij

µhk

δhkij
g2

)1/2

Bhk
ij (g

ij
hk, n̂ · n̂′)

× fh(v) fk(w) d3v d3w d2n̂
′ −
∫∫∫

φi(v)U(g2 − δhkij )

×Bhk
ij (g, n̂ · n̂′)fi(v) fj(w) d3v d3w d2n̂

′

(3)

is the reactive (weak) collision integral for species i, where the admissible sequences
(i, j, h, k) are (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). One can make reference to
only one of the reactive collision kernels (relative speed times cross sections), by virtue of
the micro–reversibility condition linking together Bhk

ij and Bij
hk, while Bij = Bij

ij . We set
g = v −w = g n̂, with g = |g|, for the relative velocity, rij = mi/(mi +mj) for the mass
ratios, and µij = rij mj for the reduced masses.

Post–collision velocities in (2) and (3) read as

vij=rij v + rji (w + g n̂′), vhk
ij =rij v + rji w + rkh g

hk
ij n̂ (4)

and analogous expressions hold for wij and whk
ij , where

ghkij =

[
µij

µhk

(
g2−δhkij

)]1/2
, δhkij = 2

Eh+Ek−Ei−Ej

µij

(5)

with the real number δhkij measuring the transfer of chemical energy into kinetic energy,
and, according to whether the collision (i, j) → (h, k) is endothermic or exothermic, is
positive or negative. In the former case, the unit step function U in (3) actually imposes
a threshold for the reaction to occur. Possible activation energies are accounted for by
the reactive kernels B. We may always conventionally assume that ∆E = E3+E4−E1−
E2 ≥ 0. Finally, the small positive parameter ε in (1) stands for the proper Knudsen
number relevant to the considered problem and represents, for instance, the ratio of the
mean scattering collision time for equal species, to any of the other characteristic times,
supposed all of the same order of magnitude, and much longer than the previous one. We
recall from [9] that collision equilibria for (1) are provided by the seven parameter family
of Maxwellians

fM
i (v) = ni

( mi

2πT

)3/2
exp

[
− mi

2T
(v − u)2

]
(6)

at a common mass velocity u and temperature T , and with number densities related by
the classical mass action law

n1 n2

n3 n4

=

(
µ12

µ34

)3/2

e∆E/T . (7)

Entropy dissipation and stability of equilibria are quantified by the pertinent Lyapunov
functional

H[f˜] =
4∑

i=1

∫
fi log

(
fi
m3

i

)
d3v . (8)
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Macroscopic fields for each species are defined in the standard way, and include den-
sities ni, mean velocities ui, species temperatures Ti, which make up, as usual, the
macroscopic observables for the gas as a whole, namely n, ρ, u, T , while the internal
energy density is the sum of the thermal component 3

2
nT with the chemical contribution∑4

i=1Eini.
We are interested in the hydrodynamic closure of (1) in the asymptotic limit when

ε → 0, and in particular we shall confine ourselves here to the zero order approximation
(Euler level). We are led thus to the investigation of the dominant operator driving
the process (1), defined by the vector (I11, I22, I33, I44). For each of the Iii the standard
elastic single species analysis applies, and we end up with a vector of dominant collision
equilibria, a 20–parameter family of local Maxwellians

Mi(v) = ni

(
mi

2πTi

)3/2

exp

[
− mi

2Ti

(v − ui)
2

]
(9)

with free parameters ni, ui, Ti. This fast part of the collision operator preserves then mass,
momentum, and kinetic energy within each single species. Taking weak forms of (1) rele-
vant to such collision invariants, we get a set of 20 macroscopic balance equations for the
physical fields, including collision contributions arising from the slow part of the collision
operator, since that part prescribes transfer of momentum and kinetic energy from one
species to another, as well as transfer of mass among species, and exchange of energy
between its kinetic and chemical form. In conclusion, the 20 macroscopic “conservation”
(for the fast operator) equations read as

∂ni

∂t
+∇x · (ni ui) = Qch

i

∂

∂t
(ρiui) +∇x ·

(
ρiui ⊗ ui

)
+∇x ·Pi =

∑
j ̸=i

Rme
ij +Rch

i

∂

∂t

(
1

2
ρiu

2
i +

3

2
niTi

)
+∇x ·

[(
1

2
ρiu

2
i +

3

2
niTi

)
ui

+Pi · ui + qi

]
=
∑
j ̸=i

Sme
ij + Sch

i

(10)

with Pi and qi for single–species pressure tensor and heat flux, and with mechanical and
chemical exchange rates

Rme
ij =

∫
miv Iij d3v, Sme

ij =

∫
1

2
miv

2 Iij d3v,

Qch
i =

∫
Jid3v, Rch

i =

∫
mivJid3v, Sch

i =

∫
1

2
miv

2Jid3v

(11)

It is easy to see that, as physically clear,

Qch
1 = Qch

2 = −Qch
3 = −Qch

4 ≡ Qch . (12)
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Moreover, due to momentum conservation in each chemical event, we have

Rch
1 +Rch

2 +Rch
3 +Rch

4 = 0 . (13)

Finally, due to total energy conservation in each reactive encounter, we get

Sch
1 + Sch

2 + Sch
3 + Sch

4 = −Qch ∆E . (14)

In view of the angular integrations involved in (2) and (3) it proves convenient to introduce
the angle integrated collision kernels

Bk
ij(g) =

∫
S2

(n̂ · n̂′)kBij(g, n̂ · n̂′) d2n̂
′ , k = 0, 1,

B̄ij(g) = B0
ij(g)−B1

ij(g)

(15)

with B0
ij > 0, |B1

ij| < B0
ij (we exclude the degenerate cases of delta–like forward or

backward scattering), and then B̄ij > 0. Analogously

Bk(g) =

∫
S2

(n̂ · n̂′)kB34
12(g, n̂ · n̂′) d2n̂

′ , k = 0, 1 (16)

with B0 > 0 and |B1| < B0. In particular we may write

Qch =

(
µ12

µ34

)3/2 ∫∫
B0(g

12
34)

(
1 +

2∆E

µ34 g2

)1/2

× f3(v) f4(w) d3v d3w

−
∫∫

B0(g) U

(
g2 − 2∆E

µ12

)
f1(v) f2(w) d3v d3w .

(17)

The set (10) is of course exact but not closed, involving higher order moments and several
complicated integrals of the unknown distribution functions. The lowest order fluid–
dynamic closure will be discussed in the next Section, though the task of casting all
transfer rates in closed analytical form seems hopeless “a priori” for general collision ker-
nels. Notice that a proper use of (12), (13), (14) into (10) would allow to recover the seven
exact conservation equations holding for the present problem, representing conservation
of mass in the independent pairs (1, 3), (1, 4), (2, 4), conservation of momentum in the
mixture, and conservation of total (mechanical plus chemical) energy in the mixture.

3 Fluid–dynamic Euler equations

The sought hydrodynamic closure is achieved by simply substituting into the set (10)
the fast collision equilibrium (9) for the actual distribution functions. We get at once
Pi = niTi I where I is the identity tensor, and qi = 0 (non–viscous and non–conductive
fluid), and moreover also collision contributions Q, R, S become, in principle, some
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functions Q̂, R̂, Ŝ of the 20 macroscopic fields ni, ui, Ti. We rewrite our Euler equations
as

∂ni

∂t
+∇x · (ni ui) = λi Q̂

ch

∂

∂t
(ρiui) +∇x ·

(
ρiui ⊗ ui

)
+∇x(niTi)=

∑
j ̸=i

R̂me
ij + R̂ch

i

∂

∂t

(
1

2
ρi u

2
i +

3

2
niTi

)
+∇x ·

[(
1

2
ρi u

2
i

+
5

2
niTi

)
ui

]
=
∑
j ̸=i

Ŝme
ij + Ŝch

i

(18)

where λi is the i–th stoichiometric coefficient (λ1 = λ2 = 1 = −λ3 = −λ4). The product
of the two Maxwellians at different velocities and temperatures may be cast as

Mi(v)Mj(w) = ni nj

(
mi

2πTi

)3/2(
mj

2πTj

)3/2

× exp
[
−αij

(
Gij + γij g + δij

)2]
e−βij [g−(ui−uj)]

2

(19)

with Gij = rijv + rjiw, and

αij =
mi

2Ti

+
mj

2Tj

, βij =

(
2Ti

mi

+
2Tj

mj

)−1

γij =
µij

αij

(
1

2Ti

− 1

2Tj

)
, δij =

1

αij

(
mi

2Ti

ui +
mj

2Tj

uj

)
.

(20)

Due to this heavy, but convenient, form, integrations in all collision contributions may be
performed in terms of center of mass and relative velocities. It is easy to see first that
R̂me

ij vanishes when ui = uj, and that, for ui ̸= uj, it is parallel to the vector ui − uj. It
proves thus convenient introducing Gaussian averaged collision kernels (ui ̸= uj)

⟨B̄ij⟩ =

∫
B̄ij(g)g · (ui − uj) e

−βij [g−(ui−uj)]
2

d3g∫
g · (ui − uj) e

−βij [g−(ui−uj)]
2

d3g
(21)

so that one ends up with the convenient representation

R̂me
ij (ni,ui, Ti, nj,uj, Tj) = −µij ninj⟨B̄ij⟩(ui − uj) (22)

where ⟨B̄ij⟩ is a function of |ui − uj|, Ti, and Tj. The simplest collision model, as usual
in kinetic theory, is provided by the Maxwell molecules, in which case B̄ij = constant =
⟨B̄ij⟩, and indeed (22) would follow straightforwardly from its definition. It is remarkable

that in this assumption the result (22) is exact, and not only asymptotic (i.e., Rme
ij = R̂me

ij ),
since it may be deduced without any need of replacing the actual distribution functions fi
by the corresponding local Maxwellians Mi. Just as an example, we report here on the
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more realistic model of rigid spheres, B̄ij(g) = ηij g, for which a lengthy but standard
manipulation yields

⟨B̄ij⟩ =
ηij

(π βij)1/2

[(
β
1/2
ij |ui − uj|+

1

β
1/2
ij |ui − uj|

− 1

4 β
3/2
ij |ui − uj|3

)
√
π erf

(
β
1/2
ij |ui − uj|

)
+

(
1 +

1

2 βij|ui − uj|2

)
e−βij |ui−uj |2

]
(23)

where erf denotes error function, and with limiting trends

⟨B̄ij⟩ =
8

3
√
π

ηij

β
1/2
ij

+O(|ui − uj|2) for |ui − uj| → 0 ,

⟨B̄ij⟩ ∼ ηij|ui − uj| for |ui − uj| → ∞ .

(24)

For the mechanical exchange rate of kinetic energy, resorting again to (19), and skipping
intermediate details, another, differently averaged, collision kernel

⟨⟨B̄ij⟩⟩ =

∫
B̄ij(g) g

2 e−βij [g−(ui−uj)]
2

d3g∫
g2 e−βij [g−(ui−uj)]

2

d3g
(25)

shows up, depending again, in general, on |ui − uj|, Ti, and Tj. In conclusion, we may
write

Ŝme
ij (ni,ui, Ti, nj,uj, Tj) = −µij ninj

{[
⟨B̄ij⟩δij

−γij⟨⟨B̄ij⟩⟩(ui − uj)
]
· (ui − uj) + ⟨⟨B̄ij⟩⟩

3(Ti − Tj)

mi +mj

} (26)

vanishing when both ui = uj and Ti = Tj. Once more, a great simplification occurs for
Maxwell molecules, since ⟨B̄ij⟩ = ⟨⟨B̄ij⟩⟩ = B̄ij = constant, so that

Ŝme
ij = −µij ninj B̄ij

[(
rij ui + rji uj

)
· (ui − uj)

+
3(Ti − Tj)

mi +mj

] (27)

and again this expression turns out to be the exact one in such a frame, no need of
approximating fi by Mi.

At this stage, all mechanical (slow) collision contributions in the Euler equations (18)
for the collision dominated resonant regime are known in principle (for given collision
kernels B) via equations (22) and (26) in terms of the chosen observable fields ni, ui, Ti.
Analogous steps for the chemical collision contributions might be performed in similar
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way, with severe additional technical difficulties, as apparent from equations (3) and (17).
Even upon introducing suitable averages for the chemical collision kernels, the remaining
integrals turn out not to be amenable to any of the most common transcendental or special
functions. The simplest integration concerns the loss part of Q̂ch, which, after some
manipulations, even under Maxwell molecule assumption (B0(g) = constant), takes a
quite huge expression (not given here for brevity) involving Gaussians and error functions
with arguments |u1 − u2| ±

√
2∆E/µ12. The situation becomes worse when trying to

calculate Q̂ch
+ . One realizes that only under quite restrictive assumptions a reasonable

analytical form can be achieved. For instance, for Maxwell–like molecules and all equal
velocities (multi–temperature Euler gas with no diffusion) one can write

Q̂ch(n˜, T˜) = 2√
π
B0

[
n3n4

(
µ12

µ34

)3/2

e
∆E

r43T3+r34T4

×Γ

(
3

2
,

∆E

r43T3 + r34T4

)
− n1n2 Γ

(
3

2
,

∆E

r21T1 + r12T2

)] (28)

where Γ denotes an incomplete Euler gamma function.
For these reasons, in order to get some insight into the Euler description of the reactive

events, and to test the reliability of the set (18) as a fluid–dynamic model of the actual
evolution problem, we prefer to restrict ourselves here to a chemical collision model as
simple as possible, allowing for an analytical explicit expression (still uneasy, but at least
manageable) for the collision contributions. We hope to be able to undertake, in future
investigations, a more systematic (and, necessarily, computer aided) campaign for more
realistic interaction laws. The chemical collision model adopted here is in some sense
equivalent to the Maxwellian models for mechanical encounters. It consists in taking
Maxwell–like collision kernel B34

12 depending only on n̂ ·n̂′, so that its angular moments are
constant, and in assuming negligible heat of reaction, so that we may reasonably suppose
∆E = 0. Due to micro–reversibility [12], this implies that also the reverse kernel B12

34 is
of Maxwell type. Under the above restriction we shall be able to cast all chemical source
contributions in closed analytical form, and, moreover, such contributions will be exact,
namely holding for the actual distribution functions fi and not only for their asymptotic
limits Mi. In other words, the space homogeneous version of the balance equations (18)
is a closed exact set of 20 ordinary differential equations for 20 hydrodynamic variables
ni, ui, Ti.

In the frame of the chemical Maxwellian model described above, the chemical exchange
rates in the continuity equations are simply given by

Q̂ch
i = λi Q̂

ch = λi B0

[(
µ12

µ34

)3/2

n3n4 − n1n2

]

= B0

[(
µ12

µ34

) 3
4
(1+λi)

nhnk −
(
µ12

µ34

) 3
4
(1−λi)

ninj

] (29)

where (i, j, h, k) = (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). Taking advantage of the
simpler expressions of post–collision velocities, also the first and second order power mo-
ments of the chemical collision operators are amenable to the first and second order
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moments of the distribution functions, and thus also the quantities R̂ch
i and Ŝch

i can be
calculated explicitly. Skipping technical details, the result reads as

R̂ch
i = B0

(
µ12

µ34

) 3
4
(1+λi)

nhnkrij(mhuh +mkuk)

−B0

(
µ12

µ34

) 3
4
(1−λi)

ninjmiui

+B1

(
µ12

µ34

) 3+5λi
4

nhnkµhk(uh − uk)

(30)

fulfilling (13), and

Ŝch
i = B0

(
µ12

µ34

) 3
4
(1+λi)

nhnk

[
1

2
mi(rhkuh + rkhuk)

2

+
1

2
rjiµhk(uh − uk)

2 +
3

2
rij(rhkTh + rkhTk)

+
3

2
rji(rkhTh + rhkTk)

]
−B0

(
µ12

µ34

) 3
4
(1−λi)

ninj

×
(
1

2
miu

2
i +

3

2
Ti

)
+B1

(
µ12

µ34

) 3+5λi
4

nhnkµhk

×
[
(rhkuh + rkhuk) · (uh − uk) +

3

mh +mk

(Th − Tk)

]

(31)

fulfilling (14), with ∆E = 0.
It can be noticed that the full collision equilibrium (6), (7) implies now all equal

velocities and temperatures, and a mass action law for densities n1n2 = n3n4(µ12/µ34)
3/2.

Of course, it is easy to check that, under such circumstances, all collision contributions
R̂me

ij , Ŝ
me
ij , Q̂ch, R̂ch

i , Ŝch
i in (18) vanish, as follows from (22), (27), (29), (30), (31).

4 Explicit results for the Maxwellian model

We now investigate in some more detail the simplified problem in which all interactions
are fully of Maxwell type, dropping all “me” and “ch” superscripts or subscripts, as well
as all hats. The phase space for (18) is 20–dimensional, and initial conditions will be
labelled by a 0 superscript. In space homogeneous conditions, due to the conservation
laws of the slow collision operator, seven independent first integrals are in order, namely

ni + nj = n0
i + n0

j (i, j) = (1, 3), (1, 4), (2, 4)

u =
1

ρ0

4∑
i=1

ρiui = u0

T =
1

3n0

4∑
i=1

ρiu
2
i +

1

n0

4∑
i=1

niTi = T 0

(32)
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so that evolution actually takes place in a 13–dimensional subspace, once initial conditions
are given, and independent variables may be chosen, for instance, as n1, u2, u3, u4, T2, T3,
T4. In particular, also n = n0 and ρ = ρ0. As discussed above, the collision operator in (18)
vanishes at the “physical” equilibrium u1 = u2 = u3 = u4(= u), T1 = T2 = T3 = T4(= T ),
and

n1n2

n3n4

=

(
µ12

µ34

) 3
2

≡ ξ (33)

(a 7 parameter family with a single velocity and a single temperature, plus mass action
law for densities). Indeed, it can be proved that initial conditions determine uniquely
an element in the above family, or, in other words, it is unique the intersection of that
7–dimensional subspace with the 13–dimensional subspace of evolution determined by an
assigned initial state. In fact, if star denotes equilibrium, it is readily seen that

u∗
1 = u∗

2 = u∗
3 = u∗

4 = u0 T ∗
1 = T ∗

2 = T ∗
3 = T ∗

4 = T 0 (34)

and then, after suitable manipulations putting together the first of (32) with (33), one
gets for densities a quadratic equation with only one admissible (i.e., positive) solution,
namely

n∗
1 =

1

2(1− ξ)

{[(
ξ(2n0

1 + n0
3 + n0

4)− (n0
1 − n0

2)
)2

+4ξ(1− ξ)(n0
1 + n0

3)(n
0
1 + n0

4)

]1/2
−
[
ξ(2n0

1 + n0
3 + n0

4)− (n0
1 − n0

2)
]}

,

(35)

with n∗
2 = n∗

1 − (n0
1 − n0

2), n
∗
3 = n0

1 + n0
3 − n∗

1, n
∗
4 = n0

1 + n0
4 − n∗

1. In the special (singular)
case ξ = 1 we would have simply n∗

1 = (n0
1 + n0

3)(n
0
1 + n0

4)/n
0 instead of (35). In the

limiting case ξ → 0+, the smaller between n∗
1 and n∗

2 tends to zero, whilst, in the opposite
limiting case ξ → +∞, the smaller between n∗

3 and n∗
4 tends to zero.

We can verify that the fluid–dynamic model (18) does not exhibit spurious collision
equilibria, different from (33). To this end, we first notice that setting Qi = 0 yields a
single constraint, the mass action law (33). On using this result into the second of (18)
one ends up, after some algebra, with the linear homogeneous algebraic system

4∑
l=1

Ailul = 0, Ail = Āil + A
(0)
il + A

(1)
il (36)

where Āil come from the mechanical interactions, A
(0)
il and A

(1)
il from the chemical ones

relevant to B0 and B1 (their explicit forms are omitted for brevity). It is easy to see that all
matrices Ā˜ , A˜ (0), A˜ (1) (and then A˜ ) are symmetric and singular (sums of rows/columns
equal to zero), and that the algebraic system admits at least ∞1 nontrivial solutions,
proportional to the vector (1, 1, 1, 1)T , and corresponding to all equal velocities. We
take then 3 × 3 sub–matrices of Ā˜ , A˜ (0), A˜ (1) made up by the first three rows and
columns and label them with a prime. It can be checked by direct computation that
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Ā˜ ′
is strictly diagonally dominant (thus non–singular) and negative definite. A bit more

involved manipulation shows that, irrespective of the sign of B1, the 3× 3 matrix A′˜(0) +

A′˜(1) has a negative determinant and is negative definite as well. Therefore the rank of
the overall matrix A˜ is equal to 3, since its sub–matrix made up by the first three rows
and columns is negative definite and non–singular, so that the algebraic system (36) does
not admit any other solution than the one corresponding to all equal velocities.

Using further the above results on densities and velocities into the third of (18) leads
again, after some algebra, to the linear homogeneous algebraic system

4∑
l=1

CilTl = 0, Cil = C̄il + C
(0)
il + C

(1)
il (37)

where, once more, explicit expressions are omitted for brevity. The matrix C˜ is symmetric
and singular in the same way as matrix A˜ , and admits again at least ∞1 nontrivial
solutions, proportional to the vector (1, 1, 1, 1)T , corresponding to all equal temperatures.
Matrix C̄˜ has exactly the same characteristics as matrix Ā˜ concerning negativity and
diagonal dominance of its sub–matrices, and analogously for negativity of the 3× 3 sub–
matrix of C˜ (0)+C˜ (1). With the same arguments as for matrix A˜ one can conclude that the
rank of matrix C˜ is equal to 3, and that the algebraic system (37) can not admit nontrivial
solutions independent from (1, 1, 1, 1)T . This completes the proof that the fluid–dynamic
equations (18) admit only the physical collision equilibria, namely the projection of those
predicted at the kinetic level, provided by equations (34) and (35).

Another robustness test for the present hydrodynamic model concerns entropy dis-
sipation and relaxation to equilibrium. We consider the restriction of the reactive H–
functional (8) to the finite dimensional subspace of distribution functions defined by the
fast collision equilibria Mi (9). This yields a (tentative) Lyapunov function of the kind

Ĥ =
4∑

i=1

ni

[
log

(
ni

m3
i

)
+

3

2
log

(
mi

2πTi

)]
, (38)

actually depending, in space homogeneous conditions, on the 13 field variables n1, u2,
u3, u4, T2, T3, T4, and attaining its minimum at the equilibrium (34)–(35). In the space
independent case, formal derivation from (38) yields

˙̂
H =

4∑
i=1

ṅi

[
log

(
ni

m3
i

)
+

3

2
log

(
mi

2πTi

)]
− 3

2

4∑
i=1

ni
Ṫi

Ti

(39)

and, at least under the Maxwellian assumptions of the present Section, it is possible to
prove, after a very careful and patient calculation, that actually (39) turns out to be
negative definite with respect to the unique equilibrium determined by initial conditions.

Work on the uneasy extension of the present results to more realistic collision models
and reactions is in progress.
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