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Abstract

A change detection and thresholding methodology has been adapted from previ-

ous studies to determine the extent of flooding for 13 Sentinel-1 synthetic aper-

ture radar images captured during the floods of winter 2015–2016 in Yorkshire,

UK. Both available polarisations, VH and VV, have been processed to allow for a

comparison of their respective accuracy for delineating surface water. Peak flood

extents are found on 29 December 2015 during the aftermath of storms Eva and

Frank. Results have been validated against a Sentinel-2 optical image, with both

polarisations producing a total accuracy of 97%. Of the two polarisations, VV

produces fewer misclassifications, mirroring the similar results reported in previ-

ous research. Mapped results are compared to the Environment Agency Flood

Maps for Planning (EA FMP), with good correlation observed for inundation on

the floodplains. Differences occur away from the floodplains, with the satellite

data identifying pluvial flooding not highlighted by the EA FMP.

Introduction

Satellite imagery can determine the extent of flooding over

large geographical areas, providing an advantage over in

situ data sources where the information can have limited

spatial and temporal resolution whilst being costly to

acquire. In recent years the quantity and quality of satellite

products available to stakeholders during and after an event

has greatly improved. The Sentinel series of satellites is a

prime example of this, producing data with high spatial

and temporal resolutions that is free to download. These

advances in satellite data sets have led to the development

of near real-time, automated flood mapping algorithms

(Matgen et al., 2011; Martinis et al., 2015; Twele et al.,

2016). As well as providing vital information during an

emergency, information derived from satellite imagery can

be used to calibrate and validate hydrodynamic models,

improving the predictive accuracy, and subsequently

increasing stakeholder’s understanding of flood dynamics

(Schumann et al., 2009; Grimaldi et al., 2016).

Two types of satellite imagery are available at spatial

resolutions suitable for monitoring surface water dynamics:

optical and synthetic aperture radar (SAR). However, the

acquisition and image properties vary, providing challenges

when used to monitor hydrology. Optical sensors, such as

those onboard the Landsat-8 and Sentinel-2 satellites,

collect data across a variety of spectral bands ranging from

the visible spectrum through to shortwave infrared (SWIR).

Different land covers display specific reflective characteris-

tics for each spectral band, which can be used to identify

areas of water (Xu, 2006; Feyisa et al., 2014). Optical sen-

sors are passive, with the images capturing the solar reflect-

ance of the earth’s surface or atmosphere, resulting in the

sensor being unable to penetrate cloud cover (Gan et al.,

2012). This is the main disadvantage of optical satellites,

with flood events potentially occurring without any images

being captured, making these sensors a poor choice for

monitoring.

SAR systems, such as those on-board the Sentinel-1

satellites, are active sensors which emit a radar pulse and

record the land surface return at the satellite. They provide

an advantage over optical sensors by enabling collection of

data through cloud cover and during the night (Alsdorf

et al., 2007; Schlaffer et al., 2015). The strength of the radar

return is dependent on a number of factors, notably surface

roughness, dielectric properties, and local topography in

relation to the radar look angle (Brivio et al., 2002; Gan

et al., 2012). Water bodies are a specular reflector of the

radar pulse, resulting in minimal signal returned to the sat-

ellite (Jung et al., 2010; Schlaffer et al., 2015). Various

methods have been used within the literature to delineate

water from SAR data, either as a singular process or in

© 2017 The Authors.
Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

http://orcid.org/0000-0003-2806-0569
http://creativecommons.org/licenses/by/4.0/


combination. These include histogram thresholding (Brivio

et al., 2002; Henry et al., 2006; Brown et al., 2016), fuzzy

classification (Martinis et al., 2015; Twele et al., 2016),

region growing (Matgen et al., 2011; Mason et al., 2012;

Martinis et al., 2015; Twele et al., 2016), and texture analy-

sis (Pradhan et al., 2014). Unlike the above processes,

which use a single SAR image, change detection highlights

the temporal changes in land cover by comparing the flood

scene to a previous dry image (Giustarini et al., 2013;

Schlaffer et al., 2015). The difference between the images

can be combined with other image segmentation techni-

ques to identify areas producing an unusually low backscat-

ter response, improving the reliability of the flood

delineation when compared to the single image methodolo-

gies (Matgen et al., 2011).

Despite the operational advantages of SAR compared to

optical systems, there are challenges in identifying flooding.

Roughening of the water surface, created by heavy rainfall

or wind, can cause backscattering of the radar signal,

increasing the possibility of inundated areas not being high-

lighted (Alsdorf et al., 2007; Jung et al., 2010). SAR systems

are side looking and, depending on the incidence angle, ter-

rain features can produce radar shadow, overlaying, and

foreshadowing (Rees, 2000; Giustarini et al., 2013). In par-

ticular, radar shadow can provide difficulties in hydrologi-

cal studies, creating anomalous dark areas within the radar

image which can be misclassified as water. Identification of

flooding can also be problematic in areas where other struc-

tures protrude the water surface and interact with the radar

signal. This causes the double-bounce effect, with the signal

reflecting off the water surface before interacting with the

vertical structure, creating a corner reflector, and a strong

return signal at the satellite (Horritt et al., 2001; Jung et al.,

2010; Giustarini et al., 2013). The high density of buildings

in urban areas can cause both radar shadow and double-

bounce, limiting the delineation of flood extents without

the use of expensive ultra-high resolution SAR data,

such as TerraSAR-X, RADARSAT-2 or COSMO-SkyMed

(Giustarini et al., 2013; Pulvirenti et al., 2016). However,

the ability of SAR sensors to penetrate cloud cover, along

with the improvements in the spatial and temporal resolu-

tion of freely available data sets, demonstrates the key role

SAR has in rural flood monitoring and management.

The aim of this research is to move towards near real-

time determination of flood extents using multi-temporal

satellite SAR data sets, with methods that are both quick

and easy to apply over large areas as new data becomes

available. The case study of the 2015–2016 UK winter

storm season has been selected to test the reliability of the

process. The derived flood extent will be validated against

cloud free optical data and modelled flood maps. The

results will provide an insight into the flood extent change

over a 5-week period, providing information on flood

dynamics, as well as highlighting pluvial flooding away

from the floodplains.

Methodology

Location

A 400 km2 study area was selected in Yorkshire, UK, for

testing of the proposed methodology. The region, shown in

Figure 1, stretches from the south of York down to Selby,

and west beyond Tadcaster. The area is largely rural, with

two major rivers flowing through it: the Wharfe and Ouse.

The region suffered from spatially and temporally variable

flooding during December 2015 and January 2016, when

storms Desmond (5–6 December 2015), Eva (24 December

2015), and Frank (29–30 December 2015) brought wide-

spread rainfall across northern UK.

Data

The 13 Sentinel-1 SAR images collected over the study

region between 5 December 2015 and 10 January 2016 are

listed in Table 1. Radiometrically calibrated and terrain cor-

rected Sentinel-1 images are stored within Google Earth

Engine (GEE), which provides free cloud computing facil-

ities for research, with the change detection processing

completed within this infrastructure (GEE, 2015).

Sentinel-1, part of the European Space Agency Coperni-

cus programme, consists of two satellites launched on

3 April 2014 and 22 April 2016. The satellites are in oppo-

site polar sun-synchronous orbits at an altitude of 693 km,

with a repeat cycle of 12 days, containing 175 orbits. This

results in a repeat frequency of 24 hours at high latitudes

and 3 days at the equator. The SAR system operates within

C-band (5.407 GHz) frequencies in one of four acquisition

modes: Stripmap (SM), Interferometric Wide swath (IW),

Extra-Wide swath (EW), and Wave (WV). IW is the

default mode over land, operating under the TOPSAR

(Terrain Observation with Progressive Scans SAR) princi-

ple (Geudtner et al., 2014). During acquisition the radar

scans in both the azimuth and range directions simultane-

ously to provide three sub-swaths with a 2 km overlap

(De Zan and Guarnieri, 2006). Each sub-swath contains six

bursts, which are processed individually as single look com-

plex (SLC) scenes, before being resampled to 10 × 10 m

pixel spacing, deburst and merged into one tile. Data is col-

lected in 250 km swaths at incidence angles between 29.1�

and 46.0�, providing a ground resolution of 5 × 20 m

(range × azimuth). The user guide (https://sentinel.esa.int/

web/sentinel/user-guides/sentinel-1-sar) provides further

information on the satellite’s acquisition parameters.

The polarisation of SAR images refers to the geometric

plane that the radar wavelength is transmitted and received
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along. In most systems these are either horizontal (H) or

vertical (V) in relation to the satellite antenna, creating

four common polarisations: HH, HV, VH, and

VV. Although each polarisation can be used for flood

delineation, the backscatter characteristics of the radar sig-

nal varies, impacting the accuracy of the inundation maps

produced. Manjusree et al. (2012) compared the four

polarisations, concluding that HH has the greatest

potential for delineating flooding consistently and accu-

rately, results mirrored in other research (Henry et al.,

2006; Brisco et al., 2008). Sentinel-1 collects images in VH

and VV polarisation when in IW mode, both of which

have the potential for classification errors. Cross-polarised

data (VH and HV) produces a wider range of backscatter

values from vegetated land surfaces compared to co-

polarised data (VV and HH), leading to potential overlap

Figure 1 The 400 km2 study region, shown by the red box, for which flood extents have been determined for December 2015 and

January 2016. Background and location maps throughout article © Crown Copyright/database right 2017. An Ordnance Survey/EDINA

supplied service.
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with the low backscatter values associated with water, caus-

ing misclassification of land as flooded (Manjusree et al.,

2012; Twele et al., 2016). VV polarised wavelengths are

more susceptible to roughening of the water surface, com-

monly caused by wind or rain, increasing the backscatter

return to the satellite, resulting in inundation not being

identified (Manjusree et al., 2012). The limitations of each

polarisation as environmental conditions vary requires

acknowledgement when using Sentinel-1 for flood map-

ping. Previous research concluded that VV provides a

slight advantage when identifying flooding when using

Sentinel-1 data (Twele et al., 2016). To allow for further

comparison both polarisations have been processed using

the same methods within this study.

Within the methodology a terrain filter is applied to

remove areas where the topographical location suggests

that flooding is unlikely, but where SAR image acquisition

may result in misclassification. For this the Ordnance Sur-

vey 5 m Digital Terrain Model (DTM) was used to create

Height above Nearest Drainage (HAND) and slope data

sets. The slope aspect of the filter is required to remove

areas of radar shadow, found when large vertical structures

limit the ability of the SAR system to record data from the

lee of the feature. The minimal radar response in these

areas is similar to that of flat water. The HAND data set

represents the topographic difference between a pixel and

its hydrologically determined nearest water course (Rennó

et al., 2008; Nobre et al., 2011). The addition of HAND

reduces the impact of the slope filter in the lowlands by

including features such as river banks, which would be oth-

erwise removed. For this project a HAND threshold of

20 m, along with 3� slope, were combined to create the ter-

rain filter.

A cloud free satellite optical image was collected by

Sentinel-2 on 29 December 2015, 12 hours after the

Sentinel-1 pass. The use of optical imagery to validate SAR

water extractions has become common practice, despite the

potential errors in classifying water using optical data.

However, the lack of in situ data to act as a reference means

the Sentinel-2 image has been used to validate the SAR

flood extents. To extract the water bodies from the optical

image the modified normalised difference water index

(MNDWI) was applied, defined by Xu (2006) as:

MNDWI=
Green−SWIR

Green + SWIR
ð1Þ

with band 3 and band 11 representing the green and SWIR

wavelengths within the Sentinel-2 instrumentation. The

MNDWI highlights the strong absorption of SWIR radia-

tion by water bodies, improving on other water extraction

indices, notably the normalised difference water index

(NDWI) (McFeeters, 1996), by providing better separation

between water and urban areas. The MNDWI data set can

theoretically be segmented at zero to identify areas of water,

however, differences in sensor acquisition parameters and

geographical image characteristics can create a differing

range of values, necessitating the need for individual image

thresholding. To achieve this Otsu’s method was employed,

maximising the variance between the water and land classes

(Otsu, 1979). The SAR and MNDWI flood extents have

been compared, with the producer’s (flooding misclassified

as land), user’s (land misclassified as flood) and total

accuracies calculated, along with Cohen’s kappa coefficient

(κ – agreement that is not caused by chance).

The Environment Agency Flood Maps for Planning

(EA FMP) contain modelled indicative results of areas

likely to be inundated during a 100-year river or 200-year

sea flood event (known as Zone 3, referred as 100-year

event henceforth), as well as a 1000-year event from either

source (Zone 2) (Porter and Demeritt, 2012). The extents

have been modelled using a DTM with the flood defences

Table 1 List of Sentinel-1 scenes used, the date, the percentage of study area covered, the satellite track ID and the number of images

used to calculate the reference image

Sentinel-1 image Date Footprint (%) Track ID

No. of ref.

images

S1A_IW_GRDH_1SDV_20151205T061404_20151205T061429_008903_00CBC9_2323 05/12/2015 100 81 18

S1A_IW_GRDH_1SDV_20151208T174942_20151208T175007_008954_00CD3E_349B 08/12/2015 100 132 4

S1A_IW_GRDH_1SDV_20151210T062205_20151210T062230_008976_00CDE1_1951 10/12/2015 100 154 10

S1A_IW_GRDH_1SDV_20151213T175808_20151213T175833_009027_00CF27_4F38 13/12/2015 68.1 30 7

S1A_IW_GRDH_1SDV_20151217T061404_20151217T061433_009078_00D09B_ECA6 17/12/2015 100 81 18

S1A_IW_GRDH_1SDV_20151220T174947_20151220T175012_009129_00D20A_C0F7 20/12/2015 100 132 4

S1A_IW_GRDH_1SDV_20151222T062204_20151222T062229_009151_00D2AF_17F0 22/12/2015 100 154 10

S1A_IW_GRDH_1SDV_20151225T175803_20151225T175828_009202_00D428_9464 25/12/2015 68.2 30 7

S1A_IW_GRDH_1SDV_20151229T061403_20151229T061428_009253_00D59B_CC2A 29/12/2015 100 81 18

S1A_IW_GRDH_1SDV_20160101T174941_20160101T175006_009304_00D70A_60DE 01/01/2016 100 132 4

S1A_IW_GRDH_1SDV_20160103T062204_20160103T062229_009326_00D7AC_C9F2 03/01/2016 100 154 10

S1A_IW_GRDH_1SDV_20160106T175807_20160106T175832_009377_00D920_8394 06/01/2016 68.4 30 7

S1A_IW_GRDH_1SDV_20160110T061404_20160110T061433_009428_00DA93_B5C5 10/01/2016 100 81 18

J Flood Risk Management (2017)© 2017 The Authors.
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removed, allowing for a subsequent data set highlighting

the areas protected by the current flood defences during a

100-year event. A further map showing the areas desig-

nated for storage areas is available, with these locations

used to attenuate the flood peak in vulnerable areas. The

SAR-derived flood extents have been compared to the EA

FMP, providing a comparison between the remote sensing

data and modelled results. Within the study region, a 100-

year flood would inundate 53.4 km2 of the area (13.4% of

the study region), including 10.4 km2 classed as water stor-

age areas (2.6%), with an additional 24.9 km2 being actively

protected by defences (6.2%).

An aerial photograph, taken on 27 December 2015 by

the National Police Air Service (NPAS) Carr Gate helicop-

ter, has been used to provide supplementary information

about the hydrological conditions in the region prior to the

satellite crossing. The image was taken as the helicopter

was to the west of the study region, close to Tadcaster on

the river Wharfe. The image looks eastwards, towards the

confluence of the Ouse and the Wharfe.

Processing steps

A change detection and thresholding (CDAT) methodol-

ogy, adapted from Long et al. (2014), was used to deter-

mine the flooding extent. Figure 2 provides a

diagrammatic overview of the workflow. The first step

requires a non-flood reference image for change detection.

Selection of this image can influence the outcome, with

seasonal differences in land use and variances in satellite

acquisition parameters (e.g. orbit direction and incidence

angle) requiring consideration (Hostache et al., 2012).

The reference images in this study were calculated using a

collection of 39 previous Sentinel-1 images, dated between

3 July 2015 and 5 November 2015. Ideally the time period

used to create the reference collection would be similar to

that of the flooding. However, due to the relatively short

time Sentinel-1 has been operational, the majority of win-

ter images suffer from either flooding or poor pre-

processing within GEE, leading to the inclusion of sum-

mer images to ensure coverage for each satellite track. For

each flood scene analysed, the images with the same

Figure 2 Workflow used to extract the flooding extents for this study. μ and σ represent the mean and standard deviation.
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satellite track are selected, with the median value from

this subset taken for each pixel to create the final refer-

ence image. Four different satellite tracks provide cover-

age over the study area, with the number of images in

each reference image collection ranging from 4 to 18, as

summarised in Table 1.

SAR suffers from speckle due to the variation in the

radar return within a pixel caused by multiple scattering

sources, such as vegetation (Esch et al., 2011; Giustarini

et al., 2015). Filters can be applied to remove speckle,

leaving a smoother image that can be used more accu-

rately in further processing. Both the flood and reference

images had a median 5 × 5 pixel filter applied for this

purpose. The difference between the flood and reference

image is calculated under the premise that change detec-

tion highlights variations in the radar return to the satel-

lite, and by proxy changes in land cover or conditions. It

is expected that flooding will cause a large negative differ-

ence due to the specular reflection of the radar signal by

water, compared to the normal, stronger land backscatter

response.

The difference image is subsequently filtered based on

terrain, with composition and parameters of the filter

described previously. The application of the filter removes

just over 8 km2, or 2%, of the region. A threshold approach

is applied to the difference image to extract the largest neg-

ative change in backscatter, thus highlighting areas most

likely to be inundated. Long et al. (2014) determined the

ideal threshold to be:

PF < fμ D½ � – fc* σ D½ �f gð Þ ð2Þ

where PF are the pixels identified as flooded, μ and σ the

mean and standard deviation of D, the difference image,

and fc is a coefficient. Optimal fc was found to be 1.5 by

Long et al.

A second filter was applied to the extracted inundation

extent based on the flooded SAR image, an additional step

compared to the original CDAT methodology. This is due

to seasonal changes in land cover occasionally producing

similar decreases in backscatter as flooding within the dif-

ference image. For this filter, a global threshold for the

land-water boundary was defined based on the histograms

of the SAR images used in the study, with only the areas

identified as flooding by both the SAR threshold and the

CDAT process used as the final flood extent.

The results are mapped, allowing direct comparisons

between the two polarisations, as well as the Sentinel-2 opti-

cal data set and the EA FMP. An estimate is also made of

the number of days each pixel was inundated during the 37-

day study period. Each satellite image has been allocated a

number of days, calculated as an even distribution of the

time between the preceding and following satellite passes.

For each pixel, the image scores for the dates when flooding

has been identified are summed to provide an estimate for

the number of days the pixel was inundated. The study area

has been sub-divided for this purpose, with different weight-

ings required when the images do not cover the full region.

Figure 3 Percentage of region identified as flooded for the VH and VV polarisations. Dates with full satellite coverage are joined to show

the approximate sequence of flooding. Other data points, labelled as partial, have 68% of the region covered by Sentinel-1 and are likely

to underestimate the extent of flooding.

J Flood Risk Management (2017)© 2017 The Authors.
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Results

Polarisation comparison

Both polarisations display a similar sequence for the

amount of flooding throughout the study period (Figure 3).

The image collected on 29 December provides the maxi-

mum flood extent for both polarisations, showing the after-

math of storms Eva and Frank. On this date, 6.7% and

6.1% of the study region were inundated for VH and VV,

respectively. Preceding this date is a slight downwards

trend in flood extent from the initial image on 5 December,

with extents of 2.3% (VH) and 2.0% (VV), to 25 December,

with 0.7% (VH) and 1.0% (VV) of the region inundated.

A decrease in flood extent is observed following

29 December, before an increase on 10 January to 4.9%

(VH) and 4.2% (VV), the second greatest extent observed.

Both VH and VV polarisations are available for all

images, allowing a comparison of their ability to delineate

flooding. The observed time-series between the two data

sets are similar, as seen in Figure 3. The satellite crossing

on 17 December provides a match in the extent of flooding

between the two polarisations, although only 80.4% of the

identified areas correspond. All other images provide differ-

ing flooding extents between VH and VV, with an even

split for the greatest estimator. Figure 4 shows the relation-

ship between the two data sets. A strong linear distribution

is observed, with an R2 value of 0.87. At lower extents of

flooding VV identifies a greater area of inundation, with

the polarisations matching at 1.6%. As the extent of

flooding grows, VH identifies an increasingly greater pro-

portion of the region as inundated compared to VV, with

6.0% in VH equating to 5.1% in VV.

Two dates show a considerable difference between the

two polarisations. On 20 December, the flood extent from

VH (1.9%) is almost double that of VV (1.0%), with the

VH identifying potential pluvial flooding that is missed by

the VV. Similarly on 1 January, VV (2.9%) identifies just

61.7% of the flood extent as estimated from VH (4.7%). On

this date, the difference is largely within the main body of

flooding, with the VH identifying a uniform water surface

compared to the smaller separate areas seen in the VV

(Figure 5). It can be hypothesised that the lack of consist-

ency in the VV backscatter response is caused by the wind

roughening of the water surface.

Validation

The MNDWI water extent of the Sentinel-2 optical image

of 29 December has been used to validate the flood extents

from the two polarisations of the SAR image collected on

the same day. The accuracies of both polarisations are

shown in Table 2. Producer’s accuracy for identifying

flooded pixels is slightly better with VH, showing a greater

inclusion of Sentinel-2 identified water pixels in the flood

extent. However, VV produces 94.3% user’s accuracy com-

pared to 87.0% for VH, showing less misclassification of

land as water using this polarisation. Overall the total

accuracies are similar with 0.4% difference. The kappa coef-

ficient (κ) varies from 0.778 for VH to 0.799 for VV, show-

ing a good relationship between the optical result and the

two polarisations, with minimal correlation caused by

chance.

Figure 6 provides a mapped comparison between flood

extents from the SAR and optical data sets. There is good

correlation between the three data sets for the large area of

water which represents the inundated floodplain next to

the Wharfe and Ouse rivers. The differences between the

data sets can be characterised in four ways: permanent

water bodies identified in the optical image but not in the

SAR, misclassification of shadow areas as water within the

optical image, extraction of the edges of flat man-made fea-

tures within the SAR, and potential misclassification of land

within the VH SAR image.

Both VH and VV polarisations have identified the edges

of some urban features as flooded. This is most notable

with the flat tarmac associated with an airport, highlighted

in Figure 6, which provides a similar specular reflectance as

water. There are matching flood extents between the

Sentinel-2 validation data set and the VV polarisation in

these areas on 29 December. The VH polarisation identifies

additional sections of the runway edges as inundated com-

pared to the other imagery. The suggested flooding may be

Figure 4 Relationship between the percentages of the study

region identified as flooded for the VH and VV polarisations.

Grey line represents y = x as reference.
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correct, however, caution is required due to the potential

for misclassification around these features.

Areas of pluvial flooding are highlighted in locations

away from the floodplains. These areas, likely to be agricul-

tural fields that have become partially inundated, are more

readily identified with the VH polarisation. Both polarisa-

tions identify smaller fields not classed as water in the

MNDWI, with VH also extracting some larger areas. The

VV flood extents provide a better match to the MNDWI

data set, suggesting the additional flood areas identified

with the VH are unlikely to be accurate. However, the mis-

classification of shadows as water within the reference data

set can complicate the accuracy assessment of the SAR-

derived flood maps when using optical data as a reference.

An aerial image from 27 December, captured by the

NPAS Carr Gate police helicopter, has been used to provide

secondary validation of the results (Figure 7). The image

has been geolocated based on road and railway locations,

visible above the flood water in both data sets. Although

the image is 2 days before the satellite crossing, the similari-

ties are good, with the main flooded regions showing a

match. Despite the lack of statistical metrics, there is still

benefit in comparing the satellite data with other sources of

imagery to confirm the results.

Flood dynamics

The multiple satellite images of the region over the study

period enabled tracking of the advance and retreat of the

flood waters. A good example is the recession of the peak

event on 29 December, through two satellite passes on

1 January and 3 January (Figure 8). At first inspection, the

polarisations show a similar pattern of recession, particu-

larly where the main body of flooding is concerned. There

are three main areas where waters recede during the 5-day

period: to the east of the image on the Wharfe, towards the

north of the image below York, and downstream of the

confluence of the two rivers. However, as mentioned previ-

ously, VV polarisation produces an erroneously reduced

flood extent for 1 January, with areas of flooding likely

missing from this analysis.

The other main bodies of flooding around the Wharfe

and Ouse display minimal change in surface area. However,

it can be observed that on the 3 January locations within

the wider flood boundary are being classed as land rather

than flood, particularly along the river reach. This suggests

a reduction in the depth of water, allowing features such as

river banks to protrude the water surface.

Figure 5 Comparison of the flood extents from 1 January 2016. (Left) VH SAR image. (Middle) VV SAR image. (Right) Derived flood

extents. Note VV shows an inconsistent body of water compared to VH due to increased backscatter on the water surface in the SAR

image, likely caused by wind roughening of the water.

Table 2 Error matrices showing the accuracy of the methodology

for both polarisations. The MNDWI computed from a Sentinel-2

scene acted as a reference data set. Italic values represent km2

and bold values are percentages. Total accuracy for VH was 97%,

with a Cohen’s κ of 0.778 (0 = relationship is chance, 1 = perfect

relationship). Total accuracy for VV was 97.4%, with a κ of 0.799

VH

Reference

Sentinel-2

SAR – Sentinel-1 No flood Flood SAR total User’s %

No flood 364.4 8.7 373.1 97.7

Flood 3.5 23.4 26.9 87.0

Ref. total 367.9 32.1 400.0

Producer’s % 99.0 73.0

VV

Reference

Sentinel-2

SAR – Sentinel-1 No flood Flood SAR total User’s %

No flood 366.5 9.2 375.7 97.6

Flood 1.4 22.9 24.3 94.3

Ref. total 367.9 32.1 400.0

Producer’s % 99.6 71.5
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To provide an overview of the most flood prone areas in

the region an estimate has been made for the number of

days each pixel was flooded during the 37-day study period

(Figure 9). Both polarisations display a similar pattern

along the course of the rivers, with greatest inundation

located within the floodplains of the Wharfe and Ouse

before the confluence. Some of these areas are shown to

have flooded for the whole study period. Downstream of

the confluence flooding only occurred after the extreme

rainfall experienced during storm Eva, when the peak flood

extents are found. There are major differences with the

mapping of inundated fields, with some areas identified as

flooded for most of the study period within the VH map,

whilst only being minimally highlighted by VV.

Comparison with EA FMP

It has been reported that some rivers in the UK exceeded

their 100-year return period during the winter 2015–2016

floods (NHMP, 2016). Accordingly, the SAR-derived

inundation extents have been compared to the EA FMP

100 year flood zone, as well as the areas designated for stor-

age of flood water and protected by flood defences

(Figure 10).

An area of 53.4 km2 of the 100-year flood area is unde-

fended, and at risk of flooding during such an event. At

peak flood 49.2% (VH) and 48.0% (VV) of these regions

were inundated, suggesting the flooding was not a 100-year

event in this area at the time of the satellite pass

(Figure 11). Within the 100-year flood boundary, 10.4 km2

has been designated as water storage areas. At maximum,

79.3% and 79.1% of these areas were inundated for VH and

VV, respectively, with Figure 10 suggesting the area down-

stream of the confluence was close to capacity. Arguably,

the most important information within the EA FMP is the

areas protected from the 100-year event by the flood

defences. At peak flood a total of 2.3 km2 became inun-

dated using the VH data, with 2.2 km2 for VV, under 10%

of the protected areas in the region (Figure 12). This is

largely to the west of Figure 10. Overall, the time-series for

Figure 6 Validation of the results for a subset of the region against the Sentinel-2 image. (Top left) True colour composite Sentinel-2 sat-

ellite image for 29 December. (Top middle) Sentinel-1 SAR image for 29 December, VH polarisation. The location of the described airport

is shown by the red box. (Top right) VV polarised SAR image. (Bottom left) MNDWI, calculated from the Sentinel-2 image, with blue

representing water. (Bottom middle) Comparison of extracted flood extents, with blue representing those from VH SAR, red from optical

and black represents areas identified in both. (Bottom right) VV flood extents compared to reference data set.
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flooding for each designated area closely follows the overall

flood sequence observed in Figure 3.

The EA FMP largely encompass the main bodies of flood-

ing identified in the satellite data. The percentage of the

flooding that occurred outside any of the designated FMP

areas has been calculated for each date (Figure 13), with

mean percentages of 18.0% (VH) and 9.5% (VV). There are

some dates where identified flood outside of the FMP pre-

diction is high. The 5 December (VH and VV), 20 December

(VH), and 22 December (VH) have less than 75% of identi-

fied flooding within the FMP areas, with the SAR data all

showing a large amount of pluvial flooding on these dates.

Figure 7 Comparison between an aerial photograph from 27 December (from @NPAS_CarrGate) (top), and the identified flood areas

from VV polarised SAR on 29 December (bottom). Red square and arrow show approximate location and viewing direction of the heli-

copter. Locations A (railway embankment) and B (B1223) provide georeferencing examples. Point C shows The Foss joining the river

Wharfe, and point D shows the confluence of the Wharfe and the Ouse. Field level flooding is visible in both data sets, with an example

given at E. Differences in flood extent are potentially caused by the 2-day time gap between the images.
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Discussion

The validation of the adapted CDAT results against the

Sentinel-2 MNDWI data set provides good correlation for

both polarisations. Long et al. (2014) completed a similar

comparison with optical imagery to determine the total

accuracy of the original CDAT method, achieving accura-

cies ranging between 77.1% and 91.7%. The 97.0% and

Figure 8 The retreat of flood waters during the aftermath of storm Frank. VH (left) and VV (right) polarisations for satellite orbits on

29 December, 1 January and 3 January are shown.

Figure 9 The estimated number of days each pixel is inundated for VH (left) and VV (right) polarisations. Total number of days in the

study period is 37. Each image is assigned a number of days representing an even distribution of the time to the preceding and following

satellite passes. For each pixel, the images identified as flooded have been summed to provide an estimate total days flooded.
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97.4% total accuracies for the VH and VV polarisations

achieved in this study suggests the adaption applied to the

original method provides an improvement on the original

process. Producer’s and user’s accuracies, and Cohen’s

kappa coefficient (κ) all provide good results, with sources

of misclassification identified in both the SAR and the opti-

cal results. Similar to the results presented by Twele et al.

(2016), the VV polarisation provided a slight improvement

on accuracy compared to VH. However, both polarisations

produce similar validation results in this study, and consid-

ering the inaccuracies associated with identifying inunda-

tion using SAR, it is still unclear which of the two Sentinel-

1 polarisations is the preferential choice for delineating

flooding.

Figure 10 The EA FMP for a subset of the study region (left), showing 1 in 100 year flood, areas protected by flood defences, and flood

storage areas outlines. Extracted flood extents for VH, VV and where they overlap for 29 December (right) for comparison.

Figure 11 Area of flooding identified within the EA FMP 100 year flood boundary, and the proportion located in a designated flood stor-

age area. Partial data points represent those without full satellite coverage. Total area for the 100-year flood region is 53.4 km2 (13.4%

of the study area), including 10.4 km2 designated as flood storage areas.
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There are some caveats that require acknowledgement

when using optical data to validate the SAR flood extents.

It should be noted that optical imagery, as a satellite prod-

uct, potentially suffers from inaccuracies within the water

identification process. Therefore, it cannot be considered as

a definitive measure of the accuracy. Furthermore, a single

reference image was used in this study, when ideally multi-

ple images would be available to confirm the accuracy of

the flood extents from each polarisation. However, the

limitations of optical imagery, namely its inability to pene-

trate cloud cover, restrict the number of available scenes.

Within this study the VV flood extents on 1 January appear

inadequate when compared to the preceding and following

flood extents. This is likely to be caused by the susceptibil-

ity of VV to increased backscatter produced by roughening

of the water surface due to wind or heavy rain (Brisco

et al., 2008; Manjusree et al., 2012). If a suitable optical ref-

erence data set was available for this date, it is expected that

Figure 12 Amount of flooding within the protected areas identified in the EA FMP. Partial data points represent those without full satel-

lite coverage. Protected areas cover 24.9 km2, or 6.2%, of the study region.

Figure 13 Amount of flooding identified that is not found within the boundaries of the EA FMP. Partial data points represent those

without full satellite coverage. 80.4% of the area of interest, or 321.7 km2, is not included in any of the EA FMP zones.
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the validation outcome would produce a reduced level of

accuracy for VV. The variability in perceived results accu-

racy on non-validation dates highlights the need for further

validation of flood extents produced using the two

Sentinel-1 polarisations, particularly in varying environ-

mental conditions.

Caution must be exercised in interpreting the data as an

accurate representation of the flooding time series due to

the sparse nature of the satellite images, with gaps of 2–4

days between the Sentinel-1 scenes. This is exacerbated by

satellite crossings not covering the full extent of the study

area, potentially underestimating the full extent. As well as

the maximum flood extent, the speed of onset and reces-

sion is important for stakeholders to fully manage the

impacts of an event. The linearity of the rising and falling

limbs around the 29 December peak is questionable. Fur-

thermore, the peak extent seen from the images on

29 December is unlikely to capture the true maximum

extent. There is no method to accurately extrapolate the

data points to determine the timing and magnitude of the

peak flood, as well as the onset and recession speed, with-

out the inclusion of in situ data. Future events will benefit

from the full constellation of two Sentinel-1 satellites, pro-

viding a denser time series, allowing a better estimation of

the flood dynamics.

One of the advantages of using satellite data to map flood

extents is the ability to identify wide-scale pluvial flooding

away from the floodplains. This data can be costly and time

consuming to collect on the ground, with resources often

allocated to urban areas during an event due to the more

profound risk and impacts. Flooded fields have been identi-

fied using the CDAT methodology, although there is varia-

bility between the VH and VV polarisations. Comparing

the results to the Sentinel-2 image, it appears likely that

VH overestimates field flooding, with VV providing a more

plausible representation. Cross-polarised images have been

shown to have a wider variance in backscatter from vege-

tated land covers, potentially creating overlap with the

water backscatter ranges, leading to an overestimation of

the flood extent (Manjusree et al., 2012; Twele et al., 2016).

However, further in situ data during times of flood is

required to fully understand the relative accuracies of the

polarisations, and to help explain the temporal pattern of

pluvial flooding.

The EA FMP are used for consultation within the UK

building and planning process (Porter and Demeritt, 2012).

The clarification of their accuracy provided here supports

their continued use for this purpose. Agreement was found

between the flood maps and both polarisations of SAR data

for the locations of fluvial flooding. Having been created

from a hydraulic model, the close correlation between the

maps and the satellite data on the floodplains is to be

expected. Differences come away from the floodplains, with

the EA FMP not designed to predict the location of pluvial

or groundwater flooding.

The newly available free satellite data sets at spatial reso-

lutions suitable for flood mapping can greatly improve the

ability of stakeholders to monitor events. Sentinel-1 data is

typically available within a few hours of the satellite pass,

allowing for near-real time analysis of the flood extent. Fur-

thermore, automation of the above processes is achievable,

as the only process that required human interaction was

determination of the global SAR threshold used to create

the final filtering step. Although the applied threshold can

be used for future studies, care is needed as both satellite

and ground conditions can change. Scene by scene auto-

mated threshold determination will provide the most accu-

rate delineation of water from the SAR flood image.

There are no restrictions on locations with the CDAT

methodology presented here. The two satellite constella-

tion of Sentinel-1 provides coverage between 1 and 3 days

depending on latitude (ESA, 2016a, 2016b), an improve-

ment on previous SAR satellites. The 5-metre DTM used

to create the HAND and slope components of the terrain

filter is a UK only data set, however, there are freely

available high resolution global topographic data sets that

can be used for this purpose with similar results. Further

investigations in different geographical settings will con-

firm the threshold parameters used in this study, provid-

ing a tool that can be used to estimate flood extent

globally.

Despite the advantages of satellite based flood monitor-

ing, the temporal resolution can still result in flood onset,

maximum and recession to be missed (Sanyal and Lu,

2004). When completing regional scale studies using sat-

ellite data sources, there is a high probability that each

satellite orbit will not cover the full area. An understand-

ing of the limitations of satellite acquisition parameters,

including the potential for temporal and spatial data

gaps, needs to sufficiently communicated to stakeholders

to allow for considerations to be made in any analysis,

and to minimise any assumptions based on extrapolated

results.

Conclusion

An adapted change detection and thresholding methodol-

ogy has been developed using 13 Sentinel-1 images to map

the flooding experienced in Yorkshire during the

2015–2016 UK winter storm season. The difference

between the SAR data and a median reference image has

been filtered and thresholded to determine the flood extent.

The process adapts the previous CDAT methodology pro-

posed by Long et al. (2014), with adjustments to the filter-

ing composition and processes, including the addition of a
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new step to remove misclassification due to seasonal

changes in land cover.

Peak flood extents occurred on 29 December 2015, dur-

ing the immediate aftermath of the severe rainfall during

storms Eva and Frank. On the same date a Sentinel-2 opti-

cal satellite image was collected for the region, allowing

direct comparison between the results. MNDWI and Otsu’s

method was used to determine the optical flood extent.

User’s and Producer’s accuracies of at least 87.0% and

71.5% were found for the two polarisations, with Cohen’s κ

of 0.778 and 0.799 for VH and VV, respectively. The

slightly improved accuracy observed using the VV polarisa-

tion matches similar results obtained by Twele et al. (2016),

although on other dates VV appears to underestimate the

water extent, likely caused by wind roughening of the water

surface.

The EA FMP provide the outline of a 100-year flood

event, as well as areas protected by flood defences and those

used to store flood waters. The extracted outlines from the

recent winter flooding provide a good comparison data set

to the predictive maps. At peak flood approximately 49% of

the expected 100-year flood region became inundated, with

the incorporated designated flood storage areas at 79%

capacity in terms of surface area. Approximately 9% of the

protected areas, representing 2.3 km2, was flooded during

this time. The predictive maps provided a good estimate of

fluvial flooding, with the extent matched by the SAR data.

Differences come with the identification of pluvial flooding,

information that is not modelled in the EA FMP. The iden-

tification of flooding in these rural areas will be useful in

helping to minimise the impacts to local stakeholders.

Improvements can be made with the methodology pre-

sented by clarifying the accuracy of flood identification via

further validation, particularly for smaller scale pluvial

inundation, and with the removal of misclassified urban

features. However, the total accuracy of the two polarisa-

tions is good, with both above 97%, and the methodology

can be used as an easy to implement, autonomous, near-

real time flood monitoring tool. Refinement of the method-

ology is ongoing, and further validation of results against

recent UK and global flood events will confirm the poten-

tial of SAR data and the methods for use in flood

management.
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