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 

Abstract—Quantum key distribution (QKD) networks are 

potential to be widely deployed in the immediate future to provide 

long-term security for data communications. Given the high price 

and complexity, multi-tenancy has become a cost-effective pattern 

for QKD network operations. In this work, we concentrate on 

addressing the online multi-tenant provisioning (On-MTP) 

problem for QKD networks, where multiple tenant requests (TRs) 

arrive dynamically. On-MTP involves scheduling multiple TRs 

and assigning non-reusable secret keys derived from a QKD 

network to multiple TRs, where each TR can be regarded as a 

high-security-demand organization with the dedicated secret-key 

demand. The quantum key pools (QKPs) are constructed over 

QKD network infrastructure to improve management efficiency 

for secret keys. We model the secret-key resources for QKPs and 

the secret-key demands of TRs using distinct images. To realize 

efficient On-MTP, we perform a comparative study of heuristics 

and reinforcement learning (RL) based On-MTP solutions, where 

three heuristics (i.e., random, fit, and best-fit based On-MTP 

algorithms) are presented and a RL framework is introduced to 

realize automatic training of an On-MTP algorithm. The 

comparative results indicate that with sufficient training iterations 

the RL-based On-MTP algorithm significantly outperforms the 

presented heuristics in terms of tenant-request blocking 

probability and secret-key resource utilization.  
 

Index Terms—Quantum key distribution networks, online 

multi-tenant provisioning, heuristics, reinforcement learning.  
 

I. INTRODUCTION 

UMEROUS high-security-demand organizations in the 
fields of finance, transport, energy, health, etc., are in 

urgent need of long-term secure communications across the 
Internet. Data encryption has become of critical importance to 
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ensure the confidentiality and integrity of data transmission [1], 
[2]. In conventional cryptographic systems such as 
Rivest-Shamir-Adleman [3], the security of key distribution 
relies on assumptions about the limitation of existing 
computational power for any illegitimate party to crack the 
secret keys [4]. However, the rise of powerful quantum 
computers and quantum algorithms renders the conventional 
key distribution approaches insecure [5]–[7]. 

Quantum key distribution (QKD) [8]–[10] is a 
state-of-the-art method for distributing unconditionally secure 
symmetric secret keys based on the fundamental laws of 
quantum physics such as quantum no-cloning theorem [11], 
[12]. The symmetric cryptographic systems can then utilize the 
secret keys for data encryption. In recent years, significant 
progress has been achieved in point-to-point QKD over both 
optical fibers and free space [13], [14]. Moreover, different 
QKD implementation options such as discrete-variable QKD 
(DV-QKD) [15]–[18] and continuous-variable QKD (CV-QKD) 
[19]–[23] have been adopted, and numerous QKD protocols 
such as Bennett-Brassard-1984 (BB84) protocol [24] and 
Grosshans-Grangier-2002 (GG02) protocol [25] have been 
invented. The fiber-based QKD networks have been 
successfully deployed [14], [26]–[29], and their integration with 
classical networks has been widely demonstrated and validated 
[30]–[36]. Hence, QKD networks have a great potential to be 
deployed over the ubiquitous existing fiber infrastructure for 
telecommunication networks in the immediate future to provide 
long-term security for data communications. 

On the other hand, the price and complexity of deploying a 
QKD network are still high by now, especially if the QKD 
network is owned by a single organization that demands high 
security. To solve this problem, cost-effective patterns of 
applying secret keys are necessary before QKD networks can be 
widely used. In this regard, multi-tenancy is a promising 
approach to improve cost efficiency for QKD network 
operations [37], in which the secret keys can be assigned to 
multiple tenants that share the QKD network. Each tenant 
request (TR) can be regarded as one organization with a 
dedicated demand for secret keys. Considering the non-reusable 
nature, the secret key becomes a precious and unique resource 
that makes the corresponding assignment different from many 
other types of network resources for multi-tenant provisioning 
(MTP). Thus, how to efficiently assign the non-reusable secret 
keys derived from a QKD network to multiple tenants needs to 
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be explored. 
In general, MTP can be classified into offline (i.e., static) and 

online (i.e., dynamic) problems. In the offline MTP (Off-MTP) 
problem, TRs are known in advance, whereas in the online MTP 
(On-MTP), TRs arrive dynamically without pre-knowledge. 
Recently, MTP for QKD networks has been demonstrated in the 
lab [37] and its offline version has been addressed [38]. 
Compared with Off-MTP, On-MTP involves not only the 
assignment of non-reusable secret keys to multiple TRs but also 
the scheduling of TRs. To solve the On-MTP problem in QKD 
networks, conventional heuristics can be adopted but their 
efficiency may be challenged. Inspired by artificial intelligence 
techniques, reinforcement learning (RL) might be promising to 
realize efficient On-MTP. In this regard, a comparative study of 
heuristics and RL can be carried out to investigate the efficiency 
of On-MTP and provide insights for QKD network operations.   

Our previous work presented a RL based On-MTP solution 
for QKD networks [39], which outperforms conventional 
heuristics in terms of tenant-request blocking probability and 
secret-key resource utilization. This paper further extends our 
preliminary work [39] by providing a more comprehensive 
formulation of the On-MTP problem and performing a 
comparative study of heuristics and RL based On-MTP 
solutions. Several quantum key pools (QKPs) [40], [41] are 
constructed over the QKD network infrastructure to improve the 
management efficiency for secret keys. The major contributions 
of this work are four-fold: 1) we model the secret-key resources 
for QKPs and the secret-key demands of TRs using distinct 
images; 2) we present three heuristics, i.e., random, fit, and 
best-fit (BF) based On-MTP algorithms; 3) we introduce a RL 
framework to address the On-MTP problem for QKD networks, 
where an On-MTP algorithm is automatically trained with RL; 4) 
we perform a comparative evaluation of heuristics and RL based 
On-MTP solutions considering two QKD network types in 
terms of tenant-request blocking probability and secret-key 
resource utilization. 

The remainder of this paper is structured as follows. Section 
II reviews the related work. Section III describes the problem 
formulation, where the network architecture, network model, 
and objective are given. Three heuristics are presented to realize 
On-MTP for QKD networks in Section IV. A RL framework is 
introduced in Section V to solve the On-MTP problem. A 
comprehensive result analysis of heuristics and RL for On-MTP 
is carried out and discussed in Section VI. Finally, we conclude 
this work in Section VII. 

II. RELATED WORK 

This section briefly reviews the QKD networks from different 
perspectives, including the deployment, management, and 
operation of QKD networks. Typically, a QKD network first 
needs to be deployed in the field, then managed/controlled by 
the owner/operator, and operated during its lifetime to provide 
services for users. The point-to-point QKD mechanism is not a 
focus in this paper and its details can refer to [41]. Moreover, 

our study in this paper is not bound to any specific QKD 
implementation options or QKD protocols.  

A. QKD Network Deployment 

From the perspective of QKD network deployment, several 
fiber-based QKD networks (e.g., SECOQC [26], Tokyo [27], 
SwissQuantum [28], and Beijing-Shanghai [14] QKD networks) 
have been successfully deployed, and a satellite-based QKD 
network has been experimentally validated [13]. Each of the 
newly deployed QKD networks is a trusted repeater QKD 
network that uses the trusted repeater to extend QKD distance. 
On the other hand, a quantum repeater [42] that can forward the 
quantum signals without measuring or cloning them is still not 
mature, and hence has not yet deployed in the field. Accordingly, 
the trusted repeater QKD network is adopted in this paper. In 
deployed QKD networks, dedicated channels are typically 
needed to transmit the quantum signals, which can protect 
quantum signals by minimizing impacts of interference caused 
by intensive signals for classical data transmission. However, 
dedicated fibers are expensive and scarce, which may limit the 
practical deployment of QKD networks. In recent years, the 
desire to reduce the capital expenditures of QKD network 
deployment has motivated the research of QKD integration with 
classical networks, where both of physical-layer performance 
and network-layer performance are taken into account. In order 
to improve the physical-layer performance such as secret-key 
rate and achievable distance, a number of analytical studies [30], 
[43], system experiments [31], [34], [36], and field trials [33], 
[44] have been carried out. On the other hand, several resource 
assignment strategies have been proposed to optimize the 
network-layer performance such as blocking probability and 
resource utilization when QKD coexists with the classical 
networks [32], [35]. In [45], [46], the protection and recovery 
schemes were described for resilient QKD-integrated classical 
networks. In [47], cost-efficient QKD networking approaches 
were presented to minimize the deployment cost.  

B. QKD Network Management 

From the perspective of QKD network management, software 
defined networking (SDN) and QKP techniques are promising 
to enhance the management efficiency for QKD networks. SDN 
holds a programmable and flexible centralized control manner 
to provide efficient and easy management for QKD networks. In 
[48], it was demonstrated that SDN can reduce costs in a QKD 
network for time-sharing of the available resources. In [49], 
SDN was introduced in a QKD network to provide real-time 
monitoring of quantum parameters, e.g., secret-key rate and 
quantum bit error rate. In [37], SDN is adopted to achieve 
effective and flexible MTP over a QKD metropolitan network. 
In [50], the end-to-end key on demand service provisioning over 
a SDN-controlled QKD network was demonstrated. In [44], 
SDN was combined with machine learning to achieve dynamic 
and optimal wavelength allocation for both quantum and 
classical channels. Meanwhile, with regards to QKP technique, 
several QKPs were constructed to enable on-demand secret-key 
volume allocation for control channels and data channels in a 
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software defined optical network [40]. In [41], a time-scheduled 
scheme was proposed for QKP construction to efficiently 
schedule QKD over classical networks. Also, the QKP 
technique is adopted in this paper. 

C. QKD Network Operation 

From the perspective of QKD network operation, several 
cost-effective patterns and use cases have been presented. On 
one hand, the concepts of multi-tenancy [37]–[39] and QKD as 
a service [51] were proposed to improve the cost efficiency for 
QKD network operations. In [38], the Off-MTP problem was 
addressed for QKD networks by combing a secret-key rate 
sharing scheme with an Off-MTP algorithm, but the 
performance metrics were not optimized. In [37], the 
establishment, adjustment, and deletion of multiple TRs over a 
SDN-enabled QKD metropolitan network were experimentally 
demonstrated. In [51], a new concept of QKD as a service was 
proposed where multiple users can obtain their required 
secret-key rates from the same QKD network infrastructure by 
applying for their dedicated QKD services. On the other hand, 
QKD can be adopted in several use cases, e.g., data service 
security enhancement [35], [40], physical-layer attack 
mitigation [49], security enhancement of SDN control [52], 
energy efficiency improvement for Internet of things [53], and 
virtual network security enhancement [54], [55].  

This study targets multi-tenancy for QKD network operation 
and concentrates on addressing one of important problems in 
future QKD networks, i.e., On-MTP. All the requests in the 
currently deployed QKD networks are statically planned, 
whereas the On-MTP for QKD networks is highly demanded to 
improve network agility and its associated problem needs to be 
solved in the future. Moreover, this paper extends our 
preliminary work presented in [39] by elaborating a formulation 
of On-MTP problem as well as a comprehensive comparison of 
presented heuristics and RL based On-MTP solutions.   

III. PROBLEM FORMULATION 

In this section, we introduce the network architecture, 
describe the network model, and define the objective to 
formulate the On-MTP problem for QKD networks. The QKD 
network type considered in this work is a backbone network or a 
metropolitan network. Several examples of QKD backbone and 
metropolitan networks can be found in [14]. As noted before, 
each QKD backbone or metropolitan network is a trusted 
repeater QKD network in this paper.    

A. Network Architecture 

Figure 1(a) illustrates a network architecture for multiple TRs 
over the QKD network, comprising three layers, namely, 
deployment layer (DL) representing the QKD network 
infrastructure, management layer (ML) where QKPs are located, 
and operation layer (OL) that handles multiple TRs. This 
network architecture is shown in Fig. 1(a) at a logical level and 
its three layers are detailed as follows. 

In the DL, QKD network infrastructure that consists of 
several QKD nodes (QNs) interconnected by QKD links is 

deployed. Also, several intermediate nodes equipped with 
trusted repeaters are placed along the QKD links to extend the 
QKD distance. Each QN or intermediate node is trustable in a 
trusted repeater QKD network. A QN acts as the endpoint to 
multiple TRs, whereas there is no TR generated or terminated at 
the intermediate node. The detailed structure of a QN or an 
intermediate node can refer to [38], which mainly consists of 
one or more QKD senders and receivers as well as a secret-key 
server. An example of the structure of a QN is shown in Fig. 
1(b), illustrating the location of the QKD sender, QKD receiver, 
and secret-key server. In practice, a point-to-point QKD link 
can be established by connecting a QKD sender to a QKD 
receiver, thereby the point-to-point secret keys can be derived 
from this QKD link and stored in the corresponding secret-key 
servers. Additionally, an end-to-end QKD connection can be 
established by relaying the point-to-point secret keys from the 
source QN to the destination QN in a hop-by-hop manner. For 
example, the point-to-point secret keys are derived from the first 
hop (i.e., the first QKD link between the source QN and the first 
intermediate node), and then are encrypted and decrypted with 
the secret keys in the secret-key server of each intermediate 
node between source and destination QNs. The secret keys 
derived from the end-to-end QKD connection are referred as 
end-to-end secret keys. In principle, these end-to-end secret 
keys can achieve information-theoretic security with the aid of 
one-time pad cryptographic algorithm for encryption and 
decryption [56].  

In the ML, several QKPs are located and constructed to 
improve the management efficiency for secret keys derived 
from the QKD network infrastructure. The four stages (i.e., 
secret-key exchange, storage, assignment, and destruction) 
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Fig. 1.  (a) Network architecture: multiple TRs over the QKD network; (b) QN 
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during the overall lifetime of secret keys are described in [38], 
which are all handled in the QNs across the QKD network in a 
distributed manner. The security of secret keys is assured since 
they are not delivered across different physical locations. That is, 
the secret keys derived from a QN can be delivered to a TR only 
when the QN is co-located with this TR. A QKP is constructed 
between two QNs to manage the secret keys in a pair-wise 
manner, which can acquire the secret-key rate information (i.e., 
the generation of secret keys in bits per second) from the 
corresponding two QNs, but it cannot access the real secret keys. 
In practice, all the QKPs in the ML can be implemented using a 
SDN controller, that is, secret-key management can be 
implemented in a centralized manner. 

In the OL, multiple TRs arrive dynamically. As an example, 
the Beijing-Shanghai QKD network holds numerous real-world 
applications in banks and insurances [14], where each TR can 
be triggered by a bank or an insurance company for high 
security. A TR needs to obtain secret keys from several specific 
QNs in the QKD network within its duration. The number of 
specific QNs required corresponding to the secret-key demands 
of each TR can be different. For instance, TR1 has one 

secret-key demand between QN1 and QN4 corresponding to 
QKP1-4, whereas TR2 has three secret-key demands among QN1, 
QN2 and QN3 corresponding to QKP1-2, QKP1-3 and QKP2-3.  

B. Network Model 

The network model is described according to the network 
architecture shown in Fig. 1(a). Table I lists the notations and 
their definitions used in this paper. We model a QKD network 
topology as G(N, L), where N and L denote the sets of QNs and 
QKD links in the QKD network, respectively. We assume that 
several intermediate nodes have been deployed along the QKD 
links for secret-key relay during the network deployment phase, 
while the number of intermediate nodes does not affect MTP 
and hence is not considered in this work. A QN corresponds to 
an endpoint of multiple TRs within a single node physical 
location. We model a QKP as Qi-j between a pair of QNs i and j 
(i < j, i ≠ j), while the set of QKPs over the QKD network is 
denoted by Q. Based on the definition of the QKP, its total 
number over a QKD network can be expressed as: 

 1

2

 


N N
Q                               (1) 

where |N| represents the total number of QNs.  
In particular, we use an image to model the secret-key 

resources for each QKP between a pair of QNs, as shown in Fig. 
2(a). The total number of images used to model secret-key 
resources for QKPs over the QKD network is equal to |Q|. The 
row and column of each image represent time and secret-key 
resource, respectively. There are many normalized rectangles in 
an image, where the vertical length and horizontal length for a 
rectangle are defined as one time step (denoted by t) and 
secret-key resource unit (denoted by 1 unit) that can 
accommodate a TR, respectively. The white rectangle denotes 
free (i.e., the secret-key resource unit is unoccupied at this time 
step), while a rectangle filled with other colors (besides white) 
represents occupied. The distinct colors of occupied rectangles 
represent different TRs accommodated by the QKD network, 
while the same color represents a TR with secret-key demands 
corresponding to several specific QKPs. Moreover, we assume 
that the time-step length in each image is the same (denoted by 
T), and the secret-key resources derived from a pair of QNs (i.e., 

 
TABLE I 

NOTATIONS AND DEFINITIONS 

Notations Definitions 

G(N, L) QKD network topology 

N Set of QNs in the QKD network 

L Set of QKD links in the QKD network 

Q Set of QKPs over the QKD network 

Qi-j QKP for a pair of QNs i and j (i < j, i ≠ j) 

t One time step 

T Time-step length in each secret-key resource/demand image 

K Secret-key capacity for a QKP at each time step 

R Set of total incoming TRs over the QKD network 

r(nr, dr, tr) A TR 

nr Set of QNs corresponding to the secret-key demands of r 

dr Set of secret-key demands of r 

tr Duration of r 

qr Set of QKPs corresponding to the secret-key demands of r 


r

i j
d  Secret-key demand of r between QNs i and j at each time step 

M Scheduling capacity for TRs at each time step 

Rm Set of the first M TRs in the buffer at each time step 

Rs Set of total accepted TRs over the QKD network 

Kr Total secret-key demands of r at each time step 

tc Current time step 

Rv Set of TRs that can fit the free secret-key resources for QKPs 


ct

i j
K  Free secret-key resources between QNs i and j at tc 

Dr Matching degree between r and free secret-key resources 
ct

u
R  Set of rejected TRs at tc 

U Total operation time of the QKD network 

BPTR Tenant-request blocking probability 

RUSK Secret-key resource utilization 

E Cumulative discounted reward over time 
γ  Discount factor 

ε
ct

 Reward at the current time step tc 

CR Cumulative reward over time 
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Fig. 2.  Network model: (a) secret-key resource images for QKPs; (b) secret- 
key demand images for TRs. 
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secret-key capacity for a QKP) at each time step is the same 
(denoted by K units).  

Meanwhile, we model a TR as r(nr, dr, tr), where nr denotes 
the set of specific QNs corresponding to the secret-key demands 
of r, dr represents the set of secret-key demands of r, and tr is the 
duration of r. The set of total incoming TRs over the QKD 
network is denoted by R. Let qr represent the set of specific 
QKPs corresponding to the secret-key demands of r. Then, the 
number of specific QKPs required corresponding to the 
secret-key demands of r can be expressed as:  

 1

2

 
 r r

r

n n
q                               (2) 

where |nr| represents the number of QNs required corresponding 
to the secret-key demands of r.  

On the other hand, we also use images to model the secret-key 
demands of TRs, as depicted in Fig. 2(b). The number of images 
used to model the secret-key demands of r is equal to |qr|. The 
size of each secret-key demand image for a TR is the same as the 
size of secret-key resource image for a QKP, which can 
facilitate the scheduling of TRs and the assignment of secret 
keys to TRs. The images with distinct colors (besides white) 
represent the secret-key demands of different TRs, whereas the 
same color depicts the secret-key demands of a TR 
corresponding to several specific QKPs. For example, r1 (|nr1| = 
2, |qr1| = 1) has a duration of three time steps (tr1 = 3t), and needs 
two units of secret-key resources (dr1 = {2} units) corresponding 
to Q1-4 at each time step, whereas r2 (|nr2| = 3, |qr1| = 3) has a 
duration of two time steps (tr2 = 2t), and needs two, one and 
three units of secret-key resources (dr2 = {2, 1, 3} units) 
corresponding to Q1-2, Q1-3 and Q2-3 at each time step, 
respectively.  

It should be noted that the image used to model secrete-key 
resources and demands is equivalent to a 2-dimentional matrix. 
As the image is illustrative to represent resources and demands, 
this data structure is selected in this study as many recent works 
addressing other networking issues [57]–[59]. In this work, we 
assume that multiple TRs arrive dynamically at discrete time 
steps and can tolerate queuing delay. Hence, the incoming TRs 
first wait in a buffer, and then are scheduled according to the 
result of secret-key assignment as time proceeds. If no resource, 
the incoming TR is rejected. Given more and more secret-key 
demand images for TRs are generated in the buffer as time 
proceeds, we fix the scheduling capacity for TRs at each time 
step as M so that the TRs can be scheduled in a scalable way. 
That is, only the images for the first M TRs in the buffer are 
admitted at each time step, where the M TRs have not yet been 
scheduled and are inserted into a set Rm.  

C. Objective 

This work has an assumption that QKD network deployment 
and management have been implemented. Namely, the QKD 
network infrastructure has been deployed, over which QKPs 
have been constructed. Since QKD network operation is 
independent of the classical networks, only an independent 
QKD network is considered in this paper. We assume that both 

point-to-point and end-to-end secret keys can be derived from 
the QKD network infrastructure, thereby routing schemes are 
not considered for TRs. In the On-MTP problem, the scheduling 
of multiple TRs and the assignment of secret keys to TRs are 
considered.  

Specifically, two objectives are considered in the On-MTP 
problem for QKD networks: 1) to minimize the tenant-request 
blocking probability (denoted by BPTR) and 2) to maximize the 
secret-key resource utilization (denoted by RUSK). These two 
objectives are elaborated as follows.  

1) BPTR is defined as the ratio of the total rejected TRs to the 
total incoming TRs over the QKD network, which can be 
expressed as: 

TR 1  s
R

BP
R

                                  (3) 

where Rs is the set of total accepted TRs over the QKD network. 
When the QKD network can accommodate as many TRs as 
possible, the value of BPTR (0 ≤ BPTR ≤ 1) is minimized. 

2) RUSK is defined as the ratio of the total assigned secret-key 
resources to the total secret-key resources derived from a QKD 
network, which can be expressed as: 

 
Algorithm 1: Random-Based On-MTP Algorithm. 
Input: G(N, L), Q, t, T, K, R, M, U. 
Output: Rs, Kr for each TR in Rs, result of On-MTP for the 
QKD network, updated secret-key resources. 

1: initialize Rs ← ∅; 
2: for tc = t to U do 
3: identify the TRs in Rm and the secret-key resource 

images for QKPs at tc; 
4: while secret-key resource images for QKPs have 

white rectangles at tc do 

5: if Rm ≠ ∅ then 

6: select a TR r(nr, dr, tr) from Rm randomly; 
7: determine the set of specific QKPs qr; 
8: search free secret-key resources for QKPs in qr; 
9: if free secret-key resources for QKPs in qr can 

satisfy the secret-key demands of r then 

10: insert r into Rs; 
11: assign the required secret-key resources to r 

using first-fit algorithm; 
12: compute Kr using Eq. (5); 
13: update the TRs in Rm and the secret-key 

resource images for QKPs at tc; 
14: else 
15: remove r from Rm; 
16: end 
17: else 

18: break; 
19: end 

20: end 

21: end 

22: return Rs, Kr for each TR in Rs, result of On-MTP for 
the QKD network, updated secret-key resources. 
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SK





 


s

r rr R
K t

RU
K U Q

                             (4) 

where Kr is the total secret-key demands of r at each time step, 
and U is the total operation time of the QKD network. When the 
secret-key resources in a QKD network can be utilized as 
efficiently as possible, the value of RUSK (0 ≤ RUSK ≤ 1) is 
maximized. Additionally, Kr can be calculated as follows: 

,




 
r

r

r i j

i j n

K d                                   (5) 

where 
r

i j
d  is the secret-key demand of r between a pair of QNs 

i and j at each time step.  

IV. HEURISTICS BASED ON-MTP 

In this section, according to the formulated On-MTP problem 
for QKD networks and the notations listed in Table I, we present 
three On-MTP heuristics to optimize the BPTR and RUSK. The 
presented three On-MTP heuristics are named as random, fit, 
and BF based On-MTP algorithms, which are shown in 
Algorithms 1, 2, and 3, respectively.   

For each time step in the three On-MTP heuristics, the TRs in 
Rm and the secret-key resource images for QKPs are first 
identified at the current time step. If the secret-key resource 
images for QKPs have white rectangles and Rm contains several 
TRs at the current time step, the TRs from Rm are selected to 

realize the scheduling of TRs. Otherwise time proceeds to the 
next time step. The main difference of the three On-MTP 
heuristics is a TR selection strategy. In the random-based 
On-MTP algorithm, TRs from Rm are selected randomly. In the 
fit-based On-MTP algorithm, TRs from Rm that can fit the free 
secret-key resources for QKPs are selected and inserted into Rv. 
Moreover, in the BF-based On-MTP algorithm, the matching 
degree between each TR in Rv and free secret-key resources for 
QKPs are evaluated. Here, the matching degree (denoted by Dr) 
between r and free secret-key resources is defined as the ratio of 
the secret-key demands of r to the free secret-key resources for 
specific QKPs in qr at the current time step, which can be 
expressed as:   

,

0 else

 
 


 

 



 c

r c

tr

i j i ji j n tr

i j i j
r r

d K
d K

D q              (6) 

where 
ct

i j
K  is the free secret-key resources between a pair of 

QNs i and j at the current time step tc. The value of Dr (0 ≤ Dr ≤ 

 
Algorithm 2: Fit-Based On-MTP Algorithm. 
Input: G(N, L), Q, t, T, K, R, M, U. 
Output: Rs, Kr for each TR in Rs, result of On-MTP for the 
QKD network, updated secret-key resources. 

1: initialize Rs ← ∅; 
2: for tc = t to U do 
3: identify the TRs in Rm and the secret-key resource 

images for QKPs at tc; 
4: while secret-key resource images for QKPs have 

white rectangles at tc do 

5: if Rm ≠ ∅ then 

6: search free secret-key resources for QKPs; 
7: select the TRs from Rm that can fit the free 

secret-key resources and insert them into Rv;  
8: if Rv ≠ ∅ then 
9: select a TR r(nr, dr, tr) from Rv randomly; 

10: call steps 10 to 13 in Algorithm 1; 
11: else 

12: break; 
13: end 

14: else 

15: break; 
16: end 

17: end 

18: end 

19: return Rs, Kr for each TR in Rs, result of On-MTP for 
the QKD network, updated secret-key resources. 

 

 
Algorithm 3: BF-Based On-MTP Algorithm. 
Input: G(N, L), Q, t, T, K, R, M, U. 
Output: Rs, Kr for each TR in Rs, result of On-MTP for the 
QKD network, updated secret-key resources. 

1: initialize Rs ← ∅; 
2: for tc = t to U do 
3: identify the TRs in Rm and the secret-key resource 

images for QKPs at tc; 
4: while secret-key resource images for QKPs have 

white rectangles at tc do 

5: if Rm ≠ ∅ then 

6: search free secret-key resources for QKPs; 
7: select the TRs from Rm that can fit the free 

secret-key resources and insert them into Rv; 
8: if Rv ≠ ∅ then 
9: determine the set of specific QKPs qr for each 

TR in Rv; 
10: compute the matching degree Dr between 

each TR in Rv and free secret-key resources 
using Eq. (6); 

11: select a TR r(nr, dr, tr) with highest matching 
degree from Rv;  

12: call steps 10 to 13 in Algorithm 1; 
13: else 

14: break; 
15: end 

16: else 

17: break; 
18: end 

19: end 

20: end 

21: return Rs, Kr for each TR in Rs, result of On-MTP for 
the QKD network, updated secret-key resources. 
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1) is equal to 1 when the TR can fit best the free secret-key 
resources for QKPs, but it is equal to 0 when the secret-key 
demands are larger than the free secret-key resources for QKPs. 
In the BF-based On-MTP algorithm, a TR with a higher Dr is 
given a higher priority to be selected. 

After the TR selection, the free secret-key resources for 
QKPs are checked whether the secret-key demands of the 
selected TRs can be satisfied in Algorithm 1, whereas this step 
is not performed in Algorithms 2 and 3 since the TRs that can fit 
the free secret-key resources for QKPs have been selected 
during the TR selection phase. When the secret-key demands of 
a TR can be satisfied, the required secret-key resources are 
assigned to this TR according to the first-fit algorithm. 
Currently, the feasibility and practicality of implementing the 
first-fit algorithm for secret-key assignment has been verified 
[38], [40]. Finally, when tc = U, the values of BPTR and RUSK 
can be calculated based on the returned results of the three 
On-MTP heuristics. 

The complexities of the presented three On-MTP heuristics 
are discussed as follows. In the worst condition, the 
complexities to handle one TR in Algorithms 1, 2, and 3 are 
O(K2· |Q|2), O(K· |Q|· (K· |Q|+|Rm|)), and O(K· |Q|· (K· |Q|+3· |Rm|)), 
respectively. It is obvious that the time complexity of the three 
On-MTP heuristics in a descending order is Algorithm 3 > 
Algorithm 2 > Algorithm 1.  

V. REINFORCEMENT LEARNING BASED ON-MTP 

Over the past few years, the RL has attracted increasingly 
attentions in machine learning research area owing to its success 
in solving complex decision-making problems [60]. In [60], a 
detailed survey and rigorous derivations related to the RL are 
provided. The On-MTP problem involves deciding whether or 
not a new TR should be accepted, which can be regarded as a 
decision-making problem. Accordingly, the RL might provide a 
viable alternative to heuristics for On-MTP, which performs the 
task of learning how an agent should take a series of actions in 
an environment in order to maximize the expected cumulative 
discounted reward. In this study, we introduce a RL framework 
to solve the On-MTP problem for QKD networks, as depicted in 
Fig. 3. In this RL framework, three steps are implemented as 
follows: 1) the RL agent observes the current state from the 
environment (i.e., QKD network) at each time step; 2) the RL 
agent picks an action at each time step; and 3) the state of the 
environment occurs transitions following the action and the 
environment returns the RL agent a reward that indicates how 

good the action is. The state transitions and rewards are 
assumed to possess the Markov property [61], which means that 
the future of the process only relies on the current observation. 
That is, the state-transition probabilities and rewards rely only 
on the state of the environment and the action picked by the 
agent [58]. The goal of this RL framework is to maximize the 
cumulative discounted reward (denoted by E) over time that can 
be expressed as: 

γ ε


  c

cc

U t t

tt t
E                             (7) 

where (0, 1]γ  is the discount factor, and ε
ct

 is the reward at 

the current time step tc. 
In order to use this RL framework for On-MTP, the state, 

action, and reward should be defined. The observed current 
state from the QKD network contains the current status of 
secret-key resources for all QKPs and secret-key demands of all 
TRs in Rm, which can be represented by the secret-key resource 
images and the secret-key demand images, respectively.  

The RL agent picks actions according to a policy. The policy 
contains a large number of possible {state, action} pairs, which 
is difficult to be stored in tabular form. Hence, a policy is 
commonly represented by a function approximator to overcome 
this difficulty [60]. The combination of RL and deep leaning 
(called deep RL [62]) has been successful in handling 
large-scale complicated tasks by using deep neural networks 
(DNNs) as function approximators [63], [64], but it is at the 
expense of complexity. Therefore, this study still considers a RL 
method and uses a simple neural network (NN) with one fully 
connected hidden layer to represent the policy (called policy 
network), as shown in Fig. 3. The three layers of this NN are 
detailed as follows. The first layer (called input layer) is given 
the input values, where all the images in the state space are 
collected as input to this NN. The values of the middle layer 
(called hidden layer) are a transformation of the input values by 
a non-linear parametric function [62]. The last layer (called 
output layer) provides the output values transformed from the 
hidden layer, which can output an action deciding to accept or 
reject a new TR. This NN can be trained using the 
gradient-descent method [57]–[60]. The gradient descent is 
used to move the policy parameters in a direction that can 
increase the reward. We can take the gradient of the cumulative 
discounted reward and update the policy parameters in the 
direction of the gradient. In this work, the NN is trained by using 
a variant of the REINFORCE algorithm introduced in [58]. 

Specifically, the RL agent can schedule multiple TRs at the 
same time step. In such a case, the action space will select a 
subset of the TRs from Rm to accept or reject. With each valid 
action, the required secret-key resources are assigned to the 
corresponding accepted TRs at the first possible time step using 
the first-fit algorithm, and then the agent observes a state 
transition and the new TR is scheduled. After picking a 
void/invalid action, time proceeds to the next time step and any 
newly arrived TRs are revealed to the RL agent. 

In this work, the discount factor is set to 1 [58], and then the 
goal of this RL framework is to maximize the cumulative reward 
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Fig. 3.  RL framework for On-MTP. 
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(denoted by CR) over time. CR is defined as the sum of rewards 
over time, which can be expressed as:  

ε


 cc

U

tt t
CR                                  (8) 

We define the reward ε
ct
 at the current time step tc to achieve 

the joint optimization for BPTR and RUSK, which is expressed as: 

ε 


 
 

 tc
u

c

r rr R

t

K t

K T Q
                              (9) 

where ct

u
R  is the set of rejected TRs at the current time step tc. 

The minimum value of BPTR and maximum value of RUSK can 
be obtained via maximizing the value of CR. This is because 
when the value of CR is maximal, the amount of rejected TRs is 
minimal, and the rejected TRs demand a minimum number of 
secret-key resources. Based on the introduced RL framework, 
an On-MTP algorithm can be automatically trained for QKD 
networks. 

VI. EVALUATION AND DISCUSSION 

In this section, we perform the simulation to comparatively 
evaluate the heuristics and RL based On-MTP solutions for 
QKD networks. Two QKD network types are considered in the 
simulation, i.e., QKD backbone and metropolitan networks. 
Figure 4 illustrates two realistic network topologies used in the 
simulation, namely 4-QN QKD backbone network topology 
(i.e., Beijing-Shanghai QKD network [14]) and 6-QN QKD 
metropolitan network topology (i.e., SECOQC QKD network 
[26]). As described in Section III, several intermediate nodes 
equipped with trusted repeaters have been placed along the 
QKD links during the network deployment phase, while the 
amount of intermediate nodes is not considered in this work. For 
example, the Beijing-Shanghai QKD network topology with 4 
QNs and 28 intermediate nodes is used in the simulation, such 
intermediate nodes are only used for secret-key relay in this 
study. The simulation is performed with a custom-built 
Python-based event-driven simulator. This simulator adopts 
NetworkX [65] to implement the graph representation of 
network model, and Keras [66] as the machine learning library 
to implement the policy network in the introduced RL 
framework. The Python code is written according to the network 
topology and the formulated network model to construct a QKD 
network in the simulator. 

The simulation settings for the two types of QKD networks 
are described as follows. The numbers of QKPs over the QKD 
backbone and metropolitan networks are 6 (|N| = 4) and 15 (|N| = 
6), respectively. In practice, the requests originated from real 
applications in the currently deployed QKD networks are not 
public, since the currently deployed QKD networks are 
typically for very specific purposes (e.g., military and banking) 
and the requests are highly confidential. The Bernoulli process 
is a commonly used request distribution for results verification 
in multiple network scenarios such as the 5G network [57], the 
computer network [58], and the multi-tenant network [67]. The 
QKD network is still immature so that it is difficult to obtain a 

specific request distribution. Hence, we select the Bernoulli 
process as the request distribution in the simulation for QKD 
networks, that is, multiple TRs arrive online following a 
Bernoulli process. The set of secret-key demands of each TR is 
set to [1, 10] units. The sets of specific QNs corresponding to 
the secret-key demands of each TR over the QKD backbone and 
metropolitan networks are set to [2, 4] and [2, 6], respectively. 
The duration of each TR is uniformly distributed within [5t, 10t]. 
The time-step length in each secret-key resource image or 
secret-key demand image is 20t. The secret-key capacity for a 
QKP at each time step is 20 units. The scheduling capacity for 
TRs at each time step is 10. The total operation time of each 
QKD network (i.e., simulation length) is 100t. In the introduced 
RL framework, the NN has a fully connected hidden layer with 
20 neurons, while the policy parameters are updated with a 
learning rate of 0.001 [58]. In the following we evaluate and 
discuss the comparative results of heuristics and RL based 
On-MTP solutions for QKD networks (including training and 
test results), where the training results are obtained using 20 
training sets of different TRs and the test results are averaged 
with 200 times repetition. The simulation runs on a computer 
with 3.7 GHz Inter Core i7-8700K CPU, 16 GB RAM, and 6 
GB NVIDIA GTX 1060 GPU. 

A. Training Results 

The training results of BPTR, RUSK, and CR as a function of 
training iterations for the RL based On-MTP solutions are 
depicted in Figs. 5–7, respectively. For comparison purpose, we 
also include the results for three On-MTP heuristics, although 
training iterations are not relevant. 

We consider two QKD network topologies, while the average 
TR arrival rate (i.e., average number of new TRs arrival at each 
time step) is set to 1.0. The training results for the RL-based 
On-MTP solution have been smoothed by deburring. It can be 
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Fig. 4.  Network topologies used in simulation: (a) 4-QN QKD backbone 
network topology (i.e., Beijing-Shanghai QKD network [14]) and (b) 6-QN 
QKD metropolitan network topology (i.e., SECOQC QKD network [26]). 
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observed that each of the three performance metrics (i.e., BPTR, 
RUSK, and CR) as a function of training iterations shows the 
same variation tendency on the different QKD network 
topologies. Hence, the scalability of our presented heuristics 
and RL based On-MTP solutions is demonstrated. In addition, 
these training results for the three On-MTP heuristics (i.e., 
random, fit, and BF based On-MTP algorithms) remain constant 
with the growing training iterations.  

As shown in Figs. 5–7, the BPTR, RUSK, and CR for the 
RL-based On-MTP solution at training iteration 1 demonstrate 
similarly to that for the random-based On-MTP algorithm, but 
they are improved (i.e., BPTR decreases, RUSK increases, and CR 
increases) with the increase of training iterations. From Figs. 
5–7 we can see the three performance metrics (i.e., BPTR, RUSK, 
and CR) for the RL-based On-MTP solution are better than that 
for the fit-based On-MTP algorithm after 1250 training 
iterations and better than that for the BF-based On-MTP 

algorithm after 5000 training iterations for both of the two QKD 
network topologies. This phenomenon reflects that the RL 
framework learns to accept more TRs and utilize the secret-key 
resources more efficiently with the growing training iterations, 
and consequently the trained RL-based On-MTP algorithm is 
improved. In particular, the three performance metrics for the 
RL-based On-MTP solution become stable after 30000 training 
iterations for both of the two QKD network topologies, 
indicating that the introduced RL framework converges after 
30000th training iteration. When the RL framework becomes 
converged, the RL-based On-MTP algorithm for obtaining the 
minimum value of BPTR and the maximum value of RUSK is 
successfully trained.  

Moreover, the average training time for RL-based On-MTP 
solution is 5.932 seconds per training iteration on the 4-QN 
QKD backbone network topology, whereas it is 14.654 seconds 
per training iteration on the 6-QN QKD metropolitan network 
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Fig. 5.  Training results of BPTR versus training iterations: (a) 4-QN QKD backbone network topology; (b) 6-QN QKD metropolitan network topology. 
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Fig. 6.  Training results of RUSK versus training iterations: (a) 4-QN QKD backbone network topology; (b) 6-QN QKD metropolitan network topology. 
 

(a) (b)

0 10000 20000 30000 40000

-113

-103

-93

-83

-73

-63

C
R

Training iterations

0 10000 20000 30000 40000

-105

-95

-85

-75

-65

-55

C
R

Training iterations

 RL    Fit

 BF    Random
 RL    Fit

 BF    Random

 
Fig. 7.  Training results of CR versus training iterations: (a) 4-QN QKD backbone network topology; (b) 6-QN QKD metropolitan network topology. 
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topology. The reason is that the numbers of secret-key resource 
images for QKPs and secret-key demand images for TRs on the 
6-QN QKD metropolitan network topology are larger than those 
on the 4-QN QKD backbone network topology. According to 
the simulation settings, the number of QKPs and the set of 
specific QNs corresponding to the secret-key demands of each 
TR over the 6-QN QKD metropolitan network are larger than 
those over the 4-QN QKD backbone network. Hence, the 
training time for the RL-based On-MTP solution increases when 
the size of a QKD network topology rises and the size of subsets 
of QNs corresponding to the secret-key demands of each TR 
becomes larger. In addition, the RL-based On-MTP algorithm 
needs only be trained once under a given average TR arrival rate 
for a QKD network, and retraining is required only when the 
QKD network topology or the average TR arrival rate changes 
notably. 

B. Test Results 

The test results of BPTR and RUSK versus average TR arrival 
rate for the three On-MTP heuristics and the RL-based On-MTP 
algorithm are compared in Figs. 8 and 9, respectively, where the 
two QKD network topologies are considered. The values of 
BPTR for the three On-MTP heuristics and the RL-based 
On-MTP algorithm are almost equal to 0 when the average TR 
arrival rate is lower than 0.7, during which the difference of the 
three On-MTP heuristics and the RL-based On-MTP algorithm 
is minor. Hence, the average TR arrival rate starts with the value 
of 0.7 in Figs. 8 and 9 for comparison purpose. It can be seen 

that BPTR and RUSK for the random, fit, BF, and RL based 
On-MTP algorithms increase with the rise of average TR arrival 
rate on both the two QKD network topologies, which results 
from the increase of the total number of incoming TRs and the 
total secret-key demands during the operation time of the QKD 
network.  

In terms of BPTR and RUSK on the two QKD network 
topologies, Figs. 8 and 9 illustrate that the BF-based On-MTP 
algorithm outperforms the fit-based On-MTP algorithm, and the 
fit-based On-MTP algorithm outperforms the random-based 
On-MTP algorithm. The reason is that the random-based 
On-MTP algorithm randomly schedules a TR, whereas the 
fit-based On-MTP algorithm only schedules a TR that can fit the 
free secret-key resources for QKPs, and the BF-based On-MTP 
algorithm always first schedule a TR that fits best the free 
secret-key resources for QKPs. In particular, it can be observed 
that the BPTR and RUSK for the RL-based On-MTP algorithm 
can outperform the three On-MTP heuristics on the two QKD 
network topologies. Thus, the scalability and effectiveness of 
our introduced RL framework for training an On-MTP 
algorithm are verified.  

Tables II and III list the BPTR and RUSK improvements of 
using the RL-based On-MTP algorithm relative to the three 
On-MTP heuristics on both QKD network topologies, 
respectively. The BPTR and RUSK improvements of the 
RL-based On-MTP algorithm versus the three On-MTP 
heuristics vary as average TR arrival rate changes. As illustrated 
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Fig. 8.  Test results of BPTR versus average TR arrival rate: (a) 4-QN QKD backbone network topology; (b) 6-QN QKD metropolitan network topology. 
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Fig. 9.  Test results of RUSK versus average TR arrival rate: (a) 4-QN QKD backbone network topology; (b) 6-QN QKD metropolitan network topology. 
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in Table II, the BPTR improvements of using the RL-based 
On-MTP algorithm relative to the three On-MTP heuristics 
decrease with the average TR arrival rate rising on the two QKD 
network topologies. For example, when the average TR arrival 
rate is 0.7, the BPTR improvements of using RL-based On-MTP 
algorithm are up to 60.0%, 79.6%, and 97.8% compared to the 
BF, fit, and random based On-MTP algorithms respectively on 
the 4-QN QKD backbone network topology, and 62.5%, 80.0%, 
and 97.6% respectively on the 6-QN QKD metropolitan 
network topology.  

In contrast, according to Table III, the RUSK improvements of 
the RL-based On-MTP algorithm versus the three On-MTP 
heuristics increase with the rise of average TR arrival rate on the 
two QKD network topologies. For instance, when the average 
TR arrival rate is 1.1, the RUSK improvements of the RL-based 
On-MTP algorithm are up to 2.73%, 6.13%, and 7.77% versus 
the BF, fit, and random based On-MTP algorithms respectively 
on the 4-QN QKD backbone network topology, and they are up 
to 3.05%, 7.18%, and 8.96% respectively on the 6-QN QKD 
metropolitan network topology.  

Therefore, the RL-based On-MTP algorithm can effectively 
obtain better BPTR and RUSK than the three On-MTP heuristics, 
since the introduced RL framework gradually learns and trains a 
more efficient On-MTP algorithm to achieve the better 
performance. 

VII. CONCLUSION 

In this paper, we address the On-MTP problem for QKD 
networks, where the scheduling of multiple TRs and the 
assignment of non-reusable secret keys to TRs are considered. 
The secret-key resources for QKPs and the secret-key demands 
of TRs are modeled with distinct images. A comparative study 
of heuristics and RL based On-MTP solutions for two types of 
QKD networks is performed, where the three On-MTP 

heuristics are presented and an On-MTP algorithm is trained 
using the introduced RL framework. Simulation results 
demonstrate the scalability and effectiveness of our presented 
heuristics and RL based On-MTP solutions. Based on the 
comparative evaluation of BPTR and RUSK, the BF-based 
On-MTP algorithm performs the best for On-MTP among all 
three considered heuristics. Moreover, the RL-based On-MTP 
algorithm can significantly outperform any tested heuristics, 
indicating that the introduced RL framework gradually learns 
and trains a more efficient On-MTP algorithm to optimize 
performance. We realize different QKD network topologies or 
different request distributions can lead to different results. 
Therefore, in the future given the requests originated from real 
applications in the practical QKD networks are available to be 
accessed we will also perform the real testing to verify the 
formulated network model, and carry out the comparative 
evaluation of the presented heuristics and the introduced RL 
framework in this work. 
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TABLE II 
BPTR IMPROVEMENTS OF RL-BASED ON-MTP ALGORITHM VERSUS THREE ON-MTP HEURISTICS 

 4-QN QKD backbone network topology 6-QN QKD metropolitan network topology 

Average TR 
arrival rate 

RL vs. BF 
(%) 

RL vs. Fit 
(%) 

RL vs. Random 
(%) 

RL vs. BF 
(%) 

RL vs. Fit 
(%) 

RL vs. Random 
(%) 

0.7 60.0 79.6 97.8 62.5 80.0 97.6 
0.8 59.0 77.7 89.2 58.2 77.6 88.2 
0.9 48.3 61.9 71.5 43.2 56.6 65.3 
1.0 43.7 54.0 61.4 40.8 51.5 57.7 
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