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1 Introduction

Non-integer (arbitrary) order calculus has been extensively studied by many researchers in the recent years.
The literature on the topic is now much enriched and contains a variety of results. The overwhelming interest
in this branch of mathematical analysis results from its extensive applications in modeling several real world
problems occurring in natural and social sciences. The mathematical models based on the tools of fractional
calculus provide more insight into the characteristics of the associated phenomena in view of the nonlocal
nature of fractional order operators in contrast to integer order operators. Examples include bioengineering
[14], physics [9], thermoelasticity [15], etc. Boundary value problems of fractional order differential equations
and inclusions have also attracted a significant attention and one can find a great deal of work on the topic
involving different kinds of boundary conditions, for instance, see [1-7] and the references cited therein.

Besides the equations involving only one differential operator, there are certain equations containing
more than one differential operators. Such equations are called multi-term differential equations, see [5, 12,
13, 16].
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In this paper we investigate a new type of boundary value problems of multi-term fractional differential
equations and nonlocal three-point boundary conditions. Precisely, we consider the following problem:

(az °DT** + ay DI + ao “DNx(t) = f(t, x(t)), 0<q<1, 0<t<1, o)
x(0)=0, x(n)=0, x(1)=0, 0<n<1, 2

where DY denotes the Caputo fractional derivative of order g, f : [0, 1]xR - Ris a given continuous function
and q; (i = 0, 1, 2) are real positive constants.

We prove the existence of solutions for the problem (1)-(2) by means of Krasnoselskii’s fixed point theorem
and Leray-Schauder nonlinear alternative, while the uniqueness of solutions is established by Banach fixed
point theorem. These results are presented in Section 3. An auxiliary lemma concerning the linear variant
of (1)-(2) and some definitions are given in Section 2. Section 4 contains illustrative examples for the main
results.

2 Basic results

We begin this Section with some definitions [10].

Definition 2.1. The Riemann-Liouville fractional integral of order T > 0 of a function h : (0, o) > R is defined
by
u

(u _ V)T—l

Wh(v)dv, u>o0,

I"h(u) =
0

provided the right-hand side is point-wise defined on (0, o), where I is the Gamma function.

Definition 2.2. The Caputo derivative of order T for a function h : [0, o) - R with h(x) € C"[0, oo) is defined
by

o
‘D"h(u) = F(nl— - / W ﬁ V)(r‘i)l—n dv=T"h"W), t>0,n-1<1<n,
0

Property 2.1. With the given notations, the following equality holds:
I*(°D™h(w)) = h(u) - co - C1U... — Cpou™ L, u>0, n-1<7<n, (3)
where c; (i = 1, ..., n — 1) are arbitrary constants.
The following lemma facilitates the transformation of the problem (1)-(2) into a fixed point problem.
Lemma 2.1. Foranyy < C([0, 1], R), the solution of linear multi-term fractional differential equation
(a; ‘D% + a1 ‘DIt + ag ‘Dx(t) = y(t), 0<q<1, 0<t<1, (4)

supplemented with the boundary conditions (2) is given by

t s
. _ 1 (s—wat
@ x(t) = PRCTEE™) { O/O/LD(t) @ y(u)du ds

1 s
(s-wa?
+01(t) @(1) y(u)du ds (5)
o/o/

I'(q)

n s

(S - u)q71 } . 2

+02(t) D(n) y(wduds p, if a-4apas >0,
0/ 0/ I'(q)
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t s
i) x() - alz{ / / wio S0 du ds
0
1 s
+1/i1(t)//11’(1) F() y(u)du ds 6)
0

+1,b2(t) ‘I’(n) (s~ y(wduds p, if a% - 4apa, =0,
J ) I'(q)

t s
(ii) x(t) = { .O(t) y(u)du ds
/]

1 s B =
+(pl(t)//9(1)(s wi y(u)du ds @
00

I'(q)
n s (S
(D) / / o)
0 0

D(k) = e _em&=S) et 1 andn,

-ay - /a3 - 4apa, -ay + /a2 - 4apa,
’

-1
)) y(u)du ds}, if a% - 4agay <0,

where

my = , mp=
2a; 2a,

oy(0) = 12P20 = 2ap1(8) oy _ P18 ~mpa(t).

H u

H =717 = 7273/= Ot, t ®)
_ pm my

pr() - my(1-e™mH-my(1-e ), (8) = ™t - emat,
;nmlmz(mz - N .

= ma(1 - e™) - my (1 - ) by = my(1 - e™1) —my(1 - e™")

aymymy(m; - ml) aymimy(my — my)

y3 =€t -e™, yy =™l -e™,

P(x) = (k- 5)e™ ™, x=t, 1, and n,
(t - n)em™En — temt 4 pemn

lpl(t) = ’
4 ©)
0 (0) (1 - t)e™t+) 4 gemt _ om
2 = ’
A
A= -1)e™mD _pe™ 4 ™= 0, m= ;—Zl,
2
Q) = e *®IsinB(k-s), k=t, 1, and 1,
a=1 ay ﬁ— \/4(10612—6112
2a; ’
t t t) - t
01(6) = w491( ) - wzQz( ), 05(6) = w10:(8) - w301( )’
Q Q0
_ -at _ —-at o3
01(0) = B-Be coszﬁt 2oze smﬁt, 02(6) azﬁe"‘“ sin t, (10)
a’+f
_B-Be“cosf-ae“sinf
= 2+ B2 )
_ B-Be*"cosfn - ae™" smﬁn
a? + B2

w3 = axfe *sinPB, w, = aBe *"sinpn,
Q=wrw3 - wiwy=0.

Proof. Case (i): a? - 4apa; > 0.
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Applying the operator I on (4) and using (3), we get

[ (t- )0
I'(q)

(ayD? + a1 D + ag)x(t) = y(s)ds + c1, (11)

where ¢ is an arbitrary constant. By the method of variation of parameters, the solution of (11) can be written
as

m1(t s) (s -u)? a-1
x(t) = o™t + c3e™ mz—m1)/ (/ ne) y(u)du+c1>ds

t

— -1
az(mz—m1 /emz(f S)< : F(uq))q y(u)du+c1>ds, (12)

0

where m; and m, are given by (8). Using x(0) = 0 in (12), we get

X(t) - |:m2(1 - emlt) - ml(l - emzt):| te (emlt _ emzt)

aymimy(my — my)

_ 1 ml(t s) _ mz(t s) (s- )q—l
a(my - my) [/ ( (/ I'(q) (u)du> ds} ’ (13)

which together with the conditions x(1) = 0 and x(1) = 0 yields the following system of equations in the
unknown constants c¢; and c;:

1 S
. S O O A
C171 + €273 az(mz_ml)/(e e )( e y(u)du)ds
0 0

n s
1 . . s-u)i!
G+ e = S / (eml(” s) _ emaln S))( fs-w™ I‘(uq)) )’(u)du) ds
0 0

Solving the above system together with the notations (8), we find that

C = M[ /( M (1-5) _ oms(1- s) (/ (s- T ))11-1 (u)du> ds
_73/" (e"“(”’s) —e"’Z(”’S)) (/(s}é))qu(u)du> ds},

0 0
and
n
_ ' ml( -s) _ mz( s) (s—w?” 1
cy = azy(mz—ml){ 10/ 0 o (/ e )/(u)du> ds
1
mi(1-s) m,(1-s) (s- u)LF1 > :|
- e s ( = y(u)du |ds]|.
0/ ( ) O/ I'(q)

Substituting the value of ¢; and ¢, in (13), we obtain the solution (5). The converse of the lemma follows by
direct computation.
The other two cases can be treated in a similar manner. This completes the proof. O
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3 Existence and Uniqueness Results

Let € = C([0, 1], R) denote the Banach space of all continuous functions from [0, 1] to R equipped with the
norm defined by/||u|| = sup {|u(t)| : t € [0, 1]}.

By Lemma 2.1, we transform the problem (1)-(2) into equivalent fixed point problems according to the
cases (i) — (iii) as follows.
(i) For a,? - 4apasy > 0, we define

X = Jx, (14)
where the operator J : € - C is given by
t s
(s -w)?
(@x)(t) = { D(t) f(u, x(u))du ds
[ foatize
[ (- wi!
+01(8) @(1)~———f(u, x(u))du ds (15)
0/ 0/ I'(q)

n s

(s-—u)! }

+0,(t) D(n)——~—f(u, x(u)du ds 3,
0/ 0/ I'(q)

where @(-), 01(t) and 0g,(t) are defined by (8).
(ii) In case a2 - 4apas, = 0, we have
x = Hx, (16)

where the operator H : € > C is given by

T = { / / w(p© F(’")) Flu, x(u))du ds

_ag-1
(0 / / vf(l)%f(u,x(u))du ds a7

+l/)z(t)//‘l’(n)(s F(u))‘ fu, x(u)du ds},

where ¥(-), Y1(t) and ,(t) are given by (9).
(iii) When a;° - 4aga;, < 0, let us define

x = Xx, (18)
where the operator X : € > € is given by
(00 = —- / / a0 o ) =0T )du ds
rr(0) / / oW F(”)) F(u, x(w)du ds (19)

+<Pz(t)//9(n)(S Q) (u,X(u))du dS},

where Q(-), ¢1(t) and @, (t) are defined by (10).
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In the sequel, for the sake of computational convenience, we set

01 = max lo1(8)], 02 = max lo2(8)],
telo,1 telo,1

mz(l e™t) — m1(1 e™1t)

£ = max , (20)
te[o,ll] aymymy(my — my)
= - o 95 -1-_&
r(q+1){£+"”1+’7 "m}’ M= A Ty
1= max [11(6)], P2 = max [P0,
t€[0,1]1 telo,1]
_ 7 _1)p™m 1nd _ 1)pMn
u azmzl“(q+1){(1+"bl)((m 1)e +1)+1/J2n ((mn 1)e +1)}, 1)
((m -1)e™+ 1)
Hi=p= aym2I'(g+1) ’
®1 = max |p1(t)], @, = max |p(t)],
telo,1] 1 telo,1]
- ~ _ _ )
p= az(oz2+ﬁz)l'(q+1){(1“'01)(1 e cosf-(alpe smﬁ) 22)

+@,n7 (1 —e “cosfn - (a/B)e ™" sinﬁn) }
__(-e"cosp-(a/B)esinp)
pr=p ar(a?2 + B2 (g +1) ’
Before presenting our first existence result for the problem (1)-(2), let us state Krasnoselskii’s fixed point
theorem [11] that plays a key role in its proof.

Theorem 3.1. (Krasnoselskii’s fixed point theorem). Let Y be a bounded, closed, convex, and nonempty subset
of a Banach space X. Let F1 and F, be the operators satisfying the conditions: (i) F1y, + F,y, € Y whenever
y1,¥2 € Y; (ii) Fy is compact and continuous; (iii) F, is a contraction mapping. Then there exists y € Y such
thaty = F1y + Foy.

In the forthcoming analysis, we need the following assumptions:
(Ay) Ift,x) - f(t,y)| = £x -y|, forallt € [0,1], x,y € R, £> 0.
(A7) If(t, x)| < 9(t), forall (¢, x) € [0, 1] x Rand 9 € C([0, 1], R*).

Theorem 3.2. Letf : [0, 1] xR - R be a continuous function satisfying the conditions (A1) and (A,). Then the
problem (1)-(2) has at least one solution on [0, 1] provided that

(i) Ay <1 fora,? - 4aga, > 0, where A is given by (20);

(i) ¢u; < 1 for a;? - 4apa, = 0, where i, is given by (21);

(iii) ¢p1 < 1 for If a1 - 4apa, < O, where p1 is given by (22).

Proof. (i) Setting sup;c[o 1) |9(f)| = ||9|| and choosing

.9l
1= I'g+1)

{S +01m + "lqaﬂz}, (23)

we consider a closed ball By, = {x € C: ||x|| < r1}. Introduce the operators J; and J, on By, as follows:

G000 = s / / 00 Ol xwau as, e

0200 = ot s {ol(t) / / oSO xtw)du ds
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+02(1‘)//CD()1)(S e f(u,x(u))du ds}. (25)

Observe that J = J1 + J,. For x, y € B;,, we have
1d1x + a2y
sup |[(J12)(t) + (F29)(0)]

telo,1]

< 1 (s-
" ay(my - my) t:};pﬂ{//@(f) 4 ) e, xw)ldu ds

0,0 / / o) LI iyl du ds

+|Gz(t)l//®(n)(s e) \f(u,y(u))|du ds}

t

El 7 [ (emn - emien)
< sup {t e —et ds
a(my -my)I(g+1) te[OI,)l] 5

1 n
+|o1(8)] / (e”’zu’s) - eml(l's)) ds +n|o,(0)] / (emZ(”_s) - eml(”’s))ds}
0 0

.18l
I'(g+1)

{e +0171 + rz"om} <71,

where we used (23). Thus J1x + J,y € Br,. Using the assumption (A;) together with the condition /A, < 1, we
can show that J, is a contraction as follows:

1d2x = 2yl
sup [(@2x)(8) - (T2)(@®)]

tel0,1]

sup {m(t) / / o) O, x0) -,y ds

<
az(mz -my) telo,1]

+0200) / / o) - “) If(u,X(u))—f(u,y(u))ldudS}

1
, (1-s) _ _mi(1-s)
) su o1(0) /(emz _eMm )ds
ax(my -m)I'(g+1) te[OI,)ll {| 0 0
n
enfloa(o)] [ (em - e"“("'”)ds} =l
0

4 ~ ~
< Fa 1o UG flx -yl = Al -y,

Note that continuity of f implies that the operator J; is continuous. Also, J; is uniformly bounded on B;, as

H~9IIS

sup ’//(D(t)(s Q) f(u x(u))du ds| <

T4, (mz = m1) ¢eio.1]
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Now we prove the compactness of operator J;. We define sup; ,)co,1)« B,, If(t,x)| = f. Then,forO < t; <t <1,
we have

1(@12)(t2) - (31X)(t1)|

/ / @ (t2) - (1) (s ()) F(u, x(u))du ds

2(my - m1)

/ / o(t,) S W - ) . x(w)du ds

f {(t‘f _ tg) (m1(1 ety g eml(tz-m)>

~ aymymy(my - my)I(g +1)
+td (ml(e'"zt2 — My _ i, (e™b - emltl))} >0as t,-t; >0,

independent of x. Thus J; is relatively compact on B;, . Hence, by the Arzela-Ascoli Theorem, J; is compact on
By, . Thus all the assumptions of Theorem 3.1 are satisfied. So, by the conclusion of Theorem 3.1, the problem
(1)-(2) has at least one solution on [0, 1].

(if) Let us consider By, = {x € C : ||x|| < r2}, where sup;c[o 1] |9(t)| = ||9]| and

191

> W{(l + 17)1)((m -1)e™+ 1) + 17)2)1‘1 ((mn -1)e™ + 1) } (26)

Introduce the operators H; and 3, on By, as follows:

OG0 = - / / w0 9, xtwau ds, @)

S

1
(300 = alz{wl(t) / / w0 SO xtwhdu ds
0

n s
(s-
() 0/ 0/ w(n) F( ) W o w)du ds}. 28)
Observe that H = H; + H,. For x, y € By,, we have
[|Hax + Fy| = Sup [(FH1x)(0) + (Fay)(B)]

1 )5 -
T a t:}épﬂ{//‘l’(t F( ) |f(u,x(u))|du ds

1) / / p)E W o )  fu, y ()| du ds

(0 / / S 1O .y du ds}

t

[19]] q/ m(t-s)
< —20 _ su t? [(t-s)e ds
azl"(q + 1) tG[OI,:)l] ]

L 1
+Hpa (0] [ (1= 5)e™ Vs + [a(OIn? [ (n - s)em<n-s>d5}
/ [
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19|

= W{(l + 1711)(("1 -1)e™+ 1) + 17)2)]‘1 ((mn - 1)e™ + 1)} <1y,

where we used (26). Thus H;x + H,y € Br,. Using the assumption (A1) together with fu; < 1, it is easy to
show that 3, is a contraction. Note that continuity of f implies that the operator ; is continuous. Also, H;
is uniformly bounded on By, as

191

Hix|| = sup |[(Hix)()| s —————
[|FHax| te[ol,;)1]| 1 | a;m2I'(q +1)

{(m -1)e™ + 1}.
Now we prove the compactness of operator ;. For that, let SUP(, x)e(0, 1B, If(t,x)| = f. Thus, for 0 < t; <
t, < 1, we have

[(H1x)(¢2) = (FH1x)(t1))|

t1 s

g-1
/ / lP(tz) ‘P(tl))( F(“)) Flu, x(u))du ds

/ / ‘P(tz)(s ”) o x(w)du ds

f { q( mt mt mt mt m(t,-t1) m(t,—t1)
< ——— St {mthe " -mtie" t+e - 2-m(ta-t1)e" VY +e 21—1)
azmzl—v(q+1) 1 2 1 (2 1) )

+t§ (m(tz — t;)(eMt) _ gmita=ty o 1)} >0as t,-t; >0,

independent of x. Thus, ; is relatively compact on B;,. Hence, by the Arzela-Ascoli Theorem, HH; is compact
on B;,. Thus all the assumption of Theorem 3.1 are satisfied. So the conclusion of Theorem 3.1 applies and
hence the problem (1)-(2) has at least one solution on [0, 1].

(iii) Asbefore, letting sup,(o 17 9(¢)| = ||9] and

. 191 e
3_az(a2+/32)1"(q+1){(1+(p1)(1 e Cosﬁ (a/ﬁ)e smﬁ)

+on? (1 - e *cosfn - (a/B)e ™" sinﬁq) }, (29)

we consider By, = {x € C: ||x|| < r3}. Define the operators X; and X, on By, as follows:

K0 = L / / B F( ) (Ca) T, as}, (30)
)6 = - (pl(t) / / o) -wWT - )  u x()dus ds
+(p2(t)/ /Q(n (s I,(u)) f(u, x(w)du ds}. (31)

Observe that X = X, + X5. For x,y € By, as before, it can be shown that X, x + X,y € By,. Using the
assumption (A1) together with £p; < 1, we can show that X, is a contraction. Also, X is uniformly bounded
on By, as

I1K1x]| = sup |(Kyx)(8)] < 19

telo,1] ax(a? +p)I(g +1) (1-ecosp-a/pesinp).

Fixing sup(, efo, 1)<, If(t, x)| = f, we have

[(K1x)(t2) = (K1x)(t1)]
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< e B};)F(q D {t’{ ((a/ﬁ) sin B(t; - t1)e -t _ (a/B)sin ftre ™2 + (a/B) sin Bt e

+cos B(t, - t)e 1) _cos Bt,e ™ + cos ftre 0 ~ 1)
+t5 (1 ~ (a/B)sin B(t; - t)e™ ™) — cos (¢, - tl)e’“(tz’“)) },

which is independent of x and tends to zero as t, — t; » 0 (0 < t; < t, < 1). Thus, employing the earlier
arguments, X is compact on By,. In view of the foregoing arguments, it follows that the problem (1)-(2) has
at least one solution on [0, 1]. The proof is completed. O

Remark 3.1. In the above theorem, we can interchange the roles of the operators

(1) 3, and 3, to obtain a second result by replacing (A, < 1 with the condition:
le
I'(g+1) <%
(2) H; and J; to obtain a second result by replacing {u, < 1 with the condition:
H{(m-1)e™+1} <1:
a,m2I'(q + 1) ’
3) X1 and 3(2 to obtain a second result by replacing ¢p, < 1 with the condition:
{1-e“cosB - (a/B)e™® smﬁ}
ax(a? +B2)r(g+1)

Now we establish the uniqueness of solutions for the problem (1)-(2) by means of Banach’s contraction
mapping principle.

Theorem 3.3. Assume that f : [0,1] x R - R is a continuous function such that (A1) is satisfied. Then the
problem (1)-(2) has a unique solution on [0, 1] if

(i) A< 1fora,? - 4agas > 0, where A is given by (20);

(i) ¢u < 1 for ai? - 4aga, = 0, where y is given by (21);

(iii) £p < 1 for If a1 - 4apa; < 0, where p is given by (22).

Proof. (i) Let us define sup;[o 17 If(¢, 0)| = M and select x; > 1/1_7MM to show that JBx, C By,, where By, =
{x € C:||x|| < x1} and J is defined by (15). Using the condition (4;), we have

|f(ty X)‘ = |f(ty X) _f(t’ 0) +f(ty O)l < |f(ty X) _f(t’ 0)| + |f(X’ O)l
< {||x|| + M < (1 + M. (32)

Then, for x € By,, we obtain

13| = sup |JC)(®)]

telo,1]

t s
1 sup {//(D(t)(s |f(u,x(u))|du ds

<
az(mz -my) telo,1]
0

+|o1(t) |//(D(1)(S ne) \f(u x(uw))|du ds

+|o2(t) |//(D(n) F( ) \f(u x(u))|du ds}

¢
< (bxy + M) / mz(t -s) _ ml(t—S)) s ds
ay(my - my) te[o uly I'(g+1)
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1
q
Ho®) / (e —em ) F(qS %
0
n
my(n-s) _ ,mi(n-s) s4
o0 f (¢ ¢ )F(q+1)ds
0
< M{g + 0171 + nqam} = (txy + M)A < kq,

T I'(g+1)

which clearly shows that Jx € By, for any x € By,. Thus JBx, C Bx,.Now, for x, y € € and foreach t € [0, 1],
we have

[1(@x) - @)l =

ax(my - my) (o1

sup {//c‘b(t I‘( ) If(u x(u)) - f(u, y(u))|du ds

Ho(0) / / @) I, x0) -,y e ds

Hoa(0) / / 000 0 3 - ) ds}

t

¢ ( mo(t-s) ml(z-s)) s?
< ———— su e -e ds
a(mp - my) te[oﬂ] { 0/ Ir'g+1)

1
q
+\01(t)|/(e’"z(l‘s)_eml(l—s)) s
0

1"(q+1)dS

n
_ _ s
+‘0'2(t)|/ (emz(rl ) _ mn s)) s D dS}|X -yl
0

S T I G -yl = Alx- ),

where A is given by (20) and depends only on the parameters involved in the problem. In view of the condition
¢ < 1/A, it follows that g is a contraction. Thus, by the contraction mapping principle (Banach fixed point
theorem), the problem (1)-(2) with a,? - 4aga, > 0 has a unique solution on [0, 1].

y_]l/l{ . As in (i), one can show that H{Bx, C Bx,,

(if) Let us define sup;c[o q)|f(t, 0)] = M and select k, > T
where H is defined by (17). Also, for x, y € € and for each ¢t € [0, 1], we can obtain

[[(Fx) = (Fy)||
S
T aym2I'(g+1)
ullx -yl

{@+po(m-1em + 1) + Pan’ ((mn - De™ + 1) Hlx -]

where y is given by (21). By the condition ¢ < 1/u, we deduce that the operator K is a contraction. Thus, by
the contraction mapping principle, the problem (1)-(2) with a;? - 4aga, = 0 has a unique solution on [0, 1].
(iii) Letting sup;c(o,1) (¢, 0)] = M and selecting k3 > %, it can be shown that XByx, C By,, where
= {x € €: x| < x3} and X is defined by (19). Moreover, for x, y € € and for each t € [0, 1], we can find
that

[[(Kx) = (Ky)||
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Y4 R i Y
< az(az+B2)F(q+1){(1+¢1)(1—€ COSﬁ—(a/ﬂ)e Sll’lﬁ)

+pon?(1- ™ cos i - (/e sin fn ) }x - v
=tpllx-yl,

where p is given by (22). Evidently, it follows by the condition ¢ < 1/p that X is a contraction. Thus, by the
contraction mapping principle, the problem (1)-(2) with a;2 - 4aga, < 0 has a unique solution on [0, 1]. This
completes the proof. a

The next existence result is based on Leray-Schauder nonlinear alternative [8], which is stated below.

Theorem 3.4. (Nonlinear alternative for single valued maps). Let Y be a closed, convex subset of a Banach
space X and V be an open subset of Y with0 € V. Let G : V > Y be a continuous and compact (that is, G(V) is
a relatively compact subset of Y) map. Then either G has a fixed point in V or thereis a v € oV (the boundary
of VinY)and e € (0, 1) with u = eG(u).

In order to establish our last result, we need the following conditions.

(H1)There exist a function g € C([0, 1], R*), and a nondecreasing function Q : R* > R* such that |f(¢, y)| <
g®Q(lyll), v(t,y)e€lo,1]xR.

(H»)-(i, P) There exists a constant K; > 0 such that

K;

Tgla®yp > b =23 Pe{lppl
1

Theorem 3.5. Letf : [0, 1] xR = R be a continuous function. Then the problem (1)-(2) has at least one solution
on [0, 1]if

(a) (Hy) and (H,) - (1, A) are satisfied for a1 4aga, > 0;

(b) (Hy) and (H,) - (2, ) are satisfied for a1 4aga; = 0;

(c) (Hy)and (H,) - (3, p) are satisfied for a2 — 4aga, < 0.

Proof. (a) Let us first show that the operator J : € > € defined by (15) maps bounded sets into bounded sets
in € = C([0, 1], R). For a positive number {3, let By, = {x € C: ||x|| = {1} be a bounded set in €. Then we have

1G] = sup |dC)(8)]

telo,1]
S

¢
(s —w)?”
az(mz - m]_) tE[O 1] { 0//(D(t) F( ) |f(u; X(u))|du ds

q-1
+o1(0) / / o(1) F(“)) Flu, xGa)|du dis

IN

+|az(t)|//®(n)(s o \f(u x(u))|du ds}

t

Hg” Q((l) / m,(t-s) my(t-s) s?
—2 ==L sy e —-e ds
a(my; —my) te[og] ( ) I'(g+1)

IN

q
+|0‘1(t)|/ mz(l s) em1(1 s)) F(q5+ 1)d

n
_ _ s
+|02(t)|/ (emz(n s) _ gmn S)) T(q+ 1)ds}
0
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. lg1Q(6)

*Tgrp CTOTOR)

which yields

IgllQ({1)
T(g+1)

Next we show that J maps bounded sets into equicontinuous sets of €. Let t{, t, € [0, 1] with t; < ¢, and
y € By, where B, is a bounded set of €. Then we obtain

|dx|| = {5+0 mtn 0272}

[(@x)(t2) = (@x)(¢1))]

tls

/ / (t,) - @(tl)}( F(”)) F(u, x(u))du ds

<
az(mz -my)

(s—uw)i!
+ D(t))—————f(u, x(u))du ds
tl/ O/ I'(q)

S

1
(s-
+01(t2) - o1(t1) O(1)——=5— \f(u, y))|du ds
oo

(s-wit }
+02(t2) - 02(t1)] () ——=—5—If(u, y(u))|du ds
O/O/ I'(q)

f {(£9- ) (my(1 - ™) (1 - mti-t)

~ aymimy(my - my)I(g +1)
+t4 (ml(emzt2 — ™) _my(e™tb - emltl))
+|o1(t2) - 01(t1)|(m2(1 - ™) - my (1 - ™))
+01(62) - 01 ()N (ma(1 - €™ — my (1 - ™M)},
which tends to zero as ¢, — t; > 0 independently of x € B, . From the foregoing arguments, it follows by the
Arzela-Ascoli theorem that J : € - € is completely continuous.
The proof will be complete by virtue of Theorem 3.4 once we establish that the set of all solutions to the

equation x = 67x is bounded for 6 < [0, 1]. To do so, let x be a solution of x = 6Jx for 6 < [0, 1]. Then, for
t € [0, 1], we get

[x(®)] = [69x(8)|

t s
< 1 (s-
B aZ(mz - ml) tZ}(l)pl] { 0/ /(D(t) 1—-( ) ‘f(u X(u))‘dll ds

+o1(0) / / o(1)¢ F()  \fu, x(w)|du ds

+|02(t)\//(D(71)(S s |f(u,x(u))|du dS}

t
q
. llghiadix( sup /(emz(t—s)_eml(t—s)> ST s
a(my —mi) e ) I'(g+1)

Sq
+|01(t)\/ mZ(l s) _ gmi(1- s)) Tq~ 1)d
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n
q
+|o2(0)] / e gmins)) F(;+ 1)ds}
0
ligllQ(lxI) ~ a5
< 7F(q+ ) {€+0171 +n 0272}
= [igllQ(lixIDA,
which on taking the norm for t € [0, 1], yields
[1x]]
IIgIIQ(HXII)/l
In view of (H;) - (1, A), there is no solution x such that ||x|)/= K;. Let us set
U, = {X eC: HXH < Kl}

As the operator J : U; > C is continuous and completely continuous, we infer from the choice of U; that
there is no u € oU; such that u = 8J(u) for some 6 < (0, 1). Hence, by Theorem 3.4, we deduce that J has a
fixed point u € U; which is a solution of the problem (1)-(2).

(b) As in part (a), it can be shown that the operator H : € - @ defined by (17) maps bounded sets into
bounded sets in € = C([0, 1], R). For that, let {; be a positive number and let B;, = {x € C: [|x|| < {2} be a
bounded set in C. Then we have

[HG)

sup |H(x)(t)]
telo,1]

t s
(s -
aztg}gpﬂ{ / / (ST F() s x| du ds

(0]

IN

1 (6) / / p)E W F(“)) P, x(u))|du ds
0

(s -wit }
+2(8)| V() |f(u, x(u))|du ds
0/ 0/ I'(q)

¢ B (e 1) - e 1))

In order to show that H{ maps bounded sets into equicontinuous sets of G, let t{, t, € [0, 1] with t; < t, and
x € By,, where B, is a bounded set of €. Then we get

360(2) - G(¢)

f {q( mt mt mt mt m(t,—t1) m(t,—t1)
< ——— —Jtimbhe" P -mtie t+e t—e t-m(t, -t1)e? V +e 21—1)
aszF(q+1) 1 2 1 (2 1) )

+td (m(tz — tp)(eMbt) _ gmita=try | 1)}

_ 1
fla(t2) - 1(ty)] m(p-s) __ S7
e /(1—s)e s

m(n-s) s4

-s)e nee 1)ds,

_ n
fl2(t12) - P (t1)
il 1a2 2(ty /('1

which tends to zero as t; — t; > 0 independently of x € B,,. As argued before, H : € - C is completely
continuous. To show that the set of all solutions to the equation x = §3x is bounded for 6 < [0, 1], let x be a
solution of x = 8 x for 6 € [0, 1]. Then, for t € [0, 1], we find that

Ix(0)] = [03x(t)]
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S

t
< — (S
T a t:hl)pﬂ{o//lll O T F( ) |f(u,x(u))\du ds

1 s
(s- u)
+1 ()| Y(1)~——~5— |f(u, x(u))|du ds

ipa(0) / / S L9 xw) ds}

0 o )
. %{(1+¢1)((m—1)e +1) + o (Gmg - D™ +1) )
- gl Qi
Thus w S
FEDT

In view of (H;) - (2, ), there is no solution x such that || x|/= K. Let us define
U, = {x € C: x| < Kz}.

Since the operator H{ : U, - Cis continuous and completely continuous, there is no u € 0U, such that
u = OH(u) for some 6 € (0, 1) by the choice of U,. In consequence, by Theorem 3.4, we deduce that H has a
fixed point u € U which is a solution of the problem (1)-(2).

(c) As in the preceding cases, one can show that the operator X defined by (19) is continuous and
completely continuous. We only provide the outline for the last part (a-priori bounds) of the proof. Let x be a
solution of x = 0K x for 6 € [0, 1], where X is defined by (19). Then, for t € [0, 1], we have

x(0)]

10Kx(0)

IN

t
1 (s—uw)?"
aZBO//Q(t) e If(u,x(u))|du ds

1 s
_ -1
+\(p1(t)|//Q(l)%ﬁ(u,x(umdu ds

+\<p2(t)|//()(n)(s ey |f(u x(w))|du ds

Q N _a .
< az(a!g;‘|ﬁ2(;‘1)f(|2+ 1){(1 +(P1)(1 —-e“cosB-(a/B)e Slnﬁ)

+@on? (1 —e “cosfn - (afB)e” ™" sinﬁn)}
= |IgllQ(|x|)p,

which yields
[l

lgladixp °
In view of (H3) - (3, p), there is no solution x such that ||x|/= K3. Let us set

Us ={xeC: x| < K3}.

As before, one can show that the operator X has a fixed point u € Us, which is a solution of the problem
(1)-(2). This completes the proof. O
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4 Examples

Example 4.1. Consider the following boundary value problem

cn8/3 . ccps/3 ., 4 cp2l3 _ A < x| )
(“D®° +5°D°"° + 4 °D7°)x(¢t) 1502 1+‘X‘+cost,0<t<1, (33)

x(0) =0, x(3/5)=0, x(1)=0, (34)

Here,q =2/3,n=3/5,a, =1,a; =5, ap = 4, a% - 4aga, =9 > 0, A is a positive constant to be fixed later
and

_ A x|
f(t,x) = T+ 5) (71+|X| +cost).

Clearly
f (¢, x) - f(t, y)| < 0.04 Ajx - y|,

with ¢ = 0.04 A. Using the given values, we find that A = [(e + 011 + 190272)/T(q + 1)] = 0.67232, and A; =

A—ﬁ ~0.52953. It is easy to check that |f(¢, x)| < 2A4/(¢ + 5)% = 9(t) and ¢A; < 1 when A < 47.211678.

As all the conditions of Theorem 3.2 (i) are satisfied, the problem (33)-(34) has at least one solution on [0, 1].
On the other hand, /A < 1 whenever A < 37.184674 and thus there exists a unique solution for the problem
(33)-(34) on [0, 1] by Theorem 3.3 (i).

Example 4.2. Consider the multi-term fractional differential equation

(3°D'3/° + 6 D8/ +3<D3/%)x(t) = tzti : (sin t+tant x(t)), 0<t<1, (35)
supplemented with the boundary conditions
x(0) =0, x(2/3)=0, x(1)=0, (36)

Here,q=3/5,n=2/3,a,=3,a; =6,a0 =3, a% —4aga, = 0, Bis a positive constant to be determined later
and
f(t,x) = B ( sint + tan! x(t)).
’ t2+5

Clearly
|f(ta X) —f(t,)’)| <0.2 B|X_y|’

where ¢ = 0.2 B. Using the given values, it is found that y = [(1 + @1)((m - 1e™ + 1) + @mq((mn -

5 5 B ((m-1)e™+1) _
1)e™ + 1)/a,m“T'(qg+1)| = 0.59146, and u; = u - W ~ 0.29573. Further, |f(t, x)| <

B(2 +m)/2(t? +5) = I(t) and ¢u; < 1 when B < 16.907314. As all the conditions of Theorem 3.2 (ii) are
satisfied, the problem (35)-(36) has at least one solution on [0, 1]. On the other hand, ¢4 < 1 whenever
B < 8.453657. Thus there exists a unique solution for the problem (35)-(36) on [0, 1] by Theorem 3.3 (ii).

Example 4.3. consider the multi-term fractional boundary value problem given by

cn8/3 . cn5/3 . cn2/3 _ C |x] 1
(°D®2 + D12 + °D2)x(t) 7\/367<1+\X\+2>’ 0<t<1, (37)
x(0)=0, x(3/5)=0, x(1) =0, (38)

where, g =2/3,n=3/5,a; =1,a; =1,a¢ =1, a% —4aga, = -3 < 0, Cis a positive constant to be fixed later

and c | 1
X
flt, x) = V36 + 2 (1+ |X| * f)'
Clearly

If (&, x) - f(t,y)| < (C/6) [x -y,
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with ¢ = C/6. Using the given values, we have

1 N —a Y
= az(az+B2)F(q+1){(1+¢1)(1_e cosf - a/Be Sll’lﬂ)

+ @on? (1 -e “cosfn-alBe sinﬂn)} ~0.75392,

_(1-e“cosp-a/Be*sinp) B 5
o+ BT+ 1) ~ 0.37696. Also [f(t, x)| < 3C/2v36 + t2 = 9(t) and £p; < 1 when

C < 15.916808. Clearly all the conditions of Theorem 3.2 (iii) hold true. Thus the problem (37)-(38) has at
least one solution on [0, 1]. On the other hand, ¢p < 1 whenever C < 7.958404. Thus there exists a unique
solution for the problem (37)-(38) on [0, 1] by Theorem 3.3 (iii).

and p; = p

Example 4.4. Consider the following nonlocal boundary value problem of multi-term fractional differential
equation

Pt x| . 1
cp83 4 5°p33 4 4D x(¢) = +sinx+=), 0<t<1, 39
( (2} x/t+16(8(1+|x|) 8) 69
x(0) =0, x(3/5)=0, x(1)=0, (40)

where, g = 2/3,n = 3/5, a% - 4aga, =9 > 0, P is a positive constant and

Pt |x] . 1
f(t’X)_m(8(1+|x|)+smx+8)'
Clearly
Pt 1
t, s - = t ’
F60 < = (5 + 1) = 800U
Pt 1
ith g(t) = —, = = . Letting P = 2 and using th diti H) - (1, A7), find that
with g(t) ST Q(lx|p 4+||xH etting and using the condition (H,) - (1, A), we find tha

K; > 0.10102 (we have used A = 0.67232). Thus, the conclusion of Theorem 3.5 (a) applies to the problem
(39)-(40).

Example 4.5. Consider the following boundary value problem

1 xP? -t
3¢p13/5 + 6 D85 + 3 D3 )x(t) = +et), 0<t<1, 41
( w0 =5 (7555 7<) (1)
x(0)=0, x(2/3)=0, x(1)=0, (42)

where, g = 3/5,1 = 2/3, a? - 4apa;, = 0,

Ft0 - s A (o),

2VE+9\1+ [x]?
Clearly
1+e!
t, < = g(t s
If(t, x| 2Viio Qx|
-t
with g(t) = %, Q(|lx|) = 1. Using the condition (H,) — (2, u), we find that K, > 0.3943 (with u =

0.59146). Thus, the conclusion of Theorem 3.5 (b) applies to the problem (41)-(42).

Example 4.6. consider the following problem

3t 1 .
(CD®3 + <D53 4 <p2B)x(¢) = T (5 +smx), 0<t<1, (43)

x(0) =0, x(3/5)=0, x(1) =0, (44)
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Here, q = 2/3, 1 = 3/5, a3 - 4apa, = -3 < 0, and

flt,x) = 3t (1 + sinx).

t2+6\2
Clearly
601« o (5 + ),
with g(t) = t23+t6’ Qx| = % + ||x||. By the condition (H>) - (3, p), it is find that K3 > 0.30252 (with
p = 0.75392). Thus, the conclusion of Theorem 3.5 (c) applies to the problem (43)-(44).
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