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Abstract. A survey is given of the theoretical background for 
designing multi-terminal capacitor sensorsf' of several types, 
suitable for control of every physical quantity that can be related 
with the change in position of two carriers, covered with 
electrodes. Previously published investigations of capacitor 
sensors, are briefly mentioned, and a description of the 
capacitance bridge used and the results of investigations of a 
multi-terminal capacitor test model are given. The main 
conclusion is that the capacitor sensors described can be used in 
cases where reliability and sensitivity of laser interferometry and 
strain gauge measurements fail. 

1. Introduction 
Theoretical expressions for the description of the capacitance of 
a homogeneously filled capacitor can be collected in one basic 
expression: 

C = &f( G) 

where 
C is the capacitance in farads 
E is the permittivity of the material. filling the space of the 
capacitor, in farads per metre 
f(G) is a geometry-depending factor with the dimension of 
length in metres. 

The permittivity of the material is divided into two main factors: 
E O  the permittivity of vacuum, being a physical constant 
8.854.. . lo-'' Fm-' 
cr the relative permittivity of the material, filling the 
capacitor and being dimensionless (E~,,,,, = 1). 

In principle the most simple geometry depending factor f(G) 
is given by only one length, multiplied by a constant factor. 
However, a closer look into electricity shows that the presence 
of all conductors in the environment influences the capacitance 
between the two conductors, forming the capacitor. One of the 
first capacitors,to be constructed and investigated in the 19th 
century, was the parallel plate capacitor (figure l), consisting of 
two parallel plates with equal surfaces 0 and a separation 
distance d. 

In this case the geometry-depending factor f(G) is 
approximately given by 

f( G) = O/d. (2) 
This is only an approximation because fringes, surfaces of the 
back of the plates and connecting wires do contribute to the 
total capacitance between the two conductors. 

For the parallel plates capacitor Kelvin (Maxwell 1873) has 
given in principle the solution of this problem by introducing a 
third electrode, the guard-ring. This guard-ring encloses, in a 
coplanar way, one of the plate electrodes (the island electrode), 
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Figure 1. The simple parallel plate capacitor. 

while the other electrode is enlarged in its sideways dimensions 
(figure 2). If the width of the gap between the island electrode 
and the guard-ring is extremely small, compared with the 
electrode distance d, the capacitance C between the island and 
the opposite electrode can be calculated with high accuracy. 
using the ideal parallel plate capacitor formula: 

C = EO er Old. (3) 
Experiments by Moon and Sparks (1948), Brown and Bulleid 
(1 978) and theoretical and experimental investigations of the 
author (Heerens and Vermeulen 1975) give more details about 
the original Kelvin guard-ring capacitor. 

Figure 2. The Kelvin guard-ring capacitor. 

2. Theoretical background 
In order to achieve the rules for designing multi-terminall 
capacitors, one has to solve Laplace's equation in the concerned 
geometry. In geometries, where one of the three dimensions can 
be called infinite, compared with the other two, the Laplace 
equation has become a two dimensional and linear one. This 
equation can be solved in several electrode geometries by using 
complex function theory and conformal transformations. These 
calculations, followed by surface charge density calculations, 
finally result in capacitance calculations. Figure 3 shows the 
cross section of the capacitor geometry. where, according to 
principles formulated by Thompson and Lampard (1 956), 
present primary standards of capacitance are based on 
standardisation offices like NBS and the Canadian NRC. 

If the two possible cross capacitances per length 1 are equal, 
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Figure 3. Cross section of the Thompson-Lampard standard 
capacitor. 

then this capacitance is given by: 

C, = E O E ~ ( I ~  2/n)l. (4) 

The geometry factor in this equation corresponds to the most 
simple one mentioned before. However in practice. due to finite 
length of the capacitor devices, fringe effects do exist. 

Cylindrical and toroidal configurations with rectangular 
sectional shapes are geometries, where Laplace's equation is not 
linear and yet the solution in analytical form is of great 
importance. In the cases where the potential distribution on the 
boundaries is rotationally symmetrical, complete analytical 
solutions have been found by the author (Heerens 1976). 

Using analytical surface charge density calculations and 
capacitance calculations in a more universal form. calculations 
of several special capacitor geometries. including gap effects, are 
published by the author (Heerens 1979, Heerens et a1 1979). 

For practical capacitor sensor designs the following survey 
of special geometries is of importance (figures 4 and 5). The 
smallest circular cross capacitance in figure 4 is: 

where 11 and K1 are first order modified Bessel functions and 
where for pi and p2 they can be written as nRi/d and zR2ld 
respectively. The largest cross capacitance is: 

Ccz = Cci + EOE~R(R: - R?)/d. (6) 
If R I  =R2 =R,  after finite series expansions and the use of 
Euler-series, equations (5) and (6) result in: 

C, = w , ( l n  2/7i)27iR [ 1 + 0.000 043 507(d/R) 

-0.050 631 437(d/R)2 + . . .I, (7) 

which is in fact the circular analogon of the linear 

\ 

R- 

Figure 4. Radial cross sections of circular cross capacitors. 

Guard 
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Figure 5. Schematical view of practical cross capacitors. 

Thompson-Lampard capacitor, but now without fringe effects. 
The contribution of the (d/R) term is caused by the used finite 
series expansions, while in infinite series expansions the (d/R) 
term does not exist. 

The asymptotic expansions for extremely large value of R,  
compared with d. of the capacitance per length of arc 1 (as a part 
of the circle surrounding 277R) results in an equation similar to 
that of Lampard (equation (4)). 

The configuration, according to figure 5 is another 
interesting asymptotic expansion, derived from equations ( 5 )  
and (6) for large values of R I and Rz .  

Both capacitance equations are: 

Cc2 = (~o~~l /x){ ln[2  cosh(7ix/26)] + xx/2d} 

Cci = (~o&rl/7~){ln[2 ~ 0 ~ h ( n ~ / 2 d ) ]  - zx/2d} 

(8) 

(9) 

where 

x=R2 - R I ,  

with resulting special situation for x = 0: 

CCI = Cc2 = C, = w,l ( ln  2/74 (10) 

Rules for the dimensions of gaps and the limitation of the 
dimensions of parts of the electrodes can also be achieved in a 
fundamental analytical way. In practice this results in ratios like 
gapwidth/electrode-distance equal 4 and electrode-distancelside- 
way-limitations equal f for 1 PPM accuracies. Finally the places 
can be indicated where wires must be connected. without having 
influences on accuracy. 

All these rules result in calculation accuracies for capacitor 
sensors within the tolerances with which the sensors will be 
manufactured. 

3. Basic types of capacitor sensors and practical values of 
capacitances 
If the earlier mentioned rules for designing capacitor sensors are 
obeyed. the following basic types can be obtained: 

Parallel plate capacitor (figure 6(a)) 

Cpl= &o&rbl/d. (1 1) 

The capacitance CPl is reciprocal to the electrode distance d. 
Single cross capacitor (figure 6(b)) 

C,, = E O E ~ ( I ~  2/n)l. (12) 

The capacitance C,, is proportional to common length 1. 
Differential plate capacitor combination (figure 6(c)) 

Ci/Cz=dz/di. 
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Figure 6. Basic types of multi-terminal capacitors. (a),  Parallel 
plate capacitor; (b), single cross capacitor; (c), differential plate 
capacitor combination: (d), differential cross capacitor 
combination. 

The capaci;ance ratio C,/C2 is reciprocal to the ratio of local 
distances dl and d2, if dl is approximately equal dz. 

Differential cross capacitor combination (figure 6(d)) 

Cc2 - CCl = E o E r ( l / 4 X .  (14) 

The difference in capacitance Cc2-CEl is proportional to a 
sideways displacement x. 

Practical values of capacitance are 1-100 pF for parallel 
plate capacitors and 2 pF m-I for cross Capacitances. 

With modern capacitance bridge circuits, based on the use 
of ratiotransformers, capacitances of IO-' to lo-* pF can be 
measured. 

4. A survey of the capacitance bridge principle 
Basically the capacitor sensors are of the three terminal type, so 
a capacitance bridge circuit equipped for these kind of 
capacitors must be used. Either a single capacitor will be 
compared with an external standard capacitor or a two element 
differential capacitor will be connected with bridge terminals. 

Figure 7 shows the principles of a well dimensioned 
capacitance bridge. A low impedant Ac-generator G drives the 
primary winding of a 1 : 1 shielded bridge transformer T. The 
central tap C T  of the secondary winding is used as central 
ground. A decade transformer is connected between CT and one 
of the ends I of the secondary winding of the bridge transformer. 
The capacitor to be measured, C,, has one terminal 
connected with the other end C. One of the connectors of the 
reference capacitor C, is connected with the variable tap DT, 
positioned at place x of the decade transformer. The other 
connectors of both capacitors are together connected with the 
lock-in amplifier D, while all guard electrodes and shields are 
connected with CT. 

"Ill r 

Figure 7. Principle of three-terminal bridge circuit. 

Figure 7 can be substituted by the scheme of figure 8, where 
the parasitic capacitances are marked in dashed lines. Due to the 
low impedant voltage sources X V  and V, compared with all 
other impedances in the circuit, there is no influence of the 
parasitic capacitances CPl and Cp2, acting as loads for the 
voltage sources. 

If the bridge is used as zero-indicating instrument, by 

I T 

r -  
I 

'. . 

, 
* 

Figure 8. Basic bridge principle for elimination of parasitic 
capacitances. 
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Table 1. Summary of bridge/electrode connections for all six degrees-of-freedom operation modes. 

I 
A ]  

G D 

According 
type of See also Bridge terminals (figure 7) connected with electrode terminals 

(figure 9) capacitor part of 
Operation mode I C C T  DT Detector (figure 6) (figure I O )  

z i l x , y lp lane  

translation 
x-direction 
translation 
y-direction 
translation 
z-direction 
rotation 
around x-axis 
rotation 
around y-axis 
rotation 
around z-axis 

F E 
c 
I I r 

A , B , C , H , J  ? 

Permanent guard 

H 
y-  direction 

K r 
J 

---c x-direction zi ( x , y ip lone  

K 

t External standard capacitor connected with DT for reference measurements. 

making the detector current zero, the parasitic capacitance Cp3, 
acting as a shunt of the detector, only has an influence on bridge 
sensitivity but not on the accuracy. 

5. Design and investigations of a six-degrees-of-freedom test 
model, as an example 
Apart from the investigations of the use of this type of capacitor 
sensors in an absolute membrane differential pressure gauge by 
the author Heerens (1979), van Kessel and van der Straaten 
(1980) and in an absolute thickness monitor by Keizer (1980), a 
multi degrees-of-freedom capacitor sensor has been designed 
and investigated. 

U Permanent 1 
guard 

I 
y -  direction 

(b) 

Figure 9. Six-degrees-of-freedom capacitor design: 
(a), design of voltage driven electrodes surrounded by a guard; 
(b), design of detector electrodes surrounded by a guard. 

Figure 9 shows the design of that test model, where figure 
9(a) shows the geometry of the voltage driven electrodes, while 
figure 9(b) shows the geometry of the detector electrodes on the 
opposite electrode carrier. The electrodes are formed by vapour 
deposition on polished glass, followed by photolithography of 
the patterns and etching of gaps. Both electrode carriers are 
mounted in shielding boxes and, with optical positioning devices, 
supported by an optical rail system, suitable for laser 
interferometry. 

If electrodes D, E, F and G are connected with bridge 
transformer terminal C (see figure 7) and electrodes H and J are 
connected with the detector, while all other electrodes are 
connected with CT, a comparison with a standard capacitor in 
the other bridge arm as reference capacitor gives the 
measurement of the mean distance between the two electrode 
carriers. 

la )  (bi 

( c i  

le1 i f )  
m C o 1 - 1  m I o r C  oDT 0 Detector 

Figure 10. Schematic transparent top view of electrode 
connections for the six-degrees-of-freedom test model. (a), 
translation in x-direction (compared with internal reference); (b), 
rotation around x-axis; (c), rotation around y-axis; (d),  
translation in z-direction; (e),  translation in y-direction; (f), 
rotation around z-axis. 
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Also other connections of electrodes can be chosen and in 
fact all six degrees-of-freedom between the two electrode carriers 
can be measured. 

In table 1 a summary is given of bridge/electrode 
connections for all six degrees-of-freedom. Figure 10 gives a 
transparant top view of the formed capacitors per degree-of- 
freedom mode. 

In table 2 the performances of the test model are given. 

Table 2. Performance characteristics of the six-degrees-of- 
freedom test model capacitor sensor. 

Translation Resolution Range 
direction (nm) (") 

X 

Y 
z 

40 20 
11 6 
0.12 2.5 

Axis of Resolution in angle 
rotation (rad) (deg) 

X 

Y 
z 

5 x lo-* 2 x 
3 x lo-* 
5 x io-'  2 x  1 0 - ~  

The resolution in all modes is so good that small bending and 
torsion of the heavy and stable optical rail system, due to the 
temperature gradients and external momenta created, could be 
measured even in the situations where laser interferometry and 
strain gauge measurements do not give results anymore. 

6. Conclusions 
Basically the use of these capacitor sensors concern all physical 
quantities which, in some way, can be related with the change in 
position of two carriers, covered with electrodes, or with the 
change in dielectric properties of materials in the space between 
the electrodes. 

Several capacitor sensors for various applications have been 
designed and tested in the laboratory in the last few years. For 
these sensors there was full agreement between theory and 
practice within the manufacturing tolerances, even if relative 
tolerances of approximately 10 parts per million were used. The 
main conclusions are: 
(i) In most of the sensor designs there is a linear relation over the 
entire range between the quantity to be controlled and the output 
of the sensor. 
(ii) The input/output relation can be precalculated. 
(iii) Reference gauges can be built in the sensor itself, which 
increases stability, while the output signal becomes a 
dimensionless fractional number. 
(iv) Mixing of bridge systems with different bridge frequencies 
for simultaneous detection up to six-degrees-of-freedom with one 
modified sensor system is possible. 
(v) In comparison with laser interferometrical systems much 
smaller details can be measured (sometimes less than a 
nanometer) and the system is, due to linear input/output 
relations, easier to handle. 
(vi) In comparison with strain gauges the capacitor sensor 
system is much more sensitive and less temperature dependent. 
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