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ABSTRACT In order to address the unreasonable distributed corners in single threshold Harris detection

and expensive computation cost incurred from image region matching performed by normalized cross

correlation (NCC) algorithm, multi-threshold corner detection and region matching algorithm based on

texture classification are proposed. Firstly, the input image is split into sub-blocks which are classified

into four different categories based on the specific texture: flat, weak, middle texture and strong regions.

Subsequently, an algorithm is suggested to decide threshold values for different texture type, and interval

calculation for the sub-blocks is performed to improve operation efficiency in the algorithm implementation.

Finally, based on different texture characteristics, Census, interval-sampled NCC, and complete NCC are

employed to perform image matching. As demonstrated by the experimental results, corner detection based

on texture classification is capable to obtain a reasonable corner number as well as a more uniform spatial

distribution, when compared to the traditional Harris algorithm. If combined with the interval classification,

speedup for texture classification is approximately 30%. In addition, the matching algorithm based on texture

classification is capable to improve the speed of 26.9%∼29.9% while maintaining the comparable accuracy

of NCC. In general, for better splicing quality, the overall stitching speed is increased by 14.1%∼18.4%.

Alternatively, for faster speed consideration, the weak texture region which accounts for a large proportion

of an image and provides less effective information can be ignored, for which 23.9%∼28.4% speedup can

be achieved at the cost of a 1.9%∼3.9% reduction in corner points. Therefore, the proposed algorithm is

made potentially suited to uniformly distributed corner point calculation and high computation efficiency

requirement scenarios.

INDEX TERMS Harris, texture classification, interval categorization, classification matching.

I. INTRODUCTION

Image stitching represents a process of transforming partial

views into larger-scale views by features such as corner detec-

tion, registration, fusion and the likes. It is regarded as a

significant part of image processing and is extensively used

in motion detection, resolution enhancement, remote sensing

and medical imaging [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

At present, a majority of the stitching algorithms can be

classified into two groups: gray scale-based and feature-

based approaches, where the feature-based registration one

is preferred by researchers [2]–[4] for its affine invariance,

stability and excellent robustness. Corner points which pro-

vide maximum curvature in micro regions of an image are

usually taken as a comprehensive object descriptor, and the

Harris algorithm is commonly applied as prior step to provide

corner information as guidance for the following steps for

image understanding [5], [6]. Nevertheless, the number of
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Harris corner points derived from images varies significantly

depending on the threshold value setting, and the value needs

to be adjusted for different images [7]. To eliminate the

need for manually adjustment, a variety of different adaptive

threshold setting algorithms have been developed in the liter-

ature over the past decade. Li et al. [8] proposed an adaptive

threshold factor ‘ρ’ to adjust it to a reasonable value and the

Forstner operator is involved to identify the best feature point.

Cui et al. [9] suggested a Harris corner detection algorithm

based on Barron operator which is used to calculate the

image gradient, then centre B-spline function is applied to

smooth the image, and finally non-maximum inhibition and

corner sieving are performed to determine the real corner

points. The algorithm demonstrates strong anti-noise ability

and is effective in the extraction of corner points. An adap-

tive corner detection algorithm based on iterative threshold

calculation algorithm is put forward by Wang et al. [10] to

avoid cluster and pseudo corner, based on which desirable

results have been achieved in threshold setting and feature

extraction. Shen et al. [11] came up with a method to split

an image into several independent blocks and adopted an

iterative method to determine the appropriate threshold for

each block. Changan and Chilveri [12] proposed a Harris

corner detection algorithm for stereo image feature matching

and a threshold operator has been raised to obtain the upper

and lower threshold value.

Nevertheless, the detection with a single threshold usually

leads to an unreasonable distribution of corner points and

iterative searching incurs a substantial amount of compu-

tation cost. In order to address this problem, an adaptive

multi-threshold calculation approach based on image texture

complexity analysis and classification is proposed to generate

more uniformly distributed corner points. Firstly, images can

be segmented into four types of regions based on texture

complexity for all subsequent calculations. Secondly, the

approach to calculating different threshold value is proposed

for each texture region. Subsequently, Census algorithm,

interval sampling NCC and complete NCC algorithm are

employed in matching process for different regions rather a

singleNCC for computation efficiency. Finally, finematching

is performed with the assistance of RANSAC, and image

fusion is performed for image stitching. The experimental

results indicated in section III demonstrates corner point

distribution and computation performance by the algorithm

proposed in the paper.

II. FUNDAMENTAL

A. SINGLE THRESHOLD VALUE

Harris corner detection algorithm demonstrates the desirable

characteristics of high speed and high precision. Neverthe-

less, its threshold setting could make a direct impact on detec-

tion effect. To obtain corner points, single threshold value

is usually employed and compared to the corner response

function (CRF), which is indicated in equation (1):

CRF = det(M ) − k(trace(M ))2 (1)

where, det(M ) represents the determinant of the matrix

M (x, y), trace(M ) indicates the trace of the matrix, k denotes

the empirical constant which ranges from 0.04 to 0.06, and

M (x, y) refers to the autocorrelation matrix of the pixel (x, y),

as shown in equation (2):

M (x, y) =
∑

x,y

w(x, y)

[

I2x IxIy
IxIy I2y

]

(2)

w(x, y) = e
−(x2+y2)

2σ2 (3)

where: w(x, y) indicates a Gaussian window factor, as shown

in formula (3). Ix and Iy represent the derivatives in the

horizontal and vertical directions of the point in the image,

respectively.

However, the texture complexity varies from region to

region in an image. If a single threshold is employed, it has

a great possibility that the corner points are subjected to

suppression in the simple texture region and are made exces-

sive in the complex textures region, which tends to result in

unbalanced distributed corner points. With a low threshold

value, it is prone to the generation of pseudo corner points and

corner points cluster (as shown in Figure 1(a)). Otherwise,

a high threshold value will lead to much sparser distributed

corner points and makes it inadequate to describe the image

features (as shown in Figure 1(b)).

B. MULTI-THRESHOLD STITCHING BASED ON TEXTURE

CLASSIFICATION

Herein, a dynamically multi-threshold calculation algorithm

is proposed base on texture complexity to prevent the adverse

consequences resulting from themismatch between threshold

and texture complexity. In the subsequent image stitching

process, the corresponding algorithms are applied for differ-

ent textures to improve the speed. To analyze the crucial fac-

tor of texture in the algorithm, the input image is segmented

into multiple sub-blocks. The selection of the sub-block

size is detailed in Section III.A based on experiment and

5 × 5 pixel block is employed for the following discussion.

In each sub-block, the texture complexity can be described

by number ‘V ’ according to the gray histogram peaks. The

larger V value, the richer the image texture represented by

the sub-block. Otherwise, the flatter the texture is.

In this paper, four types of texture regions are involved

for multiple threshold value setting and subsequent matching

processing:

Flat Region (V = 1): there is only a single gray value for

the sub-block and no texture variation. This type of region

is incapable to provide any effective information for corner

detection. Thus, no corner points detection processing is

required for time saving.

Weak Texture Region (1 < V ≤ 5): texture variation

is extremely small which can provide less information on

corner points. Therefore, a smaller threshold is conducive to

increasing the number of corner points.
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FIGURE 1. Impact on corner detection by threshold value: (a) Small threshold; (b) Excessive threshold. ① : Pseudo corner points; ② : Corner clusters.

Middle Texture Region (5< V ≤ 15): the texture variation

is noticeable, and the effective corner points have a higher

likelihood of being detected with a medium threshold value.

Strong texture region (V > 15): the texture varies signifi-

cantly with a high probability to provide points information;

however, a larger threshold is deemed necessary to prevent

corner points clustering.

After the Harris corner detection, corner points matching

is required, in which NCC is one of the most commonly

used algorithms, and the correlation coefficient is calcu-

lated to estimate similarity of the corner points as shown in

formula (4):

NCC =

∑

i

[

I1(xi, yi) − Ī1
] [

I2(xi, yi) − Ī2
]

√

∑

i

[

I1(xi, yi) − Ī1
]2

√

∑

i

[

I2(xi, yi) − Ī2
]2

(4)

where: I1 and I2 represent the associated windows of the

corner points of two images, respectively. Ī1 and Ī2 denote

their average gray value.

The NCC algorithm exhibits various advantages such as

strong anti-noise ability and high precision. Despite this,

it requires heavy computation [13], [14]. In order to achieve

an optimal calculation efficiency in the corner points match-

ing stage, different matching algorithms are applied to differ-

ent texture region based on corresponding characteristics:

Flat Region: no matching processing is necessary.

Weak Texture Region: Census algorithm is classed as a

non-parametric transform matching method [15], which is

capable of excellent performance in large image noise and

illumination variation scenarios, which makes it suitable for

the weak texture region. In weak texture region, corner point

distribution is sparse and beneficial to avoid repetitive or sim-

ilar textures which are sensitive in Census algorithm [16]. The

overall flow for the algorithm is as follows: 1) A 0/1 sequence

is generated for a corner point window, where 0/1 represents

a given point that is large or less than the central pixel

respectively. 2) Similarity for corner points is determined by

Hamming distance of the sequence.

Middle Texture Region: for large matching window, it is

unnecessary for all pixels to be involved in NCC operation

[17], [18]. In order to expedite the calculation, the middle

texture region takes the same interval sampling approach,

bywhich the black dots is the pixels participating in the calcu-

lation and the white dots is discounted as shown in Figure 2.

FIGURE 2. Interval sample method.

Strong Texture Region: The texture information of this

region is complex, and each pixel has a significant influence

on the similarity calculation, which makes the complete NCC

operation imperative.

To avoid mismatching, the Random Sample Consensus

(RANSAC) is adopted to perform fine matching, and the

projection transformation matrix between two images is cal-

culated. Finally, the image is stitched by image fusion.

C. ALGORITHM FLOW

The algorithm flow is illustrated in Figure 3, which consists

of the four stages: preprocessing to segment image sub-block

for following steps, interval texture classification, multi-

threshold corner point calculation, corner points matching

and image fusion based on texture classification. The multi-

threshold corner detection algorithm mainly focuses on the

improvement made to the second and third stage.
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FIGURE 3. Harris corner detection flow chart based on image classification.

1) INTERVAL TEXTURE CLASSIFICATION

As the Harris corner points detection are closely associated

with the texture complexity, which is proposed to deter-

mine the multi-threshold value and the following steps.

Traditionally, texture information is usually provided by

descriptors for material classification, object recognition and

natural scene identification applications [19]–[22].

As the number of gray levels in a sub-block is closely

related to the texture gradient of a local region, texture clas-

sification based on the gray histogram for each sub-block is a

significant factor for the following flows. Though block-by-

block calculation provides accurate complexity information

about each sub-block, the amount of calculation required is

relatively large.

For images in practice, it has higher possibility for two

adjacent sub-blocks classified into the same texture region.

Taking advantage of this feature, an alternating interval cal-

culation approach is proposed for texture classification as

shown in Figure 4.

In the scan for texture classification, the calculation

pointer jump to the interval sub-block unit after calculating

a sub-block (as shown in the dark area of Figure 4). Then,

FIGURE 4. Interval texture classification.

a judgment is made as to whether two adjacent calculated

dark sub-blocks belong to the same texture type. If yes,

the intermediate white sub-blocks have a higher probability

of falling within the same texture region with its left and

right adjacent sub-blocks, and the texture characteristics are

directly assigned. Otherwise, there is a necessity to return and

calculate the texture complexity for the white block.

The process will continue to scan the entire image until

all sub-blocks are classified and marked as either flat, weak,

middle or strong texture regions.

2) MULTI-THRESHOLD CORNER POINTS DETECTION

In the stage, multi-threshold values are set in the order of

strong, middle and weak texture region.
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FIGURE 5. The original images: (a) and (b) Image of the mountain; (c) and (d) Image of the island;
(e) and (f) Image of the building.

Strong Texture Region: the region represents strongest

texture variation and it is necessary to impose limit on

the maximum corner point number to avoid cluster. Firstly,

a smaller threshold T0 is adopted to generate excessive corner

points. Secondly, the N th largest CRF is taken as threshold

for the region to reduce corner point number, where N is
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FIGURE 6. Impact of Sub-block on: (a) the mean of CRF of Std. Dev in four regions; (b) classification time.

FIGURE 7. Results for Interval texture classification.

parameter in relation to the strong region area defined by

linear equation (5):

n = aS + b (5)

where, S represents the total area of the strong regions. In

addition, coefficients a, b are determined by experiments

conducted on different scenes, and the recommended values

are 0.0053 and 43.12 respectively.

Middle and Weak Texture Region: the average mean square

error (MSE) (eq. (6)) is employed to determine threshold

value for the two regions.

D =
1

k

k
∑

s=1

√

√

√

√

1

m× n

m
∑

i=1

n
∑

j=1

(Ii,j − Ī )2 (6)

where k represents the number of sub-blocks, and m × n

indicates the sub-block size, Ii,j denotes the gray value of each

pixel in the sub-block, and Ī refers to the average value of the

sub-block gray values.

Eq. (7) is the empirical equation to decide the thresholds.

Tn =































0.1 × Tu 0 < Dn ≤
Du

3

0.4 × Tu
Du

3
< Dn ≤

2 × Du

3

Tu
2 × Du

3
< Dn ≤ Du

(7)

where: Tn and Dn represent the threshold and average MSE

for the two regions, respectively. Tu andDu denote the param-

eters of strong texture regions if the equation is applied to

calculate threshold for middle regions, or the parameters of

middle texture regions to calculate the threshold for weak

regions.
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Multi-threshold corner detection can be effective in

increasing the corner points of the weak texture area, main-

taining the corner points of the middle texture area, and

reducing the corner points of the strong texture area to avoid

clustering, which contributes to a more uniform distribution

of the corner points.

3) IMAGE REGISTRATION AND FUSION

In the next stage, corner points are registered and performed

by registration algorithm, precision matching was performed

by RANSAC method, and finer adjustment was made to

the weighted smoothing algorithm [23] to achieve smooth

transitions between the two images.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 5 presents an original image used in three sets of

stitching, wherein (a) and (b) are 515 pixels × 607 pixels;

(c) and (d) are 551 pixels × 521 pixels; (e) and (f) are

478 pixels × 467pixel.

A. SUB-BLOCK SIZE ANALYSIS

The choice of sub-block size must give consideration to

both the detected corner point distribution and computational

efficiency.

In respect of corner point distribution, as the CRF value is

indicative of the local texture complexity, the sub-block size

selection is expected to reduce the fluctuations, which are

assessed by using the mean of the CRF standard deviation

(Std. Dev) in each region. Figure 6(a) indicates the average

Std. Dev variation for images in panorama dataset [24]. It can

be found out that a larger block size results in a large average

Std. Dev., which suggests a large fluctuation in CRF.

In terms of computational efficiency as shown in

Figure 6(b), a large block size is conducive to lowering the

time cost of texture classification.

Therefore, it is recommended to choose a 5 × 5 or 6 × 6

sub-block size. In this paper, 5 × 5 sub-blocks are employed

for discussion simplification.

B. RESULTS FOR INTERVAL TEXTURE CLASSIFICATION

Taking Figure 5 (a), (c), (e) as an example, the results for the

interval texture classification are indicated in Figure 7. It can

be seen that the strong texture region represents the strongest

variation in an image, while the flat one fails to provide any

corner points information.

As mentioned above, an alternative calculation strategy

is applied to perform sub-block classification calculation.

Figure 8 shows the time enhancement and classification accu-

racy rate when the jump step is set to 1 and 2 as compared

to the non-jump calculation. It can be seen that the interval

calculation approach is capable to provide about 30% time

saving compared to the non-jumping one. Nevertheless, not

obvious further improvement is made if the jumping step is

greater than 1. Besides, a large jumping step would cause

the accuracy to decline. Therefore, it is recommended to

FIGURE 8. Time and classification accuracy statistics chart.

apply interval calculation method with step = 1, with both

efficiency and accuracy taken into account.

C. CORNER POINTS DISTRIBUTION

Figure 9 illustrates corner point distribution calculated by

the proposed (Figure 9(c), (f), (i)), the traditional Harris

algorithm (Figure 9(a), (d), (g)) and Cui’s algorithm [9]

(Figure 9(b), (e), (h)). For the traditional Harris and Cui’s

algorithms, corner points show a tendency to concentrate at

the complex texture regions, while simple texture regions

contain a smaller number of corner points. By reducing corner

points at the complex texture regions and increasing those at

the simple texture regions, the proposed algorithm is capable

to balance distribution of corner points. As a result, the algo-

rithm can provide a reasonable number of corner points, and

the distribution is made more uniform and reasonable, which

is conducive to improving the quality of image stitching.

Figure 10(a) illustrates the proportion of different texture

regions calculated of images listed in Figure 5 based the

algorithm in this paper. It can be seen that the proportion

of flat regions incapable to provide useful information is

low, while the strong texture regions which represent largest

variation account for about 20% to 30% of an image. Besides,

a major part of the image can be classified into the weak and

middle texture regions.

Furthermore, different regions make different contribution

to corner points Figure 10(b). Though it accounts for about

20% to 30% of an image, the strong texture regions provide

over 70% of the corner information. The weak texture regions

which generally occupy a large proportion of the image can

only provide less corner points information, for which calcu-

lation for the weak regions could be omitted for high speed

applications.

D. TIME CONSUMPTION

Following detection, the corner points need to be matched.

Multiple matching algorithms premised on the texture
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FIGURE 9. Corner detection results: (a), (d) and (g): Traditional Harris algorithm; (b), (e) and (h): Cui’s algorithm; (c), (f) and (i): The proposed
algorithm.

TABLE 1. Comparison between the multiple matching algorithms based on texture and NCC.

classification are compared against the single NCC, as listed

in Table 1. In terms of the number of the matched corner

points, the multiple algorithms show similarity to NCC.

Besides, the computation time for the proposed algorithm

is reduced as it only matches corner points belonging to

the same texture regions rather than the whole image.
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FIGURE 10. Proportion of: (a) Different texture region; (b) Corner point contribution.

TABLE 2. Times comparison table of each stage.

TABLE 3. Evaluation results summary: SSIM.

Furthermore, as the Census matching algorithm for weak

texture regions, interval sampling for general texture regions

and omitted calculation for flat texture regions can all

contribute to computation time, as a result of which the over-

all speed is increased by 26.9% ∼ 29.9% when compared to

single NCC.
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FIGURE 11. Calculation time vs number of searching times for NCC,
Interval sampling NCC and Census respectively.

The proposed algorithm as a whole is compared with

the Harris+NCC image stitching algorithm, as shown

in Table 2. It can be seen that the overall speed improves by

14.1%∼18.4% when detecting the weak texture regions for

higher image splicing quality purpose. Furthermore, the over-

all speed is increased by 23.9%∼28.4% by discounting the

weak texture regions. In contrast, the number of corner points

decreases by 1.9%∼3.9%.

The proposed algorithm is compared against the Harris +

NCC and Cui algorithms, as shown in Table 2. It can be seen

that the matching is the most time costive stage in the whole

process. For the most costive NCCmatching stage, it requires

O(M ×N ) to conduct search to find out the matching points,

for which M and N are the detected corner points of two

images waiting to be stitched. However, the proposed texture

segmentation limits the searching area, so that the searching

complexity areO(Mw×Nw),O(Mm×Nm) andO(Ms×Ns) for

weak,middle and strong texture regions respectively. Accord-

ing to the inequality (8), the the overall speed is improved

even if an additional texture classification stage is introduced.

M × N = (Mf +Mw +Mm +Ms)(Nf + Nw + Nm +Ms)

> MwNw +MmNm +MsNs (8)

where, the subscripts f , w, m and s represent flat, weak,

middle and strong texture regions respectively.

Besides, for a given correlation window size, the compu-

tational complexity for the NCC, interval NCC and Census

are O(1), as a result of which the matching time is linear to

the searching times as demonstrated in Figure 11. It also can

be seen that computational efficiency is boosted in the above

order.

E. IMAGE STITCHING RESULTS AND QUALITY ANALYSIS

The image matching results are presented in Figure 12 in

comparison to theNCC and Cui algorithms. It can be seen that

the proposed algorithm restricts matched points in complex

texture area and increases feature points in the weak and

middle ones, thus providing a more balance corner point

distribution.

FIGURE 12. The results of matching features detected by:(a) Harris+NCC algorithms; (b) Cui’s algorithm; (c) The proposed algorithm,
dot line: Middle texture regions, dashed line: Weak texture regions.
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TABLE 4. Evaluation results summary: PSNR.

FIGURE 13. Image stitching results: (a) Image of the mountain; (b) Image
of the island; (c) Image of the building.

The stitching result is indicated in Figure 13. Furthermore,

in order to assess the stitching quality proposed by using this

algorithm, SSIM [25] and PSNR are employed to conduct

test on images with no scale transformations in the panorama

dataset. The results are shown in Table 3 and 4. It is notewor-

thy that the stitching quality will be relatively poorer, if the

corner points in weak texture regions fail to be detected for

computational efficiency, which also indicates that feature

points from the regions also contributes to the image quality.

IV. CONCLUSION

In this paper, multi-threshold corner detection and region

matching algorithm based on texture classification are pro-

posed aiming at the unreasonable corner point distribution

caused by a single threshold value. In the multi-threshold

value calculation stage, the texture features of image sub-

blocks are judged based on gray histogram and then clas-

sified into four types, including strong, middle, weak and

flat texture regions. Furthermore, an interval calculation and

prediction strategy is introduced to the classification process

for improvement to computation efficiency. In the subsequent

image stitching stage, Census algorithm, interval sampling

NCC and complete NCC algorithm are employed to match

corner points based on the attributes of different texture

region, which can improves the speed by 26.9%∼29.9%

when compared to single NCC.

Due to distinct treatment for different texture regions,

the proposed algorithm is capable to provide more uniform

distributed corner points, and the overall stitching speed

of the algorithm improves by 14.1%∼18.4%. Furthermore,

the computation speed can increase by 23.9%∼28.4% for

sacrificing 1.9%∼3.9% corner points if the weak texture

region is discounted. Therefore, the algorithm has a massive

potential of applications where more uniformly distribution

of corner points and high computation efficiency are required.
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