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ABSTRACT Unmanned aerial vehicles (UAVs) are increasingly considered to act as base stations (BSs)

for the future wireless networks. Some of the crucial UAV-assisted network design challenges are the

network coverage, throughput, and energy efficiency. Therefore, fast, low-complexity, and efficient UAV

placement and resource allocation strategies are imperative. This paper presents a novel variable height

multi-UAV deployment strategy to exploit the 3D flexibility of UAVs as BSs. We propose a multi-tier

variable height UAV-based network deployment and compare its performance with the state-of-the-art

equal height deployment. Height optimization is performed to deliver energy efficiency and throughput

maximization for each cell. The results show that our proposed method is more energy-efficient in a multi-

cell UAV network than the most widely used height optimization method in the literature. In UAV networks,

users at the cell edges can receive very poor signal-to-interference-plus-noise ratio (SINR) levels due to

interfering UAVs. To cope with this problem, we adopt a fractional frequency reuse (FFR) scheme to

compensate low SINR levels. We optimize the SINR threshold corresponding to each cell to maximize their

spectral efficiency (SE), thereby improving the network’s area spectral efficiency (ASE). The numerical

results show that the proposed deployments provide significant gains in coverage density, SINR coverage

probability, rate coverage, and ASE compared to equal height benchmark scheme. As the number of UAVs

increases, the number of tiers need to increase to preserve the rate coverage of the network. Moreover, the

performance of the proposed variable height model is expected to converge to that of equal height cellular

design for a large number of UAVs.

INDEX TERMS Unmanned aerial vehicles (UAVs), signal-to-interference-plus-noise ratio (SINR), frac-

tional frequency reuse (FFR), area spectral efficiency (ASE), reinforcement learning (RL).

I. INTRODUCTION

T
HE use of unmanned aerial vehicles (UAVs) has been

extremely appealing for improving wireless communi-

cation systems. One of the primary reasons for the growing

popularity of UAVs is their interoperability and ability to

adapt to a variety of situations for both civilian and military

use [1], [2]. In comparison to terrestrial mobile networks,

UAV-assisted wireless networks have some significant advan-

tages. For instance, these networks can be rapidly deployed

for on-demand and emergency communications such as in

disaster-hit areas when conventional base stations (BSs) are

damaged by a disaster or in hotspot areas. Furthermore,

UAVs offer an inherent advantage in terms of a higher

probability for a line-of-sight (LoS) connection due to the

high altitude compared to the ground network infrastructure,

which can greatly improve the quality-of-service (QoS) of

the network. Moreover, these networks are adaptive in terms

of various parameters (i.e., height, locations, transmit power,

etc.) and the mobility of UAVs offers an additional degree of

freedom for flexible deployments, and thus, UAVs can offer

fast, on-demand wireless communications [3]. By contrast,

most of these advantages are not offered by the terrestrial BSs

due to fixed ground-based deployments.

UAV-assisted communication use cases can be classified
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into four main areas, namely relaying, information broad-

casting, data collection, and deployment optimization [4].

Deployment scenarios have attained a lot of attraction for

providing wireless coverage (e.g., [5]–[7]). Due to the limited

resource capability of a single UAV network, a multi-UAV

network is efficient for various missions [8]. The use of

UAVs is being practically realized now in the telecommu-

nications industry. For example, Qualcomm has tested the

operability of UAVs for the long term evolution (LTE) and

fifth-generation (5G) cellular applications [9]. Ericsson per-

formed trials for 5G interference management with drones,

previously they proposed connected drone testing as a fourth-

generation (4G) network solution [10]. As a result, 5G and

beyond 5G (B5G) wireless networks will be able to use UAVs

as an essential part of the next generation of mobile networks,

and UAVs are also envisioned to work as a single system [11].

A. RELATED WORK AND CONTRIBUTION

How to optimize the network’s coverage and throughput for a

given number of UAVs is a practical and interesting problem.

This wireless coverage problem using UAVs is studied by

Al-Hourani et al. [12] by utilizing a new air-to-ground (AtG)

channel model. The authors also determined an optimal UAV

height for maximum coverage of ground users. An iterative

algorithm is developed in [13] using block coordinate de-

scent and successive convex optimization to maximize the

aggregate statistical-QoS-guaranteed throughput of all users

by optimizing the UAV’s 3D position, power, and bandwidth

allocation with users’ different QoS requirements. Another

network reconstruction problem is investigated in [14], as-

suming that ad-hoc networks are impaired in the aftermath of

a disaster. The objective is to repair the network by adding

aerial wireless links with the help of UAVs.

Singh et al. [15] determined optimal and sub-optimal 3D

positioning of UAVs to maximize the network throughput.

Two strategies for UAV selection are proposed: harmonic

mean and best downlink signal-to-noise ratio (SNR). In [16],

multi-UAV deployment is considered to provide some design

guidelines for coverage performance in the presence of in-

terference by varying the UAV height in different working

environments to obtain best coverage configuration for a

given set of UAVs. An optimal 3D deployment of a hetero-

geneous set of UAVs is proposed by Namvar et al. [17] to

maximize wireless coverage in a rectangular coverage area.

The proposed algorithm discovers an optimal subset of the

available UAVs and their 3D placement to deliver maximum

network coverage.

Most of the existing literature considered UAV-assisted

networks based on the assumptions of a guaranteed LoS

connection (e.g., [18], [19]). Also, the use of directional

antennas is considered whereas effect of interference is often

neglected [20]. A similar optimal UAV deployment method

in a square region is proposed in [7], assuming all links

in the region were LoS and directional antennas are used

for coverage maximization. Another optimal UAV location

problem for the data rate maximization is considered by Li et

al. [21] assuming a stationary UAV and a ground user. Some

research studies have included interference considerations in

their analysis. For example, a multi-UAV interference coordi-

nation technique is proposed in [22] with joint trajectory and

power control for maximizing the aggregate total rate for a

given flight interval. Lyu et al. [23] presented an interference-

aware deployment policy for UAV-relays to compensate for

congestion and to reduce the outage probability.

Machine learning has recently received a lot of attention in

the area of UAV networks. For instance, a novel Q-learning-

based topology-aware routing protocol is proposed in [8] to

deliver reliable communications for flying ad hoc networks.

Arani et al. [24] proposed a space-terrestrial network us-

ing UAVs and satellites to solve the backhaul connectivity

problem of UAVs by using a reinforcement learning (RL)

framework to jointly optimize the 3D trajectory of UAVs, re-

source management, and user associations. A deep-RL based

method is proposed in [25] to maximize the UAV’s energy ef-

ficiency, considering both aerodynamic and communication

energy while ensuring the communication requirements for

each user and the backhaul link between the UAV and the

terrestrial BS.

For multi-UAV network deployments, equal-size circle

packing has been exploited for a variety of applications.

Mozaffari et al. [5] first proposed to employ equal-size circle

packing for the UAV deployments. As a function of UAV

height and directional antenna gain, a coverage probability

expression is also derived. A simple circular trajectory is

used in [26] to propose a trajectory initialization scheme

using equal-size circle packing for maximizing the mini-

mum average user rate. In a related study, an optimal UAV

placement algorithm is proposed to deploy UAVs using the

smallest enclosed circle problem for maximizing the users

covered with minimum transmit power [27]. Shakhatreh et

al. [28] maximized indoor wireless coverage using equal-size

circle packing in rectangular and square coverage regions

by covering one and then two sides of the same building.

The authors extended the study in [29] to cover a more de-

manding QoS environment. A circle packing based decision

mechanism in a square region is also proposed by Gao et al.

[30] for an AtG collaborative vehicular network to maximize

the coverage while minimizing the energy consumed by the

small drone cells. The work in [20] exploited three equal-

size circles to compare and contrast with hexagon packing to

exhibit an interplay among the radius, height and beamwidth

of practical UAV systems.

In emergency and hotspot circumstances, the need for a

low-complexity and efficient deployment strategy motivates

us to develop a systematic and rigorous UAV deployment

technique. The method should not only allow UAVs to

be deployed quickly but also enables simple UAV failure

handling. In this paper, we propose UAV-assisted network

deployments by exploiting the variable-size circle packing

using a tractable multi-tier approach to deploy a number of

UAVs in a circular coverage area. We compare the perfor-

mance of the proposed deployments with equal-size circle
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packing based UAV networks. The main contributions of this

paper are summarized as follows.

• We propose a UAV-based cellular network design us-

ing multi-tier variable-size circle packing to maximize

network coverage. We first introduce the two-tier UAV

design and then show that there is a tractable way

to extend the two-tier model to multiple tiers where

resource availability of the UAVs is taken into account.

• We provide a new method to optimize the height

of UAVs to maximize the average throughput of the

cells using an RL technique. Our approach provides

higher signal-to-interference-plus-noise ratio (SINR)

levels and lower flying heights than the state of the art

UAV height optimization method [12], [16], [17], [31].

• We develop a fractional frequency reuse (FFR) tech-

nique to manage the interference in the proposed

variable-height UAV based network. To the best of our

knowledge, this is the first paper where circle packing

and FFR have been exploited to manage interference

where omnidirectional antennas are used, contrasting

with [5], [7], [20] which only focused on equal-size

circle packing models using directional antennas and

with [17], where omnidirectional antennas are used

without modelling the interference. To this end, we

optimize the FFR cell partitions to maximize the area

spectral efficiency (ASE) of the network and compare

the optimal results of the models for a given set of

UAVs.

This paper is organized as follows. We introduce the

multi-tier UAV deployment configuration, describe the AtG

channel model and cell association policy in section II. The

two-tier UAV deployment design is elaborated in section III.

The RL based UAV height optimization method is detailed

in section IV. The aerial base station (ABS) transmit power

control and FFR based resource allocation policies and cell

partition optimization are presented in section V. The perfor-

mance evaluation metrics and relevant results are presented

and discussed in section VI. In section VII, an extension to

higher tiers is proposed and relevant results are presented. We

conclude the paper in section VIII.

II. PROPOSED SYSTEM MODEL

A. MULTI-TIER VARIABLE HEIGHT UAV DEPLOYMENT

Given the agility and mobility of UAVs, a major question is

how to deploy and adaptively manage a set of UAVs to best

cater for wireless traffic in a specific region under an emer-

gency or on-demand scenario. Therefore, we investigate the

problem of coverage maximization and resource allocation

for a number of ABSs M providing wireless coverage within

a coverage region of radius R. Considering the employment

of either omnidirectional or directional antennas at ABSs and

we address this problem by investigating three distinct sub-

problems:

1) User coverage maximization within the overall cover-

age region is studied by determining the coverage areas

of individual ABSs (i.e., position and area of individual

cells).

2) UAV height optimization is investigated for each ABS

to provide highest QoS for users within their deter-

mined cell areas.

3) An FFR scheme is developed to effectively manage

interference among neighboring cells and to enhance

average spectral efficiency (SE).

It is well known that the complexity of optimal UAV

placement increases with the number of UAVs. Furthermore,

research shows that for realistic path loss (PL) exponents the

cell shape is near-circular for directional and omnidirectional

antennas [32]. Hence, the first problem above can be formu-

lated as a circle packing problem. To address this, authors of

[5] considered the equal-size circle packing for multi-UAV

deployments using directional antennas. However, this model

inherently suffers from random uncovered areas as shown in

Figure 1(a).
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(b) Variable-size packing

Figure 1. An illustration of the optimal equal-size circle packing
and the proposed UAV deployment using variable-size circle
packing: Four random use cases for comparison.

To fully exploit the flexibility of UAV-based ABSs for 3D

deployment and noting that variable heights of ABSs map

into the variable size of their circular footprints, we investi-

gate variable-size circle packing problem in contrast to [5]. In

order to complete the 3D (x, y, z) deployment, the horizontal

coordinates (x, y) are represented by the center of the circles,

while the z-coordinate is defined by the height of an ABS.

However, assuming no constraint other than maximizing the

coverage area of the UAV network, the variable-size circle

packing problem may lead to extreme, impractical or non-

converging solutions, e.g., a very large ABS footprint in the

center while remaining footprints becoming very small. Here,

we propose a multi-tier variable height UAV deployment

solution, Figure1(b) depicts a top-down view of the proposed

scheme, where the size of the circles are constant in each

tier but they can change across tiers. The proposed approach

includes a single central UAV allocated to tier 1 and the rest

of UAVs being located around it in one or possibly more

additional tiers, while the neighboring circles in each tier

are tangential to each other. The proposed multi-tier ABS

deployments provide a systematic approach for the cellular

design while improving the coverage compared to the equal-
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size circle packing solution by exploiting the ability of UAV-

based ABSs to be deployed at different heights, completing

the cellular design of the UAV-based network. We then opti-

mize UAV heights according to the variable size of the cells

and devise an effective resource allocation scheme.

B. CHANNEL MODEL

We consider a realistic AtG channel model in this work where

PL on both LoS and non-LoS (NLoS) components of the

communication link is considered. The LoS probability is

defined as [33]

Pmk
LoS =

1

1 + α1 exp

(

−α2

[

180

π
arctan

(

hm
rmk

)

− α1

]) ,

(1)

where α1 and α2 are constant parameters which depend on

carrier frequency and the communication environment, hm is

the height of the mth ABS and rmk is the kth user’s ground

distance from the the projection of the mth ABS. Also, the

probability of the NLoS link Pmk
NLoS = (1 − Pmk

LoS). The PL

for both links can be independently defined as [12]

PLmk =























γ1

(

4πfc
√

r2mk + h2m
c

)η

, LoS link,

γ2

(

4πfc
√

r2mk + h2m
c

)η

, NLoS link,

(2)

where γ1 and γ2 (γ2 > γ1 > 1) are the excessive PL coeffi-

cients for the respective LoS and NLoS scenarios, fc is the

carrier frequency, η is the PL exponent and c denotes the

speed of light. Now, the average PL in the downlink that

considers both LoS and NLoS components can be stated as

PLav
mk = Pmk

LoSγ1

(

4πfc
√

r2mk + h2m
c

)η

+ Pmk
NLoSγ2

(

4πfc
√

r2mk + h2m
c

)η

.

(3)

Note that the average PL in (3) captures the effect of shad-

owing by incurring additional loss in the AtG link. We

ignore the impact of small-scale fading which is largely

ignored by several key studies on UAV networks including

[7], [34], [35]. As the circle packing based state-of-the-art

UAV deployments revolve around directional antennas as

a benchmark application, we first present the case when

directional antennas are employed. The position of each ABS

in any tier is a function of the antenna beamwidth θw, the

coverage radius rm, and the height hm, ∀m ≤M . Using the

ABS antenna’s half-power beamwidth θw, we approximate

the antenna gain as [36]

GD =

{

G0

θw
2 ,

−θw
2 ≤ φ ≤ θw

2 ,

g(φ), otherwise,
(4)

where G0

θw
2 is the directional antenna main lobe gain with

G0 ≈ 29000. Also, in practice 0 < g(φ) ≪ G0/θw
2,

we therefore assume, the antenna power gain g(φ) to be

insignificant outside the main-lobe, and it is ignored. Then

the received power for the kth user associated with ABS m
is given as

ζmk
r,d =

ζm
t
10

G0

10θ2w

(

L0(Q0

√

r2mk + h2m)η
) , (5)

where L0 = Pmk
LoSγ1 + Pmk

NLoSγ2, Q0 = 4πfc
c

, ζmt is the

transmit power of ABS m and the subscript d indicates the

directional antennas case.

For the omnidirectional antenna case, which is the main

focus of this work, the average PL is inverted [37], [33] to

obtain the average channel gain. Then, received power for

the kth user associated with ABS m can be expressed as

ζmk
r,o =

ζm
t

(

L0(Q0

√

r2mk + h2m)η
) , (6)

where subscript o represents the case involving omnidirec-

tional antennas.

C. USER DISTRIBUTION AND CELL ASSOCIATION

We consider K users are uniformly and independently

distributed inside the coverage area using homogeneous

Poisson point process which is obtained through a spatial

point process. The kth user’s random location is denoted

by (xk, yk). For the directional antenna case, considering

that the mth ABS is located at (xm, ym), then the user is

associated with ABS m when rmk ≤ rm, where rmk =
√

(xk − xm)2 + (yk − ym)2 is the ABS to user ground dis-

tance and rm = hm tan(θw/2). In case of omnidirectional

antennas, we consider a widely used cell association policy

known as reference signal received power (RSRP) due to the

flexibility it offers to the users. Since we adjust the transmit

power of each ABS relative to its cell size, unlike directional

antenna case the users located outside the ABS footprints

cannot be ignored. Therefore, the policy allows users to be

associated with an ABS that provides the strongest RSRP as

m∗ = arg max
m∈M

, RSRPmk. (7)

Let sk denote the selection of user k, we indicate whether k
is associated with ABS m using an indicator Imk as follows

Imk =

{

1, sk = m

0, sk 6= m.
(8)

Moreover, to facilitate the resource allocation we assign users

to a cell association vector Γm (when Imk = 1) to denote the

number of users and their location (xk, yk) information for

each ABS.
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III. TWO-TIER VARIABLE HEIGHT UAV-BASED

CELLULAR NETWORK

The two-tier UAV deployment is first introduced here before

being extended to multiple tiers of more than two in sec-

tion VII. In this model, we assume all ABS footprints are

tangential with neighboring cells to maximize the coverage

while limiting the inter-cell interference (ICI) based on the

non-overlapping design. This principle ensures a unique two-

tier solution for the UAV network when the number of ABSs

M ≥ 4 based on which the location of ABSs can be exactly

determined. Note that this unique solution coincides with the

optimal equal-size circle packing solutions for M = 7 but it

gives a variable height two-tier deployment in general.

Considering the coverage radii of ABSs in tier-1 and tier-

2 in Figure 2 to be rc and re, respectively, we can express

their relationship with the coverage region radius R as R =
rc + 2re. Using the central angle property for a chord that is

created between two tangent footprints of ABSs in tier-2, we

have

re =
rc sin(ϕo/2)

1− sin(ϕo/2)
, (9)

R = rc +
2rc sin(ϕo/2)

1− sin(ϕo/2)
, (10)

where ϕo = 2π/M2 is the central angle from the origin of

the coverage region and M2 is the number of circles in the

second tier, which is M2 = M − 1 for the two-tier network.

.
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Figure 2. Cell configuration for the proposed two-tier variable
height UAV network.

Solving for rc we get

rc =
1− sin(ϕo/2)

1 + sin(ϕo/2)
R, (11)

similarly,

re =
sin(ϕo/2)

1 + sin(ϕo/2)
R. (12)

The coverage density is defined as the area covered divided

by the total area. We can calculate the coverage density DV

for any number of available ABSs under two-tier network

model as

DV =
r2c + (M − 1)r2e

R2

=
1 +M sin2(ϕo/2)− 2 sin(ϕo/2)

(1 + sin(ϕo/2))
2 .

(13)

The coverage density DE for the equal-size circle packing

can be also calculated as a benchmark as [5], [38]

DE =
Mµ2

n

(2 + µn)
2 , (14)

where the optimal value of the variable µn can be obtained

by solving

π(
√

4− µ2
n + µn

√
3)

µn arcsin(µn/2)
+ 2
√
3(1−M) = 0, (15)

and the corresponding optimal radius of the equal-size circles

is given by

r0 =
µn

(2 + µn)
R. (16)

We employ quasi-stationary ABSs in this work; that is, the

position of these ABSs is not changed unless a redeployment

is initiated. It is crucial to find the horizontal coordinates

of the ABSs to ensure rapid deployment and also to avoid

collisions. For the two-tier network, the first UAV is placed

at the horizontal coordinates H1 = [0, 0] (i.e., the center of

the coverage area) as the tier-1 ABS and the rest of UAVs

comprise the tier-2 ABSs. The horizontal coordinates of tier-

2 UAVs (i.e., Hm, ∀ 2 ≤ m ≤ M ) can be calculated using

(11) and (12) as

Hm = Rp

[

cos(θr+ϕo(m−2)), sin(θr+ϕo(m−2))
]

, (17)

where Rp = rc + re, and θr can be randomly chosen in the

range [0, 2π]. Without loss of generality, we use θr = π/2
unless stated otherwise. Algorithm 1 summarizes the method

for the calculation of the position and radii of individual ABS

footprints for the proposed two-tier UAV cellular network

design.

Note that the coverage radii of a set of M ABSs can

be readily determined using (11) and (12) as a function

of the radius of coverage region for a two-tier network.

One can observe that the coverage footprint of the central

ABS increases with M . Therefore, we consider the UAV

allocated for the central ABS to be more resourceful in terms

of mechanical design and transmit power capability. This

VOLUME 4, 2016 5
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Algorithm 1: Proposed two-tier UAV cellular design

Input : Coverage area radius, R
Number of ABSs, M

Output: Horizontal locations of ABSs,

Hm(∀ 1 ≤ m ≤M )

cell radius for tiers 1 and 2, (rc, re)
initialize;

θr = π/2
Calculate angles ϕo = 2π/(M − 1)
Find re from (12), rc from (11) using ϕo, and R
Set H1 = [0, 0]
Find Hm from (17)

return rc, re, Hm(∀ 1 ≤ m ≤M ).

assumption is practical as this ABS can play an additional

role of coordination with the command and control center.

Nevertheless, practical constraints (e.g., maximum transmit

power, height, UAV’s mechanical design, etc.) may prevent

a substantial increase of the central ABS coverage footprint.

Therefore, in order to sustain a good overall user coverage

and throughput performance, we need to transition from the

two-tier network to a three-tier network (and eventually to n
tiers) when M increases beyond a certain value as will be

discussed later in section VII.

IV. ABS HEIGHT OPTIMIZATION USING

REINFORCEMENT LEARNING

In comparison to terrestrial links, the AtG links have inher-

ent advantages of lower PL exponents and reduced fading

effects but the longer link lengths can deteriorate the SNR.

These two contrasting effects can be balanced by adjusting

the heights of the ABSs. Our objective for the height opti-

mization is to maximize the average user QoS within each

cell measured by the average cell throughput, which can be

expressed as users’ achievable SE measured in bits/s/Hz. The

SE for the kth user covered by the mth ABS cell is given as

SEm
k = log2

(

1 +
ζmt /PLmk

IkT +Np

)

, (18)

where IkT andNp are the total interference caused by adjacent

ABSs and noise power, respectively. Note that the ABS’s

height and the interference it generates towards the other cells

are tightly coupled and this adds complexity to the height

optimization in a multi-UAV network [39]. Hence, the use

of SINR metric for rate calculations when simultaneously

optimizing the height of M ABSs is extremely challenging,

if not impossible. Consequently, following [16] we choose

the SNR metric and neglect the interference term in (18).

This assumption can be justified based on the FFR technique

proposed in the next section to substantially reduce the inter-

cell interference within the network.

Since coverage areas of the ABSs are predefined and users

are assumed to be uniformly distributed, the average number

of users in each cell is proportional to its size. Hence, we

formulate the problem to be independent of the number

of users and their individual locations by focusing on the

average user performance. As depicted in Figure 3, we make

the problem consistent with the cell size by dividing each

cell into several rings where the radius and width of the

jth ring are denoted by rj and ∆rs, respectively. There are

l = rm/∆rs total rings. Noting the radius of jth ring as

rj = ∆rs(2j + 1)/2, the area of the jth ring in the mth

ABS cell can be approximated as

Aj,m = 2πrj∆rs, (19)

and the average number of users in the jth ring can be

denoted by

Kj,m =
Aj,m

πr2m
Km =

2rj∆rs
r2m

Km, (20)

where Km is the total number of users located inside the

coverage footprint (i.e., rmk ≤ rm). Assuming all the rings

are assigned bandwidth proportional to their size (i.e., equal

bandwidth allocation among the users). Then, the bandwidth

assigned to the jth ring is given by

Wj,m =
Kj,m

Km

Wm, (21)

where Wm is the bandwidth assigned to each cell. The

average throughput of the jth ring can be stated as

Rm(rj) =Wj,mSEm(rj). (22)

Assuming that l is sufficiently large, the average cell

throughput of the mth ABS cell can be well approximated

by calculating the following summation

RABS
m =

l
∑

j=1

Rm(rj). (23)

sj r
0

( 1) sj r 
mr

jr

mh

sr

2

2

m

m

r
h

Figure 3. An illustration of an ABS cell divided into circular
rings with radius of jth ring rj and ring width ∆rs.

Finally, the optimal height hoptm can be obtained by solving
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the following optimization problem (OP) for each cell

hoptm = arg max
hmin≤hm≤hmax

RABS
m . (24)

The OP in (24) is not analytically tractable due to the

nonlinear objective function which depends on the average

PL of users at different locations. The lower bound of the

feasible set for this OP, hmin is defined as 10m [40]. Note

that, as height of ABS increases the received signal level at

all locations away from the cell center increases initially but

then decreases beyond a threshold. For a cell edge user, such

threshold denoted by hedgem would be highest among all users

within the cell. Hence, we use hedgem as the upper bound on

the height (hmax = hedgem ) for each cell as beyond this height

the PL for all users increases. In order to find hedgem , we first

convert (3) into the logarithmic form as

PLav
mk(dB) =

γ1 − γ2
1 + α1 exp (−α2 [θedge − α1])

+20 log

(

4πfc
√

r2m + h2m
c

)

+ γ2,

where θedge = 180
π

arctan(hm

rm
) is the elevation angle of

an edge user. Note that hedgem is the optimal height that

minimizes the PL of the edge user. Hence, by taking the

partial derivative ∂rm
∂hm

= 0 we obtain [12]

πhm
9ln(10)

+
rmα1α2γd exp (−α2 [θedge − α1])

(α1 exp (−α2 [θedge − α1]) + 1)
2 = 0, (25)

where γd = (γ1 − γ2). At an optimal elevation angle, the

coverage radius is maximized for a predefined PL value.

Equivalently, there is an optimal height at which the PL at

cell edge is minimized for a given coverage radius. Therefore,

we solve (25) to obtain hedgem , which is widely used for

determination of optimal height in UAV networks [12], [16],

[17], [31].

Here, we consider a computationally efficient RL algo-

rithm (see Algorithm 2) to determine the solution to the

OP in (24) for each ABS cell. In RL, an agent discovers

the best action (i.e., height) which yields the most reward

(i.e., average cell throughput) through a process of trial

and error. With the uniform user distribution and ring-based

approximation elaborated in Figure 3, this scenario perfectly

aligns with a markov decision process (MDP) with a single

state (i.e., stationary environment) which can be optimally

handled with RL-based multi-armed bandit (MAB) problem

[41]. The aim of MAB is to develop a learning policy that

achieves maximal cumulative reward. The concept of RL-

based MAB is depicted in Figure 4.

In RL-MAB problems, action selection method is of cru-

cial importance. One fundamental RL action selection ap-

proach is known as greedy action policy which selects an

actionH at time t with the highest estimated reward using

Ht = argmax
h

Qt(h), (26)

Environment

AgentAction

R
e
w
a
rd

MAB

Figure 4. The concept of multi-armed bandit (MAB) learning.

where Qt(h) is the mean reward when a particular action

(height h) is selected. However, the greedy policy might be

short-sighted as it tries to maximize the immediate reward

by exploiting the environment; spending no time to explore

it for the long-term future rewards. An efficient alternative

is the ǫ–greedy policy, where ǫ refers to the probability of

opting to explore the environment while agent exploits with

the probability 1 − ǫ. This RL technique is computationally

efficient because it incrementally updates the average reward

which requires an insignificant memory and computation

resource. That is, record of all the previous rewards is not

required. DenoteQn andRn as the estimated and nth reward,

respectively, the updated average of all n rewards is then

computed as [42]

Qn+1 = Qn +
1

n
[Rn −Qn] , (27)

where Qn =
n−1
∑

i=1

Ri represents an estimated reward value

when a particular action is selected n− 1 times.

Algorithm 2: ABS height optimization using RL

Input : Height lower hmin and upper hedgem bounds,

coverage radius rm, iterations N
Output: Optimal ABS height hoptm

initialize;

Height action values hmin to hedgem with step size δh
Q(h)←0

N(h)←0

for ItNnum = 0 : N do

H←
{

argmaxhQ(h), prob. 1− ǫ,
select a random action, prob. ǫ,

Compute reward Rw for actionH using (23)

Increment the action count:

N(H)← N(H) + 1
Update the mean reward:

Q(H)← Q(H) + 1

N(H) [Rw −Q(H)]
end

returnH as hoptm with highest reward Q(H)

VOLUME 4, 2016 7
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Figure 5. A performance comparison under three ǫ-greedy val-
ues, ǫ-decay, and optimistic approach after 1200 iterations for
an ABS cell of coverage radius = 300m.

The number of iterationsN in RL-MAB based algorithms

is predefined and it is unaffected by the state space. Con-

sequently, one can see that the complexity of Algorithm

2 is O(N ). To ensure a fast convergence under this RL

technique, it is important to properly calibrate the value

of ǫ. Figure 5 shows the convergence comparison of the

employed ǫ-greedy method with different values of ǫ along

with the optimistic and ǫ-decay policies as benchmarks. For

the optimistic policy, an optimistic value of the reward is

obtained using a height value of 200m [43] and the average

cell throughput is computed using (23). Under the ǫ-decay

policy, the probability of exploration is reduced with every

iteration i using ǫ(i) = 1
1+i̺

, ̺ < 1 is the scaling factor.

These results indicate that the ǫ-greedy algorithm outper-

forms other two closely related policies, ǫ-decay and the

optimistic policy. Based on these trials, ǫ = 0.1 is selected for

the proposed height optimization as the algorithm performs

better compared to the other values (i.e., ǫ = 0.2, 0.5) used

during the trial. Similarly, for the directional antenna case,

we can optimize the height using the same OP in (24). In this

case, the values of hmin and hmax can be calculated in terms

of the directional antenna beamwidth limits θmin and θmax

based on the following relationship

hm = rm cot(θm/2), ∀m ∈M. (28)

We now demonstrate the results in Figure 6 which exhibits

the CDF of SINR for two deployment use cases (M = 7, 10)

with two different height optimization methods, Algorithm

2 (hoptm ) and widely used cell-edge PL minimization (hedgem )

determined by solving (25). We obtained these results by ad-

justing the transmit power of ABSs (detailed in next section)

to achieve a minimum received power at cell edges when

the optimal heights hoptm ∀m ∈ M are considered, while the

same transmit powers are allocated to the ABSs in the hedgem

method for a fair comparison. Clearly, these results show

that for any given SINR threshold more users are in outage

under the hedgem approach compared to our proposed height

-4 -2 0 2 4 6 8 10 12 14 16
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0.7

0.8

0.9

1

Figure 6. CDF of SINR for two use cases of ABSs (M = 7, 10)
using the proposed hopt

m and commonly used hedge
m ABS height

optimization methods.

optimization approach. It is evident that the proposed hoptm

method outperforms its counterpart in both equal and un-

equal ABS cell size cases using the same system parameters.

Essentially, it is because under the hedgem method, ABSs fly

relatively higher as depicted by the 3D deployments in Figure

7(a) and Figure 7(b). Since hedgem method only concerns with

the boundary user, it also increases the interference affecting

other cells (due to a higher elevation angles). Moreover, in

UAV-assisted networks LoS connection for the users closer

to cell center is very reliable but as the ABSs fly further high,

PL in hedgem method increases due to an increased distance

between ABS and user, which in turn decreases average

SINR levels. Intuitively, the ABSs also consume more energy

for propulsion to reach the higher altitudes under the hedgem

method while a higher transmit power (on the average) will

be required from the users if the uplink transmissions are

considered. Hence, the UAV height optimization based on

edge user is not energy-efficient, not just in terms of average

received powers in the downlink and uplink, but also from

the mechanical energy consumption viewpoint. By contrast,

our approach is more energy-efficient and reliable.

V. RESOURCE ALLOCATION POLICIES

A. EDGE ADAPTIVE TRANSMIT POWER CONTROL

It is commonly assumed in the FFR networks that the down-

link transmit power is equal for both center and edge regions

[44]. Therefore, once the height of ABSs is optimized, the

transmit power of ABSs can be adjusted to guarantee a

minimum received power ζmin
r,edge at the cell-edge, which not

only ensures a minimum QoS to all the users inside the cells

(in the absence of interference) but also dictates the coverage

of each ABS cell corresponding to its size. Therefore, we

adjust this power using

ζm
t

= ζmin
r,edgePL

m
edge, (29)
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(a) 7 ABSs (b) 10 ABSs

Figure 7. 3D deployment of ABSs using two height optimization methods hopt
m and hedge

m for two use cases.

(a) ME , 10 ABSs (b) M2

V
, 10 ABSs

Figure 8. Coverage map with 3D deployment of ABSs for the two models under the use case M = 10, the cian patches represent users
satisfying the SINR threshold (Ω̄s= 6 dB) without FFR.

where PLm
edge is the PL at the cell-edge of ABS m.

To ensure a fair comparison between the proposed variable

height cellular design with variable allocated power and the

benchmark equal-height cellular design with constant power,

the transmit power of all ABSs in the proposed scheme are

averaged to determine the constant transmit power of each

ABS in the equal-height UAV network.

Note that the irregular geometries in the equal-height UAV

network and the variable heights of UAVs in the variable-

height UAV network would lead to varying interference

levels particularly at the cell edges. To illustrate this, we

plot 3D coverage patterns along with the ABS projection

coordinates in Figure 8 when FFR is not considered. An

SINR threshold of Ω̄s = 6 dB is used to obtain these coverage

maps after 2 × 103 Monte Carlo trials. The cian patches

depict coverage region of ABSs where users are satisfying

the threshold requirement when FFR is not considered. It

can be noticed that the edge users suffer more due to severe

interference generated by the neighboring ABSs. This impact

is more adverse on the edge users of relatively small ABS

cells as strong interference is directed from the central ABS.

However, the central ABS’ coverage is also considerably

affected due to the presence of (M − 1) neighboring in-

terferers. Interestingly, edge users in the equal-height UAV

deployments also encounter severe interference in several

cells due to an irregular placement of cells. To cope with this

strong ICI, we apply FFR to enable a tradeoff between high

SE and good overall user experience.

In this work, we use a more practical static FFR technique

[45] in which all the system parameters are configured in

advance and are not subject to change for a certain period of

time. Frequency partitioning in FFR is attained by allocating

a set of frequencies to the center users that are reused in

all the cells under a frequency reuse of ∆C (FR-∆C) while

distinct subbands are exercised across the cell edges with a

frequency reuse of ∆E (FR-∆E), where ∆E > ∆C . In order

to evaluate the performance of the network under uniform

resource allocations, we adopt a widely used resource alloca-

tion strategy (∆C = 1, ∆E = 3) as shown in Figure 9.

Unlike the variable-height UAV network, the footprint

placements (circles) in equal-height network are quite ran-

dom i.e., coverage pattern changes significantly for different

number of ABSs. We adopt the method employed in [46]

for the cell-edge frequency selection based on the reuse

distance. Also, when an odd number of ABSs cover tier-2

of the proposed network, we encounter a resource allocation

VOLUME 4, 2016 9
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Figure 9. Resource allocation in FFR system with ∆E = 3.

problem using ∆E = 3. This is because we alternatively

use two sets of frequencies (F3, F4) in tier-2 but with odd

number of ABS cells in tier-2 (odd M2) two adjacent ABSs

end up using the same frequency set. However, this problem

can be easily tackled by equipping at least one ABS cell with

a sectorized omnidirectional antenna [47], which is active to

send or receive signals primarily through an angular sector

employing two different frequency sets F3 and F4 (different

than the adjacent ABS on each side) having an angle of no

more than 180◦.

B. BANDWIDTH ALLOCATION

We analyze the performance of our network models under

frequency division multiple access (FDMA)-based FR-∆C

and FR-∆E schemes for the center and edge regions, re-

spectively. We consider the FDMA-based scheme as they can

be efficiently mapped into corresponding orthogonal-FDMA-

based allocations involving frequency band partitioning into

multiple physical resource blocks [48].

The SINR of kth user under the FFR scheme can be

expressed as

SINRmk =
ζmt /PLmk

IkT +Np

, (30)

SINRmk =
ζmt /PLmk

∑

n∈Jk
ζnt /PLnk +Np

,

where noise power Np depends on the noise spectral den-

sity N0 and user equipment noise figure δUE . Also, IkT =
∑

n∈Jk
ζnt /PLnk, n 6= m, is the ICI power which depends

on the interfering cell set Jk of user k. The interfering set

depends on the user location and cell association. For exam-

ple, Jk = JC when the user is located in the center region as

shown with the subband set F1 in Figure 9. While Jk = JE
for a set containing cells using one of the three subbands

(e.g., F2) for the edge region. Moreover, as the center and

edge regions are partitioned, interference directed towards

the edge users is substantially reduced. However, each cell is

now allocated ∆C + 1 of the total ∆C +∆E subbands. Note

that the subband partitioning impacts the overall resource

efficiency (i.e., ASE) but in contrast, improves the average

SINRs of the users.

The FFR scheduler allocates the total bandwidth, WT =
WC + WE . In order to effectively manage the bandwidth

partition, we define Ψ as the normalized FR bandwidth

Ψ = WC

WT
, 0 ≤ Ψ ≤ 1. Furthermore, WE is divided among

the edge users depending on the ∆E employed. Therefore,

the total available bandwidth to each cell is

Wm = ΨWT +
1

∆E

(1−Ψ)WT , (31)

=W∆C
+W∆E

.

C. CELL PARTITION OPTIMIZATION

Typical threshold based center and edge users classification

methods (i.e., fixed distance, received power, fixed SINR)

are effective where cells are characterized by almost equal

performance levels, which is not the case here. To consider

the variable nature of the proposed cellular design, we adopt

a user classification method, where the SINR threshold is

optimized for each cell by maximizing its SE. In this ap-

proach, first users associated with each cell measure received

pilots or data symbols to acquire received SINRs. Then,

users with SINRs above the threshold Ω̄th are classified as

center users, otherwise as edge users. Once the spectrum

allocation is decided, performance of the network in terms

of throughput and SE is ultimately determined by the SINR

thresholds. The SE level realized at the kth user is denoted by

Φυ,k = 1
∆υ

log2 (1 +Ωυ,k) [49], where υ = C,E and Ωυ,k

denotes the SINR of the kth user. The SINR threshold OP

can be split into M sub-problems , for each cell as follows

Ω̂m
th = arg max

0≤Ω̄th<∞

∑

∀ k

ΦC,k +
∑

∀ k

ΦE,k. (32)

This is a nonlinear OP and it depends on the SINR of

multiple users at random locations, which makes the problem

extremely hard to solve. Assuming the channel-state infor-

mation is known at the ABS, we can use a similar RL-based

approach as Algorithm 2 to find optimal SINR threshold

to solve the OP in (32). To avoid redundancy, we omit the

pseudo-code here which is similar to the Algorithm 2, the

following parameter settings are employed. We select and

input a large action window of SINR threshold Ω̄th(dB)

∈ [−10, 15] to rigorously find an optimal SINR threshold

that maximizes the SE of the cell. A number of actions is

initialized using an action step size δs = 0.05. For each

selected action of the SINR threshold the cell is partitioned

into center and edge regions and the objective function in (32)

is evaluated to converge to an optimal Ω̂m
th that maximizes the

SE of themth cell. The ǫ-greedy algorithm is run individually

for all the M sub-problems to achieve an overall network SE

maximization.
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VI. COVERAGE AND THROUGHPUT ANALYSIS OF

FFR-AIDED UAV NETWORK

In this section we present three widely used performance

metrics namely coverage probability, rate coverage, and ASE

followed by corresponding simulation results to evaluate and

compare the performance of our proposed ABS deployment

techniques.

A. NETWORK PERFORMANCE METRICS

The coverage probability is one of the most significant

metrics to evaluate the reliability of the probabilistic AtG

channel. It can be defined as

Pc = P[SINR ≥ Ω̄s], (33)

where P [.] is the probability operator and Ω̄s is the minimum

SINR required by the user in order to be covered. The

coverage probability of the kth user associated withmth ABS

considering an aggregate interference IkT can be defined as

Pc = P

[

ζmk
r

IkT +Np

≥ Ω̄s

]

= P

[

ζmk
r (dB) ≥ ζrmin

]

, (34)

where ζmk
r is the received power in the interference-free

scenario. Also, ζrmin
= 10 log10(Ω̄sI

k
T + Ω̄sNp) is the

minimum required received power for the kth user in the

presence of interference and IkT depends on the interfering

set Jk.

Rate coverage probability is an important metric which is

used to evaluate the network performance in terms of user

achievable data rates. This metric extends the performance

evaluation beyond SINR coverage because it entails the re-

source allocation and user load on the network. In order to be

covered, the data rate Rk of an arbitrary kth user must meet

or exceed the target rate threshold R̄
th

(bits/s). Then, the rate

coverage can be defined as

Rc = P[Rk ≥ R̄th]. (35)

We consider the bandwidth available to the center and edge

regions is equally divided among the users to perform rate

allocations proportional to the user SE in both respective

regions. The data rate of the kth user associated with ABS

m can be expressed using

Rm
k =

W∆v

Km
v

log2 (1 + SINRmk) , (36)

where Km
v is the user load of ABS m in one of the two

regions (center or edge) with total ABS load Km = Km
C +

Km
E .

Another key metric to evaluate the overall network per-

formance is the ASE, which is expressed in terms of

bits/s/Hz/m2. The ASE accounts for how efficiently the spec-

trum resources are exploited by the network within a certain

area of interest. It can be expressed as [50]

ASE =

∑

∀m

∑

∀ kRm
k

πWTR2
. (37)

Once the resource allocation is performed under the optimal

Table 1. Simulation parameters

Parameters Values

System bandwidth, WT 30 MHz

Carrier frequency, fc 2 GHz

Coverage radius, R 1500 m
Number of users, K 600

Noise power density, N0 -170 dBm/Hz

User equipment noise figure, δUE 9 dB

Additional path loss LoS, NLoS, (γ1, γ2) 3 dB, 23 dB

Environment parameter, (α1, α2) 12.08, 0.11

Minimum edge power, ζmin
r,edge -80 dBm

Directional antenna beamwidth, (θmin, θmax) 50◦, 120◦

cell partitions obtained by solving (32), we can determine the

data rates of all the users to evaluate ASE of the network.

B. SIMULATION RESULTS AND DISCUSSION

We now present our remaining MATLAB-based numerical

results using the above performance metrics assuming that

the heights of all ABS cells in the proposed variable-height

UAV-based network scheme are optimized as hoptm . An ur-

ban environment with a carrier frequency fc = 2 GHz

is considered, the key simulation parameters are listed in

Table 1. The network is supposed to have a minimum and

maximum number of ABSs of 7 and 25, respectively, due to

practical constraints on resources availability, a maximum of

25 UAVs are assumed in the system. Note that the effect of

interference was neglected for the height optimization, but

it is applied to all simulations where applicable. Moreover,

in order to exhibit the performance gains of the proposed

UAV deployments with the aid of FFR, an equal bandwidth

allocation policy is exerted for each cell under a widely used

FFR policy (Ψ = 0.5). We adopt this approach to have a fair

comparison and contrast with the equal-height UAV-based

network, referred as ME here. For brevity, we also refer to

the proposed τ-tier variable-height network asMτ

V.
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Figure 10. Coverage probability comparison of ME and M
2

V

models under different received power thresholds ζ̄r using di-
rectional antennas with optimized height h

opt

m,D , ∀m ∈M.

Firstly, we show coverage probability Pc based perfor-
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mance using directional antennas in Figure 10. We used opti-

mal height hoptm,D of the ABS which corresponds to an optimal

beamwidth obtained using (28). One can see that the M2
V

based deployments deliver distinctive coverage performance

compared to the counterpartME model at different received

power thresholds ζ̄r with an increasing number of ABSs M .
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Figure 11. Coverage probability comparison of ME and M
2

V

under different SINR thresholds Ω̄s after optimizing the cell

partition thresholds Ω̂m
th for all the ABS cells.

Moving to the omnidirectional antenna case, the results in

Figure 11 show the SINR coverage probability comparison

after the optimal resource partitioning under the FFR scheme.

We can see substantial coverage gains for the M2
V model

compared toME for an increasing M under different SINR

thresholds Ω̄s. This gain partly comes from the increasing

size of the coverage area under the central ABS which

leverages from the frequency set F2 in the edge region (i.e.,

high SNR). That is, as M increases more users are encap-

sulated and benefit from an interference-free zone under the

frequency set F2. Also, the average SINR level increases in

the center region of the central ABS.

The ASE performance of the M2
V deployments is com-

pared with the ME model in Figure 12. Clearly, the ASE

gain forM2
V increases with M . It is worth mentioning that

the bandwidth allocation to each user decreases in the central

ABS as M is increased under the M2
V model. However,

to some effect this problem is mitigated by the increasing

SINRs of the central ABS. Importantly, the second tier users

benefit from more bandwidth per user owing to the shrinking

ABS cells. Moreover, the cell partition optimization makes

a striking impact to cater the inflating interference emerging

from the central ABS by pushing a balance of users in the

center and edge regions to achieve an overall high ASE.

While theM2
V deployments show escalating coverage and

ASE performance as M increases, it comes at the cost of an

increasing disparity in the data rates of the users. Note that a

user might be considered in outage (i.e., not satisfied) when a

minimum required data rate is not achieved. One can observe

from Figure 13 that the rate coverage Rc increases and then
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Figure 12. Area spectral efficiency (ASE) comparison of ME

and M
2

V models after optimizing the cell partition thresholds

Ω̂m
th for all the ABS cells.
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Figure 13. Rate coverage comparison of ME and M
2

V models
under different data rate thresholds R̄th for an increasing
number of ABSs M .

starts decreasing for different user rate threshold R̄th. To this

end, we can determine transition values for the number of

UAVs for each R̄th beyond which the performance of the

two-tier design in terms of rate coverage drops below the

equal height benchmark scheme. That is, the transition from

M2
V to M3

V (higher tier deployment presented in the next

section) can be beneficial when the gain of two-tier design

vanishes against the equal height design. For instance, in

cases R̄th = 0.5 Mbps and R̄th = 1 Mbps, this transition

is executed beyond M = 12 as the rate coverage Rc drops

below its counterpart as observed in Figure 13. To gain

more insight, rate coverage performance using different rate

thresholds are plotted. It can be observed that theM2
V model

exhibits better rate coverage gain compared to ME for the

high rate threshold (i.e., 1.5 Mbps) even beyond M = 12.

In fact, under this proposed systematic approach we leverage
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from the FFR assisted two-tier ABS deployment to achieve

excellent coverage and ASE performance overME.

VII. EXTENSION TO HIGHER TIERS

Our proposed approach for variable-height UAV network

discussed in detail and demonstrated for the two-tier model in

the previous sections can be readily extended to higher tiers.

The proposed approach starts with the cell formation design

for the UAV network determining the position and the radius

of individual cells covered by UAV-based ABSs. Then the

height of UAVs are optimized for each cell considering their

radius and finally an FFR scheme is developed to mitigate

ICI while maximizing throughput.

We first discuss the extension of two-tier cell formation

problem to higher tiers using a recursive approach where

the position and radius of individual UAVs are determined

starting from the most outer tier (i.e., nth tier) down to the

2nd tier as summarized in Algorithm 3. In each step a two-

tier cell formation design is developed based on Algorithm

1 introduced in section III to determine the cell formation

parameters of the jth tier as well as the boundary of the

(j−1)th tier as shown in Figure 14. To run the algorithm one,

we require the boundary of the jth tier (as determined in the

previous step) as well as the number of the UAVs allocated

to that tier. Hence, we need to run this recursive approach in

multiple iterations for all the possible combinations of UAV

distribution among different tiers as indicated in Algorithm

3 and choose the optimal solution based on the distribution

that provides the best performance. The objective function

for choosing the best solution among different possible com-

binations of distributing UAVs within tiers is considered as

Υ =

(

M
∑

m=1

πr2m

)

− ψχo, (38)

where the first term in (38) represents the coverage max-

imization and the second term is introduced to limit the

power consumption disparity between the UAVs in different

tiers, which in turn leads to improved coverage lifetime. To

address the power consumption disparity among variable-

height UAVs, we already assumed that the network employs

a more resourceful central UAV with coordination capability

in the first tier while it has a set of homogeneous (M − 1)
UAVs for the second and higher tier deployments. However,

when the number of tiers τ > 2, we need to limit power

consumption of identical UAVs operating at different heights

across different tiers. Note that ψ ∈ {0, 1} where ψ = 0
transforms the objective function for purely coverage maxi-

mization considered for the two-tier design. We define χo =
1
τ

∑

τ

j=3 |ζt2 − ζtj |, where ζt2 and ζtj are the total transmit

power of ABSs operating in tier-2 and tier-j, respectively.

The power consumption in different tiers are calculated based

on (29) after height optimization for each cell as discussed

in section V. Note that the height optimization step of our

proposed network design only depends on the radius of the

individual cells and therefore does not need any modifica-

tions for higher tiers.

cr

R

1j  tiers

jth tier

Figure 14. Cell formation design of jth tier using the two-tier
model.
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Figure 15. An illustration of FFR based resource allocation for
ABS deployments M = 24, models M3

V (left) and ME (right).

The following expression is modelled to visualize the

number of possible combinations K for a given set of ABS

M and number of tiers τ as

K =
1

2

(

(τ− 3) (M − 3τ+ 2)
2

+ (τ− 1) (M − 3τ+ 2) + 2

)

, ∀M > (3τ− 2).

(39)

Note that in order for Algorithm 3 to converge, the condi-

tionM ≥ (3τ−2) should be satisfied, otherwise the solution

will be infeasible i.e., violating the tangency rule. One can

observe from (39) that the value ofK depends on bothM and

τ, hence the complexity of Algorithm 3 is O
(

τ(M−3τ)2

2

)

.

The final step of our network design is the FFR-based

scheme. Note that similar to height optimization, the de-

velopment of FFR scheme including the SINR threshold

optimization can be performed based on the same principles

introduced in section V. An example of cell topology and

FFR based resource configuration is illustrated in Figure 15

at M = 24 for both proposedM3
V and the benchmarkME

models on the left and right side, respectively. It is worth

mentioning that the cell edge frequency of the central ABS

(F2 inM3
V) can be reused in the third (or higher) tiers which

offers an additional flexibility from the frequency allocation

viewpoint.

In Figure 16, we present the coverage density of the equal-

size, two-tier, and three-tier models ME, M2
V, and M3

V,
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Algorithm 3: Recursive τ-tier UAV cellular design

Input : Coverage area radius, R
Number of ABSs, M

Output: Horizontal locations of ABSs: Ĥm,

(∀ 1 ≤ m ≤M),
Cell radius for all tiers: r̂j , (∀ 1 ≤ j ≤ τ)

initialize;

ψ ← (0, 1), θr = π/2
Set K as the number of possible combinations of

distributing M UAVs into τ tiers.

for i← 1 to K do
Set the number of ABSs for each tier Mj ,

(∀ 1 ≤ j ≤ τ), based on the ith combination

Set Rτ = R
for j ← τ to 2 do

Run Algorithm 1 with inputs Rj as coverage

area radius and Mj as number of ABSs

Set horizontal locations of ABSs in tier j as

Hm and Rj−1 = rc and rj(i) = re where

Hm, rc and re are outputs of Algorithm 1.
end

r1(i) = R1

Υ(i) = π
(

∑

τ

j=1Mjr
2
j

)

− ψχo

end

Υ̂← max (Υ(i)) |Ki=1

Ĥm ← max (Hm(i)) |Ki=1

r̂j ← max (rj(i)) |Ki=1

return Υ̂, Ĥm and r̂j as the feasible solution for (38)

respectively, for an increasing number of ABSs M . It is evi-

dent that the coverage ofM2
V is superior with an increasing

margin while bothM2
V andM3

V outperform the counterpart

ME model. Note that the ratio of the area covered to the total

area of the coverage region is known as the coverage density

as in (13), which closely indicate the coverage probability

of the network if directional antennas are employed. This

is because the users outside the coverage footprint (main-

lobe of the directional antenna) are either entirely ignored

or they might receive a very insignificant service (i.e., very

low SNR) from the side-lobes. For instance, if we consider

10 ABSs and employ directional antennas, even for a very

low SNR value almost 24%, 9%, and 17% of the users

will still remain uncovered under the ME, M2
V, and M3

V

models, respectively. This strongly advocates for exploiting

omnidirectional antennas over the directional antennas to

improve the overall network throughput and user QoS.

The comparison between the two variants of the objective

function in (38) for the M3
V model (i.e., ψ ∈ {0, 1}) is

shown in Figure 17. It can be noticed that a substantial

difference exists in the power consumption of the second and

third tier ABSs, which is associated with the difference in

the coverage lifetimes, with weight factor ψ = 0 (when the

transmit power of the ABSs across the tiers is not compara-
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Figure 16. Coverage density (normalized) of UAV based network
considering ME, M2

V, and M
3

V models.
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Figure 17. Total coverage and coverage lifetime difference of
the second and third tier ABSs under the M

3

V model with two
values of ψ.

ble), while it almost goes to zero for ψ = 1. On the other

hand, coverage results are still very comparable for the two

cases. Consequently, in order to avoid power consumption

disparity while preserving good coverage, we are encouraged

to deploy ABSs under theM3
V model using ψ = 1.

Next, we present some simulation results for the perfor-

mance ofM3
V as a representative of high-tier cellular design

in comparison to the benchmark scheme ME. Figure 18

shows that, unlike the two-tier scheme, the rate coverage of

M3
V does not drop below that ofME at different thresholds,

even with a larger number of UAVs. This is owing to the

fact thatM3
V reduces the large cell-size and transmit power

disparity across the tiers that resulted in the large variation of

user data rates underM2
V, which justifies the transition to a

higher-tier design for a larger number of UAVs.

The results in Figure 19 show that M3
V also exhibits

marginally better or at least equal levels of ASE performance

compared to theME design. Therefore, it is evident that the
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Figure 18. Rate coverage comparison of ME and M
3

V models
under different data rate thresholds R̄th for an increasing
number of ABSs M .
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Figure 19. Area spectral efficiency (ASE) comparison of ME

and M
3

V models after optimizing the cell partition thresholds

Ω̂m
th for all the ABS cells.

proposed FFR-aided multi-tier network, which carries out

a transition from two-tier to multi-tiers based on a perfor-

mance metric (i.e., Rc), can always deliver better coverage

and throughput performance compared to the equal height

cellular design. Nevertheless, the performance of higher-tier

variable height designs converges to the performance of the

equal height design for larger number of UAVs as the optimal

variable height model would converge to almost equal height

model.

VIII. CONCLUSION

In this paper, we have proposed multi-UAV deployment

techniques with the aid of circle packing to provide optimal

coverage and throughput performance. We have shown a low-

complexity, tractable, and efficient approach to adaptively

increase or decrease the number of UAVs. A simple UAV

height optimization method is proposed which shows supe-

rior outage performance and is also more energy-efficient

compared to the most commonly used height optimization

technique in the literature. The results clearly indicate that

we can achieve considerable coverage and throughput (i.e.,

ASE) gains compared to the equal height UAV-based network

by leveraging FFR and optimizing the cell partitions using

the same system parameters. We have also proposed a low-

complexity algorithm to switch from two-tier to higher-tier

networks if certain QoS criterion (i.e., rate coverage) for a

set of UAVs is not achieved. The proposed multi-tier network

also exhibits better coverage performance while it shows

slightly better or at least comparable levels of throughput

and rate coverage performance. In essence, the proposed

deployment method not only performs better under several

widely used performance metrics but it can also easily han-

dle failures or changes to the UAV network compared to

the state-of-the-art model. This work could be extended to

explore the effects of mobility under a circular trajectory of

multiple UAVs across multiple-tiers with or without incorpo-

rating FFR. A multi-dimensional search for the ideal number

of UAVs with optimal speed and separation distances can be

used to assess the coverage and throughput performance of

many UAVs in this scheme. Also, the impact of UAV stability

on highly directional backhaul links could be a promising

direction to pursue.
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