
Multi-time Models for Temporally Abstract

Planning

Doina Precup, Richard S. Sutton

University of Massachusetts
Amherst, MA 01003

{dprecuplrich}@cs.umass.edu

Abstract

Planning and learning at multiple levels of temporal abstraction is a key

problem for artificial intelligence. In this paper we summarize an ap

proach to this problem based on the mathematical framework of Markov

decision processes and reinforcement learning. Current model-based re

inforcement learning is based on one-step models that cannot represent
common-sense higher-level actions, such as going to lunch, grasping an

object, or flying to Denver. This paper generalizes prior work on tem
porally abstract models [Sutton, 1995] and extends it from the prediction
setting to include actions, control, and planning. We introduce a more

general form of temporally abstract model, the multi-time model, and es
tablish its suitability for planning and learning by virtue of its relationship

to the Bellman equations. This paper summarizes the theoretical frame

work of multi-time models and illustrates their potential advantages in a

grid world planning task.

The need for hierarchical and abstract planning is a fundamental problem in AI (see, e.g.,
Sacerdoti, 1977; Laird et aI., 1986; Korf, 1985; Kaelbling, 1993; Dayan & Hinton, 1993).

Model-based reinforcement learning offers a possible solution to the problem of integrating
planning with real-time learning and decision-making (Peng & Williams, 1993, Moore &
Atkeson, 1993; Sutton and Barto, 1998). However, current model-based reinforcement

learning is based on one-step models that cannot represent common-sense, higher-level

actions. Modeling such actions requires the ability to handle different, interrelated levels

of temporal abstraction.

A new approach to modeling at multiple time scales was introduced by Sutton (1995) based

on prior work by Singh, Dayan, and Sutton and Pinette. This approach enables models
of the environment at different temporal scales to be intermixed, producing temporally
abstract models. However, that work was concerned only with predicting the environment.
This paper summarizes an extension of the approach including actions and control of the

environment [Precup & Sutton, 1997]. In particular, we generalize the usual notion of a

Multi-time Models for Temporally Abstract Planning 1051

primitive, one-step action to an abstract action, an arbitrary, closed-loop policy. Whereas

prior work modeled the behavior of the agent-environment system under a single, given

policy, here we learn different models for a set of different policies. For each possible way

of behaving, the agent learns a separate model of what will happen. Then, in planning, it

can choose between these overall policies as well as between primitive actions.

To illustrate the kind of advance we are trying to make, consider the example shown in

Figure 1. This is a standard grid world in which the primitive actions are to move from one

grid cell to a neighboring cell. Imagine the learning agent is repeatedly given new tasks

in the form of new goal locations to travel to as rapidly as possible. If the agent plans at

the level of primitive actions, then its plans will be many actions long and take a relatively

long time to compute. Planning could be much faster if abstract actions could be used to
plan for moving from room to room rather than from cell to cell. For each room, the agent

learns two models for two abstract actions, one for traveling efficiently to each adjacent

room. We do not address in this paper the question of how such abstract actions could be

discovered without help; instead we focus on the mathematical theory of abstract actions.

In particular, we define a very general semantics for them-a property that seems to be

required in order for them to be used in the general kind of planning typically used with

Markov decision processes. At the end of this paper we illustrate the theory in this example

problem, showing how room-to-room abstract actions can substantially speed planning.

4 unreliable
primitive actions

up

18«+ fight FaU33%
01 th&tlm8

down

8 abstract actions

(to each room's 2 hallways)

Figure 1: Example Task. The Natural abstract actions are to move from room to room.

1 Reinforcement Learning (MDP) Framework

In reinforcement learning, a learning agent interacts with an environment at some discrete,

lowest-level time scale t = 0,1,2, ... On each time step, the agent perceives the state of

the environment, St , and on that basis chooses a primitive action, at. In response to each

primitive action, at, the environment produces one step later a numerical reward, Tt+l,

and a next state, St+l. The agent's objective is to learn a policy, a mapping from states to

probabilities of taking each action, that maximizes the expected discounted future reward

from each state s:
00

v"{s) = E7r{L: ';lTt+l I So = s},
t=O

where'Y E [0, 1) is a discount-rate parameter, and E7r {} denotes an expectation implicitly

conditional on the policy 7f being followed. The quantity v7r(s) is called the value of state S

under policy 7f, and v7r is called the value function for policy 7f. The value under the optimal

policy is denoted:
v*(S) = maxv7r(s}.

7r

Planning in reinforcement learning refers to the use of models of the effects of actions to

compute value functions, particularly v*.

]052 D. Precup and R. S. Sutton

We assume that the states are discrete and fonn a finite set, St E {1,2, ... ,m}. This

is viewed as a temporary theoretical convenience; it is not a limitation of the ideas we

present. This assumption allows us to alternatively denote the value functions, v7r and v*,

as column vectors, v7r and v*, each having m components that contain the values of the

m states. In general, for any m-vector, x, we will use the notation x(s) to refer to its sth

component.

The model of an action, a, whether primitive or abstract, has two components. One is an

m x m matrix, Pa , predicting the state that will result from executing the action in each

state. The other is a vector, ga, predicting the cumulative reward that will be received along

the way. In the case of a primitive action, Pa is the matrix of I-step transition probabilities

of the environment, times ,:

P;(s) = ,E {St+! 1st = s, at = a}, Vs

where P;(s) denotes the sth column of P; (these are the predictions corresponding to

state s) and St denotes the unit basis m-vector corresponding to St. The reward prediction,

ga, for a primitive action contains the expected immediate rewards:

ga(s) = E {rt+l 1st = s, at = a}, Vs

For any stochastic policy, 1f, we can similarly define its I-step model, g7r, P 7r as:

and Vs (1)

2 Suitability for Planning

In conventional planning, one-step models are used to compute value functions via the

Bellman equations for prediction and control. In vector notation, the prediction and control

Bellman equations are

and v* = max{ga + PaV*},
a

(2)

respectively, where the max function is applied component-wise in the control equation.

In planning, these equalities are turned into updates, e.g., v k+! ~ g7r + P 7r v k' which
converge to the value functions. Thus, the Bellman equations are usually used to define

and compute value functions given models of actions. Following Sutton (1995), here we

reverse the roles: we take the value functions as given and use the Bellman equations to
define and compute models of new, abstract actions.

In particular, a model can be used in planning only if it is stable and consistent with the
Bellman equations. It is useful to define special tenns for consistency with each Bellman
equation. Let g, P denote an arbitrary model (an m-vector and an m x m matrix). Then

this model is said to be vaLid for policy 1f [Sutton, 1995] if and only if limk-+oo pk = 0
and

v7r = g + P v 7r. (3)

Any valid model can be used to compute v7r via the iteration algorithm v k+1 t- g + Pvk.
This is a direct sense in which the validity of a model implies that it is suitable for planning.

We introduce here a parallel definition that expresses consistency with the control Bellman

equation. The model g, P is said to be non-overpromising (NaP) if and only if P has only

positive elements, limk-+oo pk = 0, and

V* ~ g + Pv*, (4)

where the ~ relation holds component-wise. If a Nap model is added inside the max op

erator in the control Bellman equation (2), this condition ensures that the true value, v*,

will not be exceeded for any state. Thus, any model that does not promise more than it

Multi-time Models for Temporally Abstract Planning 1053

is achievable (is not (;>verpromising) can serve as an option for planning purposes. The

one-step models of primitive actions are obviously NOP, due to (2). It is similarly straight
forward to show that the one-step model of any policy is also NOP.

For some purposes, it is more convenient to write a model g, P as a single (m+ 1) x (m+ 1)
matrix:

o

P

We say that the model M has been put in homogeneous coordinates. The vectors corre

sponding to the value functions can also be put into homogeneous coordinates, by adding
an initial element that is always 1.

Using this notation, new models can be combined using two basic operations: composition

and averaging. Two models Ml and M2 can be composed by matrix multiplication, yield

ing a new model M = M1 M2 . A set of models Mi can be averaged, weighted by a set of

diagonal matrices D i , such that I::i Di = I, to yield a new model M = I::i DiMi. Sutton

(1995) showed that the set of models that are valid for a policy 7r is closed under compo
sition and averaging. This enables models acting at different time scales to be mixed to

gether, and the resulting model can still be used to compute v 1T• We have proven that the set

of NOP models is also closed under composition and averaging [Precup & Sutton, 1997].
These operations permit a richer variety of combinations for NOP models than they do for

valid models because the NOP models that are combined need not correspond to a particu

lar policy.

3 Multi-time models

The validity and NOP-ness of a model do not imply each other [Precup & Sutton, 1997] .
Nevertheless, we believe a good model should be both valid and NOP. We would like to
describe a class of models that, in some sense, includes all the "interesting" models that are
valid and non-overpromising, and which is expressive enough to include common-sense

notions of abstract action. These goals have led us to the notion of a multi-time model.

The simplest example of multi-step model, called the n-step model for policy 7r, predicts

the n-step truncated return and the state n steps into the future (times Tn). If different n

step models of the same policy are averaged, the result is called a mixture model. Mixtures

are valid and non-overpromising due to the closure properties established in the previous

section. One kind of mixture suggested in [Sutton, 1995] allows an exponential decay of
the weights over time, controlled by a parameter {3.

Figure 2: Two hypothetical Markov environments

Are mixture models expressive enough for capturing the properties of the environment?

In order to get some intuition about the expressive power that a model should have, let

us consider the example in figure 2. If we are only interested if state G is attained, then

the two environments presented shOUld be characterized by significantly different models.

However, n-step models, or 2ny linear mixture of n-step models cannot achieve this goal.
In order to remediate this problem, models should average differently over all the different

trajectories that are possible through the state space. A full {3-model [Sutton, 1995] can

1054 D. Precup and R. S. Sutton

distinguish between these two situations. A ,B-model is a more general form of mixture

model, in which a different ,B parameter is associated with each state. For a state i, ,Bi
can be viewed as the probability that the trajectory through the state space ends in state

i. Although ,B-models seem to have more expressive power, they cannot describe n-step

models. We would like to have a more general form of model, that unifies both classes.

This goal is achieved by accurate multi-time models.

Multi-time models are defined with respect to a policy. Just as the one-step model for a

policy is defined by (1), we define g, P to be an accurate multi-time model if and only if

00

pT (s) = Ell'{ 2: Wt 'l St I So = s},
t=l

00

g(s) = Ell'{2: wdrl + ,r2 + ... + ,t-Irt) I So = s}
t=l

for some Jr, for all s, and for some sequence of random weights, WI, W2, •.. such that

Wt > 0 and 2::1 Wt = 1. The weights are random variables chosen according to a

distribution that depends only on states visited at or before time t. The weight Wt is a

measure of the importance given to the t-th state of the trajectory. In particular, if Wt = 0,

then state t has no weight associated with it. If Wt = 1- 2:~:~ Wi, all the remaining weight

along the trajectory is given to state t. The effect is that state St is the "outcome" state for

the trajectory.

The random weights along each trajectory make this a very general form of model. The

only necessary constraint is that the weights depend only on previously visited states. In

particular, we can choose weighting sequences that generate the types of multi-step models

described in [Sutton, 1995]. If the weighting variables are such that wn=l, and Wt =
O;v't i= n , we obtain n-step models. A weighting sequence of the form Wt = rr~:6,Bi 'tit,
where ,Bi is the parameter associated to the state visited on time step i, describes a full

,B-model.

The main result for multi-time models is that they satisfy the two criteria defined in the

previous section. Any accurate multi-time model is also NOP and valid for Jr. The proofs

of these results are too long to include here.

4 Illustrative Example

In order to illustrate the way in which multi-time models can be used in practice, let us

return to the grid world example (Figure I). The cells of the grid correspond to the states of

the environment. From any state the agent can perform one of four primitive actions, up,

down, left or right. With probability 2/3, the actions cause the agent to move one cell

in the corresponding direction (unless this would take the agent into a wall, in which case

it stays in the same state). With probability 1/3, the agent instead moves in one of the other

three directions (unless this takes it into a wall of course). There is no penalty for bumping

into walls.

In each room, we also defined two abstract actions, for going to each of the adjacent hall

ways. Each abstract action has a set of input states (the states in the room) and two outcome

states: the target hallway, which corresponds to a successful outcome, and the state adja

cent to the other hallway, which corresponds to failure (the agent has wandered out of the

room). Each abstract action is given by its complete model g:;-', P:;, where Jr is the optimal

policy for getting into the target hallway, and the weighting variables W along any trajectory

have the value I for the outcome states and 0 everywhere else.

Multi-time Models for Temporally Abstract Planning J055

I I I
..

• •• • • •• •• • • • • • • • •
Iteration #1 Iteration #2 Iteration #3

Iteration #4 Iteration #5 Iteration #6

Figure 3: Value iteration using primitive and abstract actions

The goal state can have an arbitrary position in any of the rooms, but for this illustration let

us suppose that the goal is two steps down from the right hallway. The value of the goal

state is 1, there are no rewards along the way, and the discounting factor is , = 0.9. We

perfonned planning according to the standard value iteration method:

where vo(s) = 0 for all the states except the goal state (which starts at 1). In one experi

ment, a ranged only over the primitive actions, in the other it ranged over the set including

both the primitive and the abstract actions.

When using only primitive actions, the values are propagated one step away on each itera

tion. After six iterations, for instance, only the states that are at most six steps away from

the goal will be attributed non-zero values. The models of abstract actions produce a signif
icant speed-up in the propagation of values at each step. Figure 3 shows the value function

after each iteration, using both primitive and abstract actions for planning. The area of the

circle drawn in each state is proportional to the value attributed to the state. The first three

iterations are identical with the case when only primitive actions are used. However, once
the values are propagated to the first hallway, all the states in the rooms adjacent to that

hallway will receive values as well. For the states in the room containing the goal, these
values correspond to perfonning the abstract action of getting into the right hallway, and

then following the optimal primitive actions to get to the goal. At this point, a path to the

goal is known from each state in the right half of the environment, even if the path is not

optimal for all states. After six iterations, an optimal policy is known for all the states in

the environment.

The models of the abstract actions do not need to be given a priori, they can be learned

from experience. In fact, the abstract models that were used in this experiment have been

learned during a I ,OOO,DOO-step random walk in the environment. The starting point for

1056 D. Precup and R. S. Sutton

learning was represented by the outcome states of each abstract action, along with the

hypothetical utilities U associated with these states. We used Q-Iearning [Watkins, 1989]

to learn the optimal state-action value function Q'U B associated with each abstract action.

The greedy policy with respect to Q'U,B is the pol'icy associated with the abstract action.

At the same time, we used the ,B-model learning algorithm presented in [Sutton, 1995]

to compute the model corresponding to the policy. The learning algorithm is completely

online and incremental, and its complexity is comparable to that of regular I-step TD

learning.

Models of abstract actions can be built while an agent is acting in the environment without

any additional effort. Such models can then be used in the planning process as if they would

represent primitive actions, ensuring more efficient learning and planning, especially if the

goal is changing over time.

Acknowledgments

The authors thank Amy McGovern and Andy Fagg for helpful discussions and comments contributing

to this paper. This research was supported in part by NSF grant ECS-951 1805 to Andrew G. Barto

and Richard S. Sutton, and by AFOSR grant AFOSR-F49620-96-1-0254 to Andrew G. Barto and

Richard S. Sutton. Doina Precup also acknowledges the support of the Fulbright foundation.

References

Dayan, P. (1993). Improving generalization for temporal difference learning: The successor repre

sentation. Neural Computation, 5, 613-624.

Dayan, P. & Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in Neural Information

Processing Systems, volume 5, (pp. 271-278)., San Mateo, CA. Morgan Kaufmann.

Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains: Preliminary results. In Pro

ceedings of the Tenth International Conference on Machine Learning ICML'93, (pp. 167-173)., San

Mateo, CA. Morgan Kaufmann.

Korf, R. E. (1985). Learning to Solve Problems by Searching for Macro-Operators. London: Pitman

Publishing Ltd.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: The anatomy of a general

learning mechanism. Machine Learning, I, 11-46.

Moore, A. W. & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data

and less real time. Machine Learning, 13, 103-130.

Peng, J. & Williams, J. (1993). Efficient learning and planning within the Dyna framework. Adaptive

Behavior, 4, 323-334.

Precup, D. & Sutton, R. S. (1997). Multi-Time models for reinforcement learning. In ICML'97

Workshop: The Role of Models in Reinforcement Learning.

Sacerdoti, E. D. (1977). A Structure for Plans and Behavior. North-Holland, NY: Elsevier.

Singh, S. P. (1992). Scaling reinforcement learning by learning variable temporal resolution models.

In Proceedings of the Ninth International Conference on Machine Learning ICML'92, (pp. 202-

207)., San Mateo, CA. Morgan Kaufmann.

Sutton, R. S. (1995). TD models: Modeling the world as a mixture of time scales. In Proceedings

of the Twelfth International Conference on Machine Learning ICML'95, (pp. 531-539)., San Mateo,

CA. Morgan Kaufmann.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning. An Introduction. Cambridge, MA:

MIT Press.

Sutton, R. S. & Pinette, B. (1985). The learning of world models by connectionist networks. In

Proceedings of the Seventh Annual Conference of the Cognitive Science Society, (pp. 54-64).

Watkins, C. 1. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Cambridge University.

