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Abstract. Motivated by the work of P. L. Lions and J.-C. Rochet (1986) concerning

multi-time Hamilton-Jacobi equations, we introduce the theory of multi-time systems

of conservation laws. We show the existence and uniqueness of solution to the Cauchy

problem for a system of multi-time conservation laws with two independent time variables

in one space dimension. Our proof relies on a suitable generalization of the Lax-Oleinik

formula.

1. Introduction. This paper introduces the theory of multi-time systems of conser-

vation laws. Since to our knowledge nothing has been done in this direction, we first

give the statement of the theory in Section 1.1. In order to show that the theory is

well-introduced, we prove in the final section the solvability of the Cauchy problem for a

system of multi-time conservation laws with two independent time variables in one space

dimension. The solvability relies on a generalization of the Lax-Oleinik formula for two

independent times; see Definition 3.2. Therefore, we exploit in this paper the explicit

Lax formula (2.5) as solution for the multi-time Hamilton-Jacobi system (2.1), a concept

introduced by Rochet [18] in the context of mathematical economic problems.
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Besides the philosophical question of the existence of multiple-time dimensions, multi-

time phenomena are rather common. For instance, networks in communication theory,

including traffic models with the potential to consider traffic jams, lead to the use of

different time scales. In this direction, we address the work of Gu, Chung and Hui

[8], which is related to traffic flow problems in inhomogeneous lattices. In fact, traffic

flow seems to be one of the prelude sources of conservation laws, leading, for instance,

to the Burgers equation. Another source of interesting physical problems where multi-

time phenomena is present comes from general relativity and electromagnetism. In this

direction, we point the reader to the works of Neagu and Udriste [15] and Stickforth [19];

the last one is concerned with the Kepler problem. One of the most amazing examples

which leads to multiple dimensions, even more than two time scales, is given by string

theory; we point the reader to the books of Steven [9] and Zwiebach [22]. Most of

these physical problems are modelled by systems of conservation laws, here with two or

more time independent scales. Finally, we have to mention that one of the motivations to

introduce multi-time conservation laws comes from Lions-Rochet’s paper [12], concerning

multi-time Hamilton-Jacobi equations.

The mathematical theory of multi-time Hamilton-Jacobi equations was developed by

P. L. Lions and J.-C. Rochet [12]. In that paper Lions and Rochet showed the existence

of solution for (2.1). Since then, many works have been written in the context of multi-

time Hamilton-Jacobi equations to extend the results of Lions and Rochet. The existing

literature shows existence and uniqueness of the solution for a more general class of

Hamiltonians and gives weaker regularity conditions on the initial data. For instance,

see the works of Barles and Tourin [3] for Lipschitz initial-data as well as Plaskacz and

Quincampoix [16] for initial data bounded by a semi-continuous function; they present

existence and uniqueness under the hypotheses (H1), (H2), (H3) in [3] and Assumption

A in [16]. See Remark 2.1. We also address the paper of Imbert and Volle [10], which

considers a more general class of vectorial Hamilton-Jacobi equations.

For our multi-time conservation laws, we were here more interested in explicit Lipschitz

regular solutions for (2.1). Then, under the condition that the initial data is Lipschitz

and the Hamiltonians are convex and coercive, we give an explicit and new proof of

existence for the multi-time Hamilton-Jacobi equations, using the inf-convolution and

Γ-convolution operations. We show that Lax formula (2.5) is a Lipschitz function, which

solves the Cauchy problem (2.1); see Theorem 2.6. The same strategy used to prove

Theorem 2.6, with small modifications, also shows that the Lax formula is a viscosity

solution of (2.1) in the sense presented in Definition 2.7. Although the section on viscosity

solutions of Hamilton-Jacobi equations gives known results in literature, here we organize

the topics in order to give the correspondence with multi-time conservation laws. To make

the paper complete on its own, we prefer to give statements and proofs adapted to this

context. By the doubling variables technique, we show that there exists at most one

Lipschitz bounded solution for (2.1); see Theorem 2.8. Hence Section 3 presents the

existence and uniqueness solution to the Cauchy problem (3.1). First, we differentiate

the Lax formula with respect to the spatial variable and formally show that it is the best

candidate to solve (3.1). After that we establish in Lemma 3.1 a generalization of the

Lax-Oleinik formula for multi-time variables. Then, we give in Definition 3.3 the exact
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MULTI-TIME SYSTEMS OF CONSERVATION LAWS 493

notion of solution to (3.1) and prove the existence of an integral solution in Theorem

3.4. After that, by the BV regularity property obtained by the Lax-Oleinik formula, we

show that the integral solution is an entropy solution to the Cauchy problem (3.1) in the

sense of Definition 1.2. Finally, we prove the uniqueness result in Theorem 3.6.

1.1. Statement of the theory. The aim of this section is to provide the basic theory

for multi-time systems of conservation laws in multidimensional space dimensions. We

are going to formulate the initial-value problem, where the systems of equations are

complemented by an initial data, that is, the Cauchy problem.

Fix n, d and s to be positive natural numbers. Let t1, t2, ..., tn be n-time independent

scales, and consider the points (t1, . . . , tn, x1, . . . , xd) ∈ R
n × R

d. In fact, for simplicity

of exposition and without loss of generality, we consider only two time scales. Moreover,

we denote the spatial variable (x1, . . . , xd) = x.

Let U be an open subset of Rs, usually called the set of states, where for each (t1, t2, x)

u(t1, t2, x) ∈ U,
(

u = (u1, . . . , us)
)

.

Now, let fi : U → (Rs)d, (i = 1, 2), be two smooth maps called flux functions. In general,

we postulate that there exist at most f ′
is different flux functions as the number of time-

independent variables. Then, we are in position to establish the following multi-time

system of conservation laws in general form:

∂ui

∂t1
+

∂f i
1j(u)

∂xj

= 0,

∂ui

∂t2
+

∂f i
2j(u)

∂xj

= 0,

(1.1)

where (t1, t2, x) ∈ (0,∞)2 × R
d, u(t1, t2, x) ∈ U is the unknown and f1, f2 are given.

Moreover, we remark that the summation convention is used; that is, whenever an index

is repeated once, and only once, a summation over the range of this index is performed.

Definition 1.1. The system (1.1) is said to be hyperbolic, when for any u ∈ U and

any direction ξ ∈ Sd−1, each matrix

Ai
1k :=

∂f i
1j(u)

∂uk

ξj and Ai
2k :=

∂f i
2j(u)

∂uk

ξj (1 ≤ i, k ≤ s),

has s real eigenvalues λi1(u, ξ) ≤ λi2(u, ξ) ≤ . . . ≤ λis(u, ξ), (i = 1, 2) and is diago-

nalizable. Therefore, there exist 2s linearly independent right and left corresponding

eigenvectors, respectively: ri(u, ξ), li(u, ξ), (i = 1, 2), and

Ai(u, ξ) ri(u, ξ) = λi ri(u, ξ) and lTi (u, ξ) Ai(u, ξ) = λi li(u, ξ).

Moreover, when the eigenvalues are all distinct, the system (1.1) is said to be strictly

hyperbolic.

Hence, we formulate the Cauchy Problem: Find u(t1, t2, x) ∈ U to be a function in

(0,∞)2 × R
d that satisfies the system (1.1) and also the initial data

u(0, 0, x) = u0(x) for all x ∈ R
d, (1.2)

where u0 : Rd → U is a given function.
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Therefore, we have established the Cauchy problem (1.1)-(1.2) for multi-time systems

of conservation laws in general form and so, many questions are in order at this point.

First of all, one could ask if (1.1)-(1.2) is well-defined, since this problem seems to be

overdetermined. In this direction, we show in Section 3 well-posedness to the Cauchy

problem (1.1)-(1.2) for d and s equal to one, Lipschitz initial data and smooth convex

flux functions.

Last but not least, let us write y = (t1, t2, x) and for u(y) ∈ R, we define

F (u) :=

(

u 0 f1(u)

0 u f2(u)

)

.

Then, from equation (1.1) we have

divy F (u) ≡
∂Fij(u)

∂yj
= 0,

(

i = 1, 2; j = 1, . . . , d+ 2
)

. (1.3)

One could expect to apply the standard conservation laws theory. In this way, we have

the following

Definition 1.2. A field q(u) is called a convex entropy flux associated with the

conservation law (1.3) if there exists a continuous differentiable convex function η : R → R

such that

qij(λ) =

∫ λ

0

∂uη(s) ∂uFij(s) ds, for each λ ∈ R.

Moreover, a measurable and bounded scalar function u = u(y) is called an entropy

solution of the conservation law (1.3) associated with initial data u0 ∈ L∞(Rd), if the

following entropy inequality
∫∫

Rd+2

qij(u) ∂yj
φ dy ≥ 0

holds for each convex entropy flux q and all smooth test function φ compactly supported

in (0, T )2 × R
d, for all T > 0, and also the initial data

ess lim
t1,t2→0+

∫

R

|u(t1, t2, x)− u0(x)| dx = 0. (1.4)

The main issue of the paper will be the existence and uniqueness result as mentioned

before when s = d = 1. For that, we exploit the well-known idea established to study

conservation laws (at least in one spatial dimension) from the Hamilton-Jacobi equations.

1.2. Functional notation and some results. Let f : Rd → R ∪ {+∞}. The Legendre-

Fenchel conjugate of f , that is, the function f∗ : Rd → R ∪ {+∞}, is defined by the

formula

f∗(x) := sup
y∈Rd

{x · y − f(y)},

where x · y is the scalar product of vectors x, y ∈ R
d. We recall that f∗ is a convex

function even if f is not, and we put f∗∗ = (f∗)∗. If f is convex, the Fenchel-Moreau

theorem establishes an important duality result between f and its conjugate: if f is lower

semicontinuous and convex, then f∗∗ = f . In the following we consider proper functions.

If f : Rd → R is coercive, i.e.

lim
‖x‖→∞

f(x)

‖x‖
= +∞,
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where ‖ · ‖ is the Euclidean norm on R
d, then f∗ is also coercive.

For a Lipschitz function f : Rd → R, we denote by Lip(f) the Lipschitz constant of

f ; that is, for each x, y ∈ R
d,

|f(x)− f(y)| ≤ Lip(f) ‖x− y‖.

Given f, g : Rd → R, we define (for a more general context, see Moreau [13])

f ▽ g : Rd → R and f � g : Rd → R,

respectively the infimal-convolution (or inf-convolution) and gamma-convolution (or Γ-

convolution) of f, g, by
(

f ▽ g
)

(x) = inf
y∈Rd

{f(x− y) + g(y)} (1.5)

and
(

f � g
)

(x) =
(

f∗(x) + g∗(x)
)∗
. (1.6)

These operations are dual in the following sense.

Theorem 1.3. Let f, g : Rd → R be two convex functions. Then,

f ▽ g = f � g.

The proof can be seen in Rockafellar’s book [17], page 145, Theorem 16.4. In fact,

there are also more general conditions on f and g such that these operations are identical;

we point the reader to [13]. One recalls further that infimal-convolution and gamma-

convolution possess the properties of commutativity and associativity.

Finally, just for completeness of the paper, let us recall the Moreau-Yosida approx-

imation, which will be mentioned a posteriori. For each τ > 0, the Moreau-Yosida

approximation of f : Rd → R is given by

fτ (x) := inf
y∈Rd

{‖x− y‖2

2 τ
+ f(y)

}

.

2. Multi-time Hamilton-Jacobi equations. We begin this section by studying

some interesting features of the multi-time Hamilton-Jacobi equations. For simplicity of

explanation, we consider only two independent times. So, we will focus on the following

problem: Find w : (0,∞)2 × R
d → R, satisfying

wt1 +H1(Dw) = 0 in (0,∞)2 × R
d,

wt2 +H2(Dw) = 0 in (0,∞)2 × R
d,

w(0, 0, x) = g(x) on R
d,

(2.1)

where g : Rd → R is a given initial datum and Hi : R
d → R (i = 1, 2) are given functions,

usually called Hamiltonians. Here, we are mostly interested in explicit solutions for (2.1)

given by formulas with R
d domains, since they will be exploited a posteriori in order to

show solvability of multi-time conservation laws.

When t1 = t2 =: t and hence H1 = H2 =: H, the system (2.1) is the usual Hamilton-

Jacobi equations. In this context, we recall some well-known facts and discuss new
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viewpoints. We point, for instance, to Alvarez, Barron and Ishii [1], Bardi and Evans [2],

and also Lions and Rochet [12], and references therein.

1. If H is convex and coercive and g is Lipschitz, then we have an explicit solution

called the Lax formula; that is

wL(t, x) = inf
y∈Rd

{

tH∗
(x− y

t

)

+ g(y)
}

= inf
y∈Rd

{

(tH)∗(x− y) + g(y)
}

=
(

(tH)∗ ▽ g
)

(x).

(2.2)

Therefore, the Lax formula is given by the inf-convolution operation.

2. If g is convex and H is at least continuous, satisfying

lim
‖p‖→∞

tH(p) + g∗(p)

‖p‖
= ∞ (2.3)

uniformly with respect to any bounded t, then we have an explicit solution called the

Hopf formula; that is

wH(t, x) =
(

tH + g∗
)∗
(x), (2.4)

which is clearly a convex function.

These two formulas (2.2) and (2.4) are well known in the literature as Hopf-Lax

formulas, despite the fact that they are not equal. For instance, a necessary condition

to have both formulas defined is that H and g should be convex (assuming that we

have enough regularity). Moreover, for convex Hamiltonian, the Hopf formula could be

written as

wH(x) =
(

(tH)∗ � g
)

(x).

Hence by Theorem 1.3, we see that

wL(x) =
(

(tH)∗ ▽ g
)

(x) =
(

(tH)∗ � g
)

(x) = wH(x).

Consequently, H and g being convex is a necessary and sufficient condition to have

wL = wH ; besides that, H coercive is equivalent to condition (2.3).

Now, we turn our attention back to the (vectorial) multi-time Hamilton-Jacobi prob-

lem (2.1) and, hereafter we do not use the subscripts L and H respectively to denote the

Lax and Hopf formulas. Under the assumptions that g is convex and continuous on R
d

and that Hi (i = 1, 2) are continuous and satisfy (2.3), Proposition 4 of Lions-Rochet’s

paper [12] presents an explicit Hopf formula, that is to say

w(t1, t2, x) =
(

t1H1 + t2H2 + g∗
)∗
(x),

which solves (2.1) a.e. in [0, T ]2×R
d, for T > 0. We should note that they do not present

in that paper an explicit Lax formula. Indeed, considering that Hi (i = 1, 2) are convex,

g is bounded and uniformly continuous, and further that Dg is measurable and bounded

or Hi (i = 1, 2) are coercive, they show in Proposition 5 the following:

w(t1, t2, x) = SH1
(t1)SH2

(t2)g(x) = SH2
(t2)SH1

(t1)g(x),

which solves (2.1) a.e. and is Lipschitz on R
d × [ ε, T ]2 for all ε > 0.
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On the other hand, following our discussion above, we propose here to study the

following (called) Lax formula, that is

w(t1, t2, x) =
(

(t1H1 + t2H2)
∗ ▽ g

)

(x)

= inf
y∈Rd

{

(t1H1 + t2H2)
∗(x− y) + g(y)

}

,
(2.5)

where, for our purposes, we assume that g is Lipschitz in R
d.

Remark 2.1. Some remarks are in order:

1. The regularity of g, i.e. Lipschitz continuous, is a natural assumption in order to

show solvability of the multi-time system of conservation laws. In fact, this condition

could be relaxed using the Moreau-Yosida approximation gτ of g and then applying the

same strategy used in Alvarez, Barron and Ishii [1].

2. The Lax formula (2.5) already appears, as well, in Imbert and Vollet’s paper

(see [10]) to study the vectorial Hamilton-Jacobi equations. Completely different from

that paper, here we are interested in showing existence and uniqueness of (2.1) and,

further, Lipschitz regularity of (2.5) in an explicit and computationally way, which will

be exploited in the multi-time conservation laws section.

3. If we agree with the notation w(t, x) =
(

SH(t) g
)

(x) for (2.2), then we observe that

w(t1, t2, x) =
(

(t1H1 + t2H2)
∗ ▽ g

)

(x)

=
(

(t1H1)
∗
� (t2H2)

∗ ▽ g
)

(x)

=
(

(t1H1)
∗ ▽ (t2H2)

∗ ▽ g
)

(x),

which justifies the notation and commutativity in Proposition 5 in Lions and Rochet’s

paper [12].

4. For simplicity, we sometimes denote t1H1 + t2H2 =: t · H (as obvious notation)

and, the Lax formula (2.5) becomes

w(t1, t2, x) =
(

(t ·H)∗ ▽ g
)

(x).

5. Finally, we give respectively hypotheses (H1)− (H3) in Barles and Tourin [3] and

Assumption A in Plaskacz and Quincampoix [16]:

(H1) For any R > 0, there exists a constant KR > 0, such that

|Hi(x, p)| ≤ KR in R
d × {|p| ≤ R}, i = 1, 2,

|DpHi(x, p)| ≤ KR (1 + |x|) a.e. in R
d × {|p| ≤ R}, i = 1, 2.

(H2) H1, H2 are coercive uniformly with respect to x ∈ R
d.

(H3) H1, H2 are C1 in R
d × R

d and satisfy

DxH1(x, p) DpH2(x, p)−DxH2(x, p) DpH1(x, p) = 0,

for each x, p ∈ R
d. The equality above is always satisfied if H1, H2 do not depend on x;

furthermore, the Hamiltonians could be assumed to be locally Lipschitz.

Assumption A: H(u, p) = H̃(u, p) + λ(u), where λ(u) is a C1-real scalar non-negative

and non-increasing function, and H̃ : R× R
d → R satisfy

H̃(u, ·) is a concave and positively homogeneous function,

H̃(·, p) is a non-increasing C1 function.
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2.1. Existence. First, we show that the infimum in (2.5) is in fact a minimum; hence

the infimal convolution is said to be exact. Moreover, w is a continuous function.

Lemma 2.2. Assume that g : Rd → R is a Lipschitz continuous function, and let w be

defined by (2.5). Then,

w(t1, t2, x) = min
y∈Rd

{

(t ·H)∗(x− y) + g(y)
}

.

Moreover, w is a continuous function.

Proof. By definition of infimum, there exists {yn} on R
d such that

w(t1, t2, x) = lim
n→∞

{

(t ·H)∗(x− yn) + g(yn)
}

.

If {yn} has at least one convergent subsequence, we are done. Otherwise, {yn} should be

unbounded, which is not the case. Indeed, recall that H∗
i (i = 1, 2) are coercive; hence

(t · H)∗ is also coercive. Therefore, there exist a non-negative real arbitrary number λ

and a constant β such that, for n sufficiently large,

(t ·H)∗(x− yn) ≥ λ ‖x− yn‖ − β − 1/n.

Moreover, since the function g is Lipschitz continuous, we have

g(yn) ≥ −Lip(g) ‖yn‖+ g(0).

Then, it follows by the above inequalities that

(t ·H)∗(x− yn) + g(yn) ≥ λ ‖x− yn‖ − Lip(g) ‖yn‖+ g(0)− β − 1/n

≥ λ
(

‖yn‖ − ‖x‖
)

− Lip(g) ‖yn‖+ g(0)− β − 1/n

≥ C ‖yn‖+ g(0)− β − 1/n,

where C is a positive constant (take λ > Lip(g)). Then, passing to the limit as n → ∞,

we have a contradiction, since the infimum in (2.5) is finite. �

The next lemma establishes the semigroup property of the Lax formula.

Lemma 2.3. Let g : Rd → R be a Lipschitz continuous function and w defined by (2.5).

Then, for each 0 ≤ si < ti (i = 1, 2) and all x ∈ R
d, it follows that

w(t1, t2, x) = min
y∈Rd

{(

(t− s) ·H
)∗
(x− y) + w(s1, s2, y)

}

. (2.6)

Proof. The proof is a simple application of the inf-convolution and Γ-convolution

operations. Indeed, we have

w(t1, t2, x) =
(

(t1H1 + t2H2)
∗ ▽ g

)

(x)

=
(

((t1 − s1)H1 + s1H1 + (t2 − s2)H2 + s2H2)
∗ ▽ g

)

(x)

=
(

(

(t1 − s1)H1 + (t2 − s2)H2

)∗
�
(

s1H1 + s2H2

)∗
▽ g

)

(x)

=
(

(

(t1 − s1)H1 + (t2 − s2)H2

)∗
▽

(

s1H1 + s2H2

)∗
▽ g

)

(x),

where we have used Theorem 1.3. �
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Now, we prove that w defined by (2.5) is a Lipschitz continuous function. Therefore,

by Rademacher’s Theorem (see [6]), w is differentiable almost everywhere in R
d and for

almost all t1, t2 > 0.

Lemma 2.4. The function w defined by (2.5) is Lipschitz in [0,∞)2 ×R
d. Moreover, we

have

lim
t1,t2→0

w(t1, t2, x) = g(x) on R
d. (2.7)

Proof. 1. First, fix t1, t2 > 0 and x, x0 ∈ R
d. Choose y ∈ R

d such that

w(t1, t2, x) = (t1H1 + t2H2)
∗(x− y) + g(y).

Thus we have

w(t1, t2, x0)− w(t1, t2, x) = min
z∈Rd

{

(t1H1 + t2H2)
∗(x− z) + g(z)

}

− (t1H1 + t2H2)
∗(x− y)− g(y)

≤ g(x0 − x+ y)− g(y) ≤ Lip(g)‖x0 − x‖,

where we have used z = x0 − x+ y. Now, reverting x0 and x in the above, we obtain

|w(t1, t2, x)− w(t1, t2, x0)| ≤ Lip(g) ‖x− x0‖; (2.8)

that is, w(t1, t2, x) is Lipschitz with respect to the spatial variable x ∈ R
d.

2. Since g is Lipschitz continuous, for each x, y ∈ R
d, we have

g(y) ≥ g(x)− Lip(g) ‖x− y‖.

Therefore, by definition of w(t1, t2, x), we obtain

g(x)− w(t1, t2, x) ≤ max
y∈Rd

{

Lip(g) ‖x− y‖ −
(

t1H1 + t2H2

)∗
(x− y)

}

≤ max
z∈Rd

{

max
ξ∈B Lip(g)(0)

z · ξ −
(

t1H1 + t2H2

)∗
(z)

}

= max
ξ∈B Lip(g)(0)

(

t1H1 + t2H2

)

(ξ).

(2.9)

On the other hand, taking x = y in the definition of w(t1, t2, x), it follows that

w(t1, t2, x)− g(x) ≤
(

t1H1 + t2H2

)∗
(0).

Consequently, we obtain

inf
ξ∈Rd

(

t ·H
)

(ξ) ≤ g(x)− w(t1, t2, x) ≤ max
ξ∈B Lip(g)(0)

(

t ·H
)

(ξ). (2.10)

Furthermore, passing to the limit as t1, t2 → 0, we obtain (2.7).

3. Finally, we show that w is Lipschitz continuous with respect to the time variables.

Fix 0 < si < ti (i = 1, 2) and x ∈ R
d. By (2.8) for each t1, t2, we have

Lip(w(t1, t2, ·)) ≤ Lip(g).

Then, we apply the semigroup property of the Lax formula given by Lemma 2.3 and

proceed similarly as we have done in step 2 above. Hence the result follows. �
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To end up this section, let us show that (2.5) solves the multi-time Hamilton-Jacobi

partial differential equation in (2.1) wherever w is differentiable. One recalls that the

initial data is shown by Lemma 2.4.

Lemma 2.5. Let (t1, t2, x) ∈ (0,∞)2 × R
d be a differentiable point for the multi-time

Lax formula given by (2.5). Then,

∂t1w(t1, t2, x) +H1

(

Dw(t1, t2, x)
)

= 0,

∂t2w(t1, t2, x) +H2

(

Dw(t1, t2, x)
)

= 0.

Proof. Let us show the first differential equality; the second is similar. First, by the

semigroup property, we have

w(t1, t2, x) ≤
(

(t1 − s1)H1

)∗
(x− y) + w(s1, t2, y), (2.11)

where we have used 0 < s2 = t2, 0 < s1 < t1 and y ∈ R
d. Take δ > 0, q ∈ R

d fixed, and

replace in (2.11) s1 �→ t1, t1 �→ t1 + δ, y �→ x and x �→ x+ δ q. Thus, we have

w(t1 + δ, t2, x+ δq)− w(t1, t2, x) ≤ δ H∗
1 (q).

Then, dividing by δ and letting δ go to 0+, we obtain

wt1(t1, t2, x) + q ·Dw(t1, t2, x)−H∗
1 (q) ≤ 0.

Consequently, by the above inequality, it follows that

wt1(t1, t2, x) + max
p∈Rd

{p ·Dw(t1, t2, x)−H∗
1

(

p
)

} ≤ 0,

which implies

wt1(t1, t2, x) +H1

(

Dw(t1, t2, x)
)

≤ 0.

Now choose z ∈ R
d such that

w(t1, t2, x) =
(

t1H1 + t2H2

)∗
(x− z) + g(z).

Fix δ > 0 and conveniently set t1 = s1 + δ,

y =
t1 − δ

t1
x+

δ

t1
z, so

x− z

t1
=

y − z

s1
.

Therefore, by definition of w(s1, t2, y), we obtain

w(t1, t2, x)− w(s1, t2, y) ≥
(

t1H1 + t2H2

)∗
(x− z)−

(

s1H1 + t2H2

)∗
(y − z)

≥ δ H∗
1

(x− z

t1

)

.

Then, passing to the limit as δ → 0+ after dividing by δ, we obtain

wt1(t1, t2, x) +
x− z

t1
·Dw(t1, t2, x)−H∗

1

(x− z

t1

)

≥ 0. (2.12)
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Finally, we have by (2.12)

wt1(t1, t2, x) +H1

(

Dw(t1, t2, x)
)

= wt1(t1, t2, x)

+ max
q∈Rd

{

q ·Dw(t1, t2, x)−H∗
1 (q)

}

≥ wt1(t1, t2, x)

+
x− z

t1
·Dw(t1, t2, x)−H∗

1

(x− z

t1

)

≥ 0.

�

Consequently, we have proved in this section the following

Theorem 2.6. Let w be the Lax formula given by (2.5). Then, w is Lipschitz continuous,

differentiable a.e. in (0,∞)2×R
d, and solves the multi-time Hamilton-Jacobi initial-value

problem

wt1 +H1(Dw) = 0 a.e. in (0,∞)2 × R
d,

wt2 +H2(Dw) = 0 a.e. in (0,∞)2 × R
d,

w(0, 0, x) = g(x) on R
d.

Definition 2.7. A continuous function w : (0,∞)2 × R
d → R is called:

• A viscosity subsolution of the initial-value problem (2.1), provided

w(0, 0, ·) = g(·) on R
d

and for each φ ∈ C1((0,∞)2 × R
d) if w − φ has a local maximum in (τ1, τ2, ξ) ∈

(0,∞)2 × R
d, then

φt1(τ1, τ2, ξ) +H1

(

Dφ(τ1, τ2, ξ)
)

≤ 0,

φt2(τ1, τ2, ξ) +H2

(

Dφ(τ1, τ2, ξ)
)

≤ 0.

• A viscosity supersolution of the initial-value problem (2.1), provided

w(0, 0, ·) = g(·) on R
d

and for each φ ∈ C1((0,∞)2 × R
d) if w − φ has a local minimum in (τ1, τ2, ξ) ∈

(0,∞)2 × R
d, then

φt1(τ1, τ2, ξ) +H1

(

Dφ(τ1, τ2, ξ)
)

≥ 0,

φt2(τ1, τ2, ξ) +H2

(

Dφ(τ1, τ2, ξ)
)

≥ 0.

Moreover, w is said to be a viscosity solution of (2.1) when it is both a viscosity super-

solution and a viscosity subsolution of (2.1).

One observes that, with a similar strategy used before, it is not difficult to show that

w given by (2.5) is a viscosity subsolution and also a viscosity supersolution of (2.1).

Then, by definition it is a viscosity solution of (2.1).
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2.2. Uniqueness. In this section using the idea of doubling variables (see for instance

Kruzkov [11], Crandall, Evans and Lions [5]), we show the uniqueness of bounded Lips-

chitz solutions for the initial-value problem (2.1).

Theorem 2.8. Assume that the initial data g is a bounded Lipschitz function and that

Hi (i = 1, 2) are convex and coercive. Then, there exists at most one Lipschitz bounded

viscosity solution of (2.1).

Proof. 1. Let α be a positive real number, defined as

α := sup
[0,+∞)2×Rd

(

w − w̃
)

, (2.13)

where w and w̃ are two Lipschitz bounded solutions of (2.1) with the same initial data.

Now, we choose 0 < ǫ, λ1, λ2 < 1 and define the function Θ as

Θ(t1, t2, s1, s2, x, y) := w(t1, t2, x)− w̃(s1, s2, y)

− ρǫ,λ1,λ2
(t1, t2, s1, s2, x, y)

for each ti, si ≥ 0 (i = 1, 2) and x, y ∈ R
d, where

ρǫ,λ1,λ2
(t1, t2, s1, s2, x, y) :=

λ1

2
(t1 + s1) +

λ2

2
(t2 + s2)

+ ǫ−2
(

(t1 − s1)
2 + (t2 − s2)

2 + ‖x− y‖2
)

+ ǫ (‖x‖2 + ‖y‖2).

So, as

lim
‖(t1,t2,s1,s2,x,y)‖→+∞

ρǫ,λ1,λ2
(t1, t2, s1, s2, x, y) = +∞,

we have

lim
‖(t1,t2,s1,s2,x,y)‖→+∞

Θ(t1, t2, s1, s2, x, y) = −∞

and, as the function Θ is continuous in its domain and proper (not indentically ±∞),

there must be a point of maximum, i.e., there must exist a point (t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) ∈

[0,+∞)4 × R
2d, such that

Θ(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) = max
[0,+∞)4×Rd

Θ(t1, t2, s1, s2, x, y). (2.14)

2. From (2.14), the map

(t1, t2, x) �−→ Θ(t1, t2, ŝ1, ŝ2, x, ŷ)

has a maximum in (t̂1, t̂2, x̂). If we write Θ as

Θ(t1, t2, ŝ1, ŝ2, x, ŷ) = w(t1, t2, x)− v(t1, t2, x),

where

v(t1, t2, x) := w̃(ŝ1, ŝ2, ŷ) + ρǫ,λ1,λ2
(t1, t2, ŝ1, ŝ2, x, ŷ),
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then (w − v) has a maximum in (t̂1, t̂2, x̂). Since w is a viscosity solution of (2.1), it

follows that
vt1(t̂1, t̂2, x̂) +H1

(

Dv(t̂1, t̂2, x̂)
)

≤ 0,

vt2(t̂1, t̂2, x̂) +H2

(

Dv(t̂1, t̂2, x̂)
)

≤ 0.

Now, using the definition of v we obtain

λ1

2
+ ǫ−2(t̂1 − ŝ1) +H1

(

2

ǫ2
(x̂− ŷ) + 2ǫx̂

)

≤ 0,

λ2

2
+ ǫ−2(t̂2 − ŝ2) +H2

(

2

ǫ2
(x̂− ŷ) + 2ǫx̂

)

≤ 0.

(2.15)

Analogously, the map

(s1, s2, y) �−→ −Θ(t̂1, t̂2, s1, s2, x̂, y)

has a minimum in (ŝ1, ŝ2, ŷ). We write −Θ(t̂1, t̂2, s1, s2, x̂, y) as

−Θ(t̂1, t̂2, s1, s2, x̂, y) := w̃(s1, s2, y)− ṽ(s1, s2, y).

Hence, (w̃ − ṽ) has a minimum in (ŝ1, ŝ2, y), where

ṽ(s1, s2, y) := w(t̂1, t̂2, x̂)− ρǫ,λ1,λ2
(t̂1, t̂2, s1, s2, x̂, y).

Similarly to (2.15), we have

−
λ1

2
+ ǫ−2(t̂1 − ŝ1) +H1

(

2ǫ−2(x̂− ŷ)− 2ǫŷ
)

≥ 0,

−
λ2

2
+ ǫ−2(t̂2 − ŝ2) +H2

(

2ǫ−2(x̂− ŷ)− 2ǫŷ
)

≥ 0.

(2.16)

3. Finally, making the difference between (2.16) and (2.15) with respect to the first

line, we have

λ1 ≤ H1

(

2ǫ−2(x̂− ŷ)− 2ǫŷ
)

−H1

(

2ǫ−2(x̂− ŷ) + 2ǫx̂
)

.

Since H1 is locally Lipschitz continuous (and the maximum point (t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) is

attained in a compact ball), we have

λ1 ≤ 2ǫ ‖ŷ + x̂‖ . (2.17)

At this point, we need an estimate of ‖ŷ + x̂‖ to conclude that λ1 = 0, since ǫ > 0 is

arbitrary. It will be obtained thanks to the definition of ρǫ,λ1,λ2
. In fact, we can fix

0 < ǫ, λ1, λ2 < 1 so small that (2.13) implies

Θ(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) ≥ sup
[0,T ]2×R2d

Θ(t1, t2, t1, t2, x, x) ≥
α

2
. (2.18)

Moreover, since

Θ(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) ≥ Θ(0, 0, 0, 0, 0, 0),

it follows that

ρǫ,λ1,λ2
(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ) ≤ [w(t̂1, t̂2, x̂)− w(0, 0, 0)]

− [w̃(ŝ1, ŝ2, ŷ)− w̃(0, 0, 0)].
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Since w and w̃ are bounded, we obtain as ǫ → 0+

|t̂1 − ŝ1|, |t̂2 − ŝ2|, ‖x̂− ŷ‖ = O(ǫ),

ǫ (‖x̂‖2 + ‖ŷ‖2) = O(1).
(2.19)

The last equation of (2.19) implies that

ǫ (‖x̂‖+ ‖ŷ‖) = ǫ
1
4 ǫ

3
4 (‖x̂‖+ ‖ŷ‖)

≤ ǫ
1
2 + C ǫ

3
2 (‖x̂‖2 + ‖ŷ‖2) ≤ C ǫ

1
2

(2.20)

for some positive constant C. To complete the proof, we use (2.20) in (2.17) and get

λ1 ≤ 2Cǫ
1
2 .

Similarly, we obtain that λ2 = 0, and this contradiction completes the proof. �

Remark 2.9. Note that in the proof, the points t̂1, t̂2, ŝ1, ŝ2 could be zero, and in that

case, with respect to the time, the function Θ would be constant. To see that this does

not happen, we recall that

Θ(t̂1, t̂2, t̂1, t̂2, x̂, x̂) ≤ Θ(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ)

and from this, we get

w(t̂1, t̂2, x̂)− w̃(ŝ1, ŝ2, ŷ)− ρǫ,λ1,λ2
(t̂1, t̂2, ŝ1, ŝ2, x̂, ŷ)

≥ w(t̂1, t̂2, x̂)− w̃(t̂1, t̂2, x̂)− ρǫ,λ1,λ2
(t̂1, t̂2, t̂1, t̂2, x̂, x̂).

Therefore, we obtain

ǫ−2((t̂1 − ŝ1)
2 + (t̂2 − ŝ2)

2 + ‖x̂− ŷ‖
2
) ≤ w(x̂, t̂1, t̂2)− w̃(ŷ, ŝ1, ŝ2)

−
λ1

2
(t̂1 − ŝ1) +

λ2

2
(t̂2 − ŝ2) + ǫ(x̂− ŷ)(x̂+ ŷ).

Then, by (2.19), (2.20) and the Lipschitz continuity of w̃, we have

|t̂1 − ŝ1|, |t̂2 − ŝ2|, ‖x̂− ŷ‖ = o(ǫ). (2.21)

Now, let ω be the modulus of continuity of w; that is,

|w(t1, t2, x)− w̃(s1, s2, y)| ≤ ω(|t1 − s1|+ |t2 − s2|+ ‖x− y‖)

for all x, y ∈ R
n, 0 ≤ t, s ≤ T , and ω(r) → 0 as r → 0. Similarly, ω̃(·) will denote the

modulus of continuity of w̃. Then (2.18) implies

α

2
≤ w(t̂1, t̂2, x̂)− w̃(ŝ1, ŝ2, ŷ) = [w(t̂1, t̂2, x̂)− w(t̂1, 0, x̂)] + [w(t̂1, 0, x̂)− w(0, 0, x̂)]

+ [w(0, 0, x̂)− w̃(0, 0, x̂)] + [w̃(0, 0, x̂)− w̃(t̂1, 0, x̂)]

+ [w̃(t̂1, 0, x̂)− w̃(t̂1, t̂2, x̂)] + [w̃(t̂1, t̂2, x̂)− w̃(ŝ1, ŝ2, ŷ)].

Therefore, using (2.19), (2.21) and the initial condition, we have

α

2
≤ ω(t̂2) + ω(t̂1) + ω̃(t̂1) + ω̃(t̂2) + ω̃(o(ǫ)).

As ǫ is a positive arbitrary number, we can take it as small as necessary to obtain
α

4
≤ ω(t̂2) + ω(t̂1) + ω̃(t̂1) + ω̃(t̂2),
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and this implies for some constant μ > 0,

t̂1, t̂2 ≥ μ > 0.

Analogously, we have ŝ1, ŝ2 ≥ μ > 0.

3. Multi-time conservation laws. Once we have established existence and unique-

ness for the multi-time Hamilton-Jacobi system, we are going to use it in this section in

order to show solvability of the multi-time system of conservation laws. Therefore, we fix

d, s equal to one and for given Hi(i = 1, 2) two smooth (uniformly) convex flux functions,

we consider the following Cauchy problem: Find u : (0,∞)2 × R → R, satisfying

ut1 + ∂xH1(u) = 0 in (0,∞)2 × R,

ut2 + ∂xH2(u) = 0 in (0,∞)2 × R,

u(0, 0, x) = u0(x) on R,

(3.1)

where u0 ∈ L∞(R) is given initial data. With no loss of generality, we assume Hi(0) = 0

(i = 1, 2). Following the usual strategy for 1D scalar conservation laws, we define

g(x) :=

∫ x

0

u0(y) dy (x ∈ R); (3.2)

thus, g is a Lipschitz function with Lip(g) = ‖u0‖∞. Recall the multi-time Lax formula

given by (2.5). Thus by Theorem 2.6, w solves the multi-time Hamilton-Jacobi system

(2.1) and, if we assume that w is smooth, then we can differentiate that system with

respect to x to deduce

wx t1 + ∂xH1(wx) = 0 in (0,∞)2 × R,

wx t2 + ∂xH2(wx) = 0 in (0,∞)2 × R,

wx(0, 0, x) = u0(x) on R.

(3.3)

Now, setting u = wx we obtain that u solves the system (3.1). Certainly, the computation

is only formal. Indeed, even though the function w is differentiable a.e., we are not allowed

to differentiate H1(wx) with respect to x, similarly to H2. Although,

u(t1, t2, x) : = ∂x
(

min
y∈R

{(

t1H1 + t2H2

)∗
(x− y) + g(y)

})

= ∂x
(

(t ·H)∗ ▽ g
)

(x)
(3.4)

seems to be the best candidate for a solution to the Cauchy problem (3.1). In fact, we

will show that such a function u as defined above is a (weak integral) solution, but before

that, let us first show a more useful formula.

Lemma 3.1. (Multi-time Lax-Oleinik formula). Assume Hi : R → R (i = 1, 2)

are smooth uniformly convex, with u0 ∈ L∞(R) and g given by (3.2). Then, for each

t1, t2 > 0, there exists for all but at most countably many values x ∈ R, such that (3.4)

has the following form:

u(t1, t2, x) =
(

(t1H1)
∗ ▽ (t2H2)

∗
)′
(

x− y(t1, t2, x)
)

, (3.5)
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where the mapping x �→ y(t1, t2, x) is nondecreasing. Moreover, for each z > 0,

u(t1, t2, x+ z)− u(t1, t2, x) ≤ Lip
((

(t1H1 + t2H2)
∗
)′)

z. (3.6)

Definition 3.2. Equation (3.5) is called the multi-time Lax-Oleinik formula.

Proof. 1. Fix t1, t2 > 0, x1 < x2. There exists at least one point y1 ∈ R, such that

w(t1, t2, x1) =
(

t1H1 + t2H2

)∗
(x1 − y1) + g(y1). (3.7)

Now, we claim that, for each y < y1,
(

t1H1 + t2H2

)∗
(x2 − y1) + g(y1) <

(

t1H1 + t2H2

)∗
(x2 − y) + g(y).

Indeed, let τ ∈ (0, 1), given by

τ =
y1 − y

(x2 − x1) + (y1 − y)
,

and for convenience, we write

x2 − y1 = τ (x1 − y1) + (1− τ ) (x2 − y),

x1 − y = (1− τ ) (x1 − y1) + τ (x2 − y).

Therefore, since (H∗
i )

′′ > 0 (i = 1, 2), it follows that
(

t ·H
)∗
(x2 − y1) < τ

(

t ·H
)∗
(x1 − y1) + (1− τ )

(

t ·H
)∗
(x2 − y),

(

t ·H
)∗
(x1 − y) < (1− τ )

(

t ·H
)∗
(x1 − y1) + τ

(

t ·H
)∗
(x2 − y).

Then, combining the two above inequalities, we obtain
(

t ·H
)∗
(x2 − y1) +

(

t ·H
)∗
(x1 − y)

<
(

t ·H
)∗
(x1 − y1) +

(

t ·H
)∗
(x2 − y).

(3.8)

Moreover, by the definition of w(t1, t2, x1), we have

−
(

t1H1 + t2H2

)∗
(x1 − y)− g(y) ≤ −

(

t1H1 + t2H2

)∗
(x1 − y1)− g(y1). (3.9)

Then, from (3.8) and (3.9),
(

t1H1 + t2H2

)∗
(x2 − y1) + g(y1) <

(

t1H1 + t2H2

)∗
(x2 − y) + g(y),

and so the claim is proved.

2. From the claim proved before, we observe that to compute the minimum below,

i.e.

min
y∈R

{

(

t1H1 + t2H2

)∗
(x2 − y) + g(y)

}

,

we only need to consider those y ≥ y1, where y1 satisfies (3.7). Therefore, for each

t1, t2 > 0 and x ∈ R, we could define the point y(t1, t2, x) equal to the smallest value of

those points y giving the minimum of
(

t1H1 + t2H2

)∗
(x− y) + g(y).

Consequently, for each t1, t2 > 0, the mapping x �→ y(t1, t2, x) is nondecreasing and thus

continuous for all but at most countably many x ∈ R. Moreover, at such a point x, the

value y(t1, t2, x) are those unique y yielding the minimum.
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3. Since the function w is Lipschitz and thus differentiable a.e. and the mapping

x �→ y(t1, t2, x) is monotone and so differentiable a.e. as well, given t1, t2 > 0 for a.e.

x ∈ R, the mappings

x �→
(

t1H1 + t2H2

)∗
(x− y(t1, t2, x)),

x �→ g(y(t1, t2, x))

are also differentiable for a.e. x ∈ R. Then, we have for such a differentiable point x,

u(t1, t2, x) = ∂x

(

(

t1H1 + t2H2

)∗
(x− y(t1, t2, x)) + g(y)

)

=
(

(

t1H1 + t2H2

)∗
)′

(x− y(t1, t2, x))
(

1− yx(t1, t2, x)
)

+ ∂x

(

g(y(t1, t2, x))
)

.

But since the mapping y �→ (t1H1 + t2H2)
∗ + g has a minimum at y = y(t1, t2, x), it

follows that

−
(

(

t1H1 + t2H2

)∗
)′

(x− y(t1, t2, x)) yx(t1, t2, x) + ∂x
(

g(y(t1, t2, x))
)

= 0,

and thus we obtain (3.5).

4. Finally, by equation (3.5), the monotonicity of
(

(t1H1 + t2H2)
∗
)′

and y(t1, t2, ·) as

well, we have for each z > 0

u(t1, t2, x) =
(

(t1H1 + t2H2)
∗
)′
(x− y(t1, t2, x))

≥
(

(t1H1 + t2H2)
∗
)′
(x− y(t1, t2, x+ z))

≥
(

(t1H1 + t2H2)
∗
)′
(x+ z − y(t1, t2, x+ z))

− Lip
((

(t1H1 + t2H2)
∗
)′)

z

= u(t1, t2, x+ z)− Lip
((

(t1H1 + t2H2)
∗
)′)

z.

Therefore, we obtain

u(t1, t2, x+ z)− u(t1, t2, x) ≤ Lip
((

(t1H1 + t2H2)
∗
)′)

z.

�

3.1. Existence. Now we are ready to show the solvability of the multi-time system of

conservation laws in 1D for two independent times. First, let us define in which sense

a bounded and measurable real function u defined in (0,∞)2 × R is a weak (integral)

solution of (3.1).

Definition 3.3. Given u0 ∈ L∞(R), a function u ∈ L∞((0,∞)2 × R) is said to be a

weak integral solution of the Cauchy problem (3.1) if it satisfies

• Multi-time conservation laws: For all ϕ ∈ C∞
0 ((0,∞)2 × R),

∫ ∞

0

∫ ∞

0

∫

R

(

uϕt1 +H1(u)ϕx

)

dxdt1dt2 = 0, (3.10)

∫ ∞

0

∫ ∞

0

∫

R

(

uϕt2 +H2(u)ϕx

)

dxdt1dt2 = 0. (3.11)
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• Initial condition: For any γ ∈ L1(R),

ess lim
t1,t2→0+

∫

R

(

u(t1, t2, x)− u0(x)
)

γ(x) dx = 0. (3.12)

Theorem 3.4. The function u ∈ L∞((0,∞)2 × R) given by Lemma 3.1 and equation

(3.5) is a weak solution of the Cauchy problem (3.1).

Proof. First, we define for t1, t2 > 0 and x ∈ R,

w(t1, t2, x) = min
y∈R

{(t1H1 + t2H2)
∗(x− y) + g(y)} ,

which by Theorem 2.6 is a Lipschitz continuous function, differentiable a.e in (0,∞)2×R,

and solves

wt1 +H1(wx) = 0 a.e. in (0,∞)2 × R,

wt2 +H2(wx) = 0 a.e. in (0,∞)2 × R,

w(0, 0, x) = g(x) on R.

(3.13)

Now, we take ϕ ∈ C∞
0 ((0,∞)2 × R), multiply the first equation in (3.13) by ϕx and

integrate over (0,∞)2 × R to obtain

∫ ∞

0

∫ ∞

0

∫

R

(

wt1 ϕx +H1(wx)ϕx

)

dxdt1dt2 = 0.

Then, we observe that

∫ ∞

0

∫ ∞

0

∫

R

wt1 ϕx dxdt1dt2 = −

∫ ∞

0

∫ ∞

0

∫

R

wϕt1x dxdt1dt2

=

∫ ∞

0

∫ ∞

0

∫

R

wx ϕt1 dxdt1dt2,

where we are allowed to integrate by parts, since the mapping x �→ w(t1, t2, x) is Lipschitz

continuous and then absolutely continuous for each t1, t2 > 0. Moreover, for each t2 > 0

and x ∈ R, the mapping t1 �→ w(t1, t2, x) is also absolutely continuous. Therefore, we

have
∫ ∞

0

∫ ∞

0

∫

R

(

wx ϕt1 +H1(wx)ϕx

)

dxdt1dt2 = 0,

and by a similar argument, we obtain

∫ ∞

0

∫ ∞

0

∫

R

(

wx ϕt2 +H2(wx)ϕx

)

dxdt1dt2 = 0.

Finally, we recall that u = wx a.e. as precisely defined by (3.5). Then, the multi-time

conservation laws condition of Definition 3.3 is satisfied.

To show the initial condition, we apply the same strategy before and the result follows

using (2.7). �
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3.2. Uniqueness. We show the existence of a weak integral solution u to the problem

(3.1), where u is given by (3.5). Recall that the integral solution is slightly different from

the entropy solution given by Definition 1.2; that is, a measurable and bounded function

u(t1, t2, x) is an entropy solution to (3.1) if for all entropy pairs (η(u), qi(u)) (i = 1, 2)

and for each T > 0, the following holds true:
∫ T

0

∫ T

0

∫

R

(

η(u)ϕt1 + q1(u)ϕx

)

dxdt1dt2 ≥ 0, (3.14)

∫ T

0

∫ T

0

∫

R

(

η(u)ϕt2 + q2(u)ϕx

)

dxdt1dt2 ≥ 0, (3.15)

for each non-negative test function ϕ ∈ C∞
0 ((0, T )2 × R), and also the initial condition

(3.12) is satisfied. It follows by (3.6) that, for each t1, t2 ∈ (0, T ) fixed, u(t1, t2, ·) has

locally bounded variation. Indeed, we know that for each z > 0,

u(t1, t2, x+ z)− u(t1, t2, x)

z
≤ c,

where c := Lip
((

(t1H1 + t2H2)
∗
)′)

. Let ũ(t1, t2, x) = u(t1, t2, x) − c̃ x for c̃ > c. Then,

we have for each z > 0

ũ(t1, t2, x+ z)− ũ(t1, t2, x) < 0;

that is, ũ(t1, t2, ·) is a decreasing function and hence has locally bounded total variation.

Since this is also true for c̃ x, we obtain that u(t1, t2, ·) has locally bounded variation.

Therefore, the well-known theory of Vol′pert [20] allow us to apply the chain rule for BV

functions and write for a.e. x ∈ R, i = 1, 2

∂xHi(u(t1, t2, x)) = H ′
i(u(t1, t2, x)) (u(t1, t2, x))x,

and thus since u is an integral solution, we have in the sense of measures

|uti | ≤ max
ξ∈B‖u‖∞ (0)

|H ′
i(ξ)| |ux|; (3.16)

that is to say, ut1 , ut2 are locally Radon measures.

Now, let η be a smooth convex function. Again, with no loss of generality, we may

as well also take η(0) = 0. Then, we multiply (3.16) by η′(u) and apply again the chain

rule for BV functions to obtain in the measure sense

η(u)t1 + ∂xq1(u) = 0,

η(u)t2 + ∂xq2(u) = 0.
(3.17)

Consequently, it is not difficult to see that the integral solution u is in fact an entropy

solution, where the estimate (3.16) is crucial in order to show the initial data (1.4).

Moreover, by a standard approximation procedure, we may assume that the pair (η, qi)

(i = 1, 2) are the Kruzkov entropies, that is,
∫ T

0

∫ T

0

∫

R

(

|u− v|ϕt1 + sgn(u− v)
(

H1(u)−H1(v)
)

ϕx

)

dxdt1dt2 = 0, (3.18)

∫ T

0

∫ T

0

∫

R

(

|u− v|ϕt2 + sgn(u− v)
(

H2(u)−H2(v)
)

ϕx

)

dxdt1dt2 = 0, (3.19)
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for each v ∈ R fixed and all test functions ϕ ∈ C∞
0 ((0, T )2 × R). Therefore, we are in

position to apply the doubling variables technique due to Kruzkov; see [11]. In fact, this

is nowadays a standard procedure, and thus adapted to our case leads to the following

result.

Lemma 3.5. Let u and v be two entropy solutions to the problem (3.1) corresponding to

initial data u0, v0 respectively. Then, we have the L1-contraction type inequalities
∫ T

0

∫

BR(0)

|u(t1, τ, x)−v(t1, τ, x)| ζ2(τ ) dxdτ

≤

∫ T

0

∫

BR1
(0)

|u(0, τ, x)− v(0, τ, x)| ζ2(τ ) dxdτ,

∫ T

0

∫

BR(0)

|u(τ, t2, x)−v(τ, t2, x)| ζ1(τ ) dxdτ

≤

∫ T

0

∫

BR2
(0)

|u(τ, 0, x)− v(τ, 0, x)| ζ1(τ ) dxdτ,

(3.20)

which holds for all BR(0), R > 0 and almost all t1, t2 > 0, where for i = 1, 2, ζi ∈

C∞
0 (0, T ), BRi

= BR+Miti(0), and Mi denotes the Lipschitz constant of Hi.

Theorem 3.6. Let u and v be two entropy solutions to the problem (3.1) corresponding

to initial data u0, v0 respectively. If u0 = v0 almost everywhere, then u = v almost

everywhere.

Proof. For δ > 0, we take ζ1(τ ) = χ(0,δ)(τ ) in the second inequality of (3.20). Then,

dividing both sides of the inequality by δ and passing to the limit as δ → 0+, we obtain
∫

R

|u(0, t2, x)− v(0, t2, x)| dx = 0.

Similarly, for θ > 0 sufficiently small, we take ζ2(τ ) = χ(t2−θ,t2+θ)(τ ) in the first inequal-

ity of (3.20). Again, dividing the inequality by θ and passing to the limit as θ goes to

0+, the uniqueness result follows; that is, u ≡ v almost everywhere. �
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