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Abstract
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulat-

ing evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can

also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron

lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed

biophysical model of the brain’s metabolic interactions. Our model integrates three model-

ing approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formu-

lation of neuronal membrane excitability and a biophysical model of metabolic pathways.

This approach provides a template for large-scale simulations of the neuron-glia-

vasculature (NGV) ensemble, and for the first time integrates the respective timescales at

which energy metabolism and neuronal excitability occur. The model is constrained by rela-

tive neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabo-

lites at rest and by the temporal dynamics of NADH upon activation. These constraints

produced four observations. First, a transfer of lactate from astrocytes to neurons emerged

in response to activity. Second, constrained by activity-dependent NADH transients, neuro-

nal oxidative metabolism increased first upon activation with a subsequent delayed astro-

cytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular

lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the

temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the

BOLD signal as reported in human studies. These findings not only support the ANLS hy-

pothesis but also provide a quantitative mathematical description of the metabolic activation

in neurons and glial cells, as well as of the macroscopic measurements obtained during

brain imaging.
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Author Summary

The brain has remarkable information processing capacity, yet is also very energy efficient.
How this metabolic efficiency is achieved given the spatial and metabolic constraints
inherent to the designs and energy requirements of brain cells is a fundamental question
in neurobiology. The major cell classes in mammalian nervous systems include neurons,
glia and the microvasculature that supplies the molecular substrates of energy and metabo-
lism. Together, this neuron-glia-vasculature (NGV) ensemble constitutes the functional
unit that underlies the cost infrastructure of computation. In spite of its importance,
a comprehensive understanding of this dynamic system remains elusive. While it is well
established that glucose feeds the brain, few of the details regarding the destiny of glucose
intermediates in metabolic pathways are known. Controversy remains regarding the de-
gree of cooperativity between glia and neurons in sharing lactate, the product of aerobic
glycolysis (Warburg effect) and one of the substrates for further energy extraction by
oxidative processes. Specifically, while experimental data support the occurrence of a flow
of lactate from glia to neurons, the astrocyte-neuron lactate shuttle (ANLS), some theoreti-
cal considerations have been proposed to support the occurrence of lactate transport in
the other direction (NALS). Our computational model is the first to integrate multiple
timescales of the NGV unit. It provides a quantitative mathematical description of meta-
bolic activation in neurons and astrocytes, and of the macroscopic measurements obtained
during brain imaging that uses metabolism as a proxy for neuronal activity.

Introduction
The mammalian brain exhibits remarkable processing power. It is at the same time energy
efficient. The design features that allow such efficient computation are mapped in cellular and
molecular components and their roles in information processing. Concurrently, these features
are anchored in, and constrained by, the universal metabolic chains that provide energy to
cells. Deciphering the metabolic code and the neural code are thus tandem requirements for
a comprehensive understanding of brain function. Understanding the metabolic underpin-
nings of information processing is also of added value to understanding the etiology and pro-
gression of neuropsychiatric and neurodegenerative disorders [1, 2]. The picture that emerges
from this dynamical system will reflect the cooperative function of neurons, glia and the
vascular system.

Glutamate, the brain’s major neurotransmitter, effects numerous cascades and processes in
brain cells [3, 4]. Among them, astrocytes couple synaptic activity to energy metabolism via
a sodium-dependent uptake of glutamate [5]. The ensuing cascade of molecular events leads to
the glycolytic processing of glucose and the release of lactate by astrocytes. A comprehensive
model of brain energy metabolism must consider oxidative and non-oxidative glucose con-
sumption, intracellular and extracellular compartmentalization and transport of choke-point
metabolic intermediates such as lactate and pyruvate, as well as feedback mechanisms that re-
port local synaptic and intrinsic neuronal activity [6, 7]. These pathways are in turn complicit
in the molecular and cellular mechanisms that contribute to the still poorly understood read-
out of functional brain imaging [8].

The role of astrocytes and how they metabolically interact with neurons is well supported
experimentally; some mostly theoretical considerations, however, have challenged this view.
Magistretti and colleagues proposed that clearance of glutamate from the synaptic cleft by as-
trocytes could be coupled to glycolysis and subsequent lactate production [5]. Lactate produced
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in this way would then be transported to the extracellular space. Controversy remains sur-
rounding directionality and timing of lactate flow in the brain; while a neuron-to-astrocyte
lactate system (NALS) is proposed by some [9, 10], an astrocyte-to-neuron direction (ANLS)
is supported by a large set of experimental evidence [11]. Biophysical models also weigh-in on
the conditions and sequences of events required for lactate production and consumption
[12–15].

The existence of an extracellular pool of lactate likely used as an energy reservoir at the
onset of stimulation has been observed in rats and humans [16, 17]. The distribution of mono-
carboxylate transporters at the membrane of neurons and astrocytes supports the hypothesis of
a net transfer of lactate from astrocytes to neurons through the extracellular space [18]. Glial
cells have been observed to take up most glucose [19, 20], while neurons are responsible for the
largest part of brain oxygen consumption [21, 22]. Additional evidence comes from the direct
measure of NADH transients in brain slices, showing that neurons display early oxidative
metabolism following presynaptic activity, while astrocytes display a delayed activation of
glycolysis but no detectable oxidative response [23]. Nevertheless, the ANLS-hypothesis is still
debated and challenged with arguments focusing now on the exact interpretation of the above
observations [24, 25].

Nicotine adenine dinucleotide, either oxidized or reduced (NAD+, or NADH), is a work-
horse cofactor that acts as a central electron broker for metabolic redox cycles including glycol-
ysis, the citric acid cycle (Krebs, TCA) and oxidative phosphorylation. Owing to its high UV
wavelength absorption, it is also responsible for cellular auto-florescence. This coincidence
makes it a useful indicator of metabolic activity. NADH is an important metabolic signal be-
cause it is produced or used during both mitochondrial activity and activation of the glycolytic
pathway, and because it cannot diffuse freely through the mitochondrial membrane but needs
to be transported by appropriate shuttles. Fluctuations of the NADH concentration measured
in the appropriate cellular compartments can then indicate increased or decreased oxidative
and glycolytic metabolism. A critical previous finding in this regard was the observation of
early and late activity-dependent phases of metabolic activity with the early phase taking the
form of a NADH “dip” and the late phase appearing as a NADH “overshoot” with a longer
time constant of decay [23]. Interestingly, these phases also correlate with the fluctuations
of the extracellular lactate concentration as determined in animals [16] and humans [26, 27].

The emerging consensus is that the early phase represents NADH depletion in the dendrites
of active neurons and that the overshoot represents glycolytic activity that results in the accu-
mulation of NADH. This activity results in the high production of lactate in astrocytes as rapid
glycolysis overtakes the subsequent consumption by oxidative pathways [23, 26, 27]. The accu-
mulation and transportation of lactate between glial cells and neurons may in turn serve as an
activity-dependent buffer that is informed by the neuronal release and glial uptake of glutamate
[5]. It might also act as a signaling molecule to the vasculature [28] or to brain cells via binding
to the G-protein coupled receptor GPR81 [29].

The preference for lactate over glucose as an energy substrate in neurons has been demon-
strated in vivo as well as in vitro [30, 31], as has a neuroprotective role for lactate in the case of
insulin-dependent hypoglycemia [32] and other conditions [33, 34]. The role of the ANLS in
homeostatic maintenance involves the regulation of blood glucose [35] and sodium [36].
While the ANLS hypothesis, since its initial formulation [5], does not preclude the use of glu-
cose by neurons as an energy substrate, it has been challenged by some studies defending the
view that glucose, rather than lactate, is the sole energy substrate for oxidative metabolism in
neurons [37, 38].

Previous modeling efforts have advanced our knowledge of this functional metabolic net-
work by demonstrating that lactate consumption by neurons occurs early in the stimulus
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regimen and that the early and late lactate transients correspond to the activity of two distinct
populations of cells, neurons and glia. The current study builds on and complements those and
other models [9, 10, 12–15, 39–42] and addresses unresolved mechanisms of neuron-glial met-
abolic and vascular coupling. The model is based on several previous studies [13, 40] with five
significant improvements: 1) the compartmentalization of NADH between cytosolic and mito-
chondrial compartments; 2) the linking of metabolic and Hodgkin-Huxley formalisms; 3) the
input to the neuronal and astrocytic compartments formulated as a presynaptic glutamatergic
stimulation; 4) the model explicitly and continuously updates reversal potentials; and 5)
the model was constrained using in vitro data and correctly predicts in vivo results without the
need of invoking glycogen (which is deliberately excluded from the model).

In this paper, we will show that a biophysical model of astrocyte-neuron metabolic interactions
designed following these principles leads to the presence of an activity-dependent lactate shuttle
from astrocytes to neurons and that this model can reproduce the evoked response of NADH in
its various compartments as reported by Kasischke and colleagues [23]. We will subsequently
show that our biophysical model correctly predicts qualitatively—and to some extent quantita-
tively—the evoked responses of tissue lactate and tissue oxygen as observed in the rat brain in
vivo [16]. Finally, our biophysical model predicts the evoked responses of tissue lactate, of the
BOLD signal and the glucose and oxygen consumption as observed in the human brain in vivo.

Methods
This in silicomodel represents a dynamic and integrative analysis of compartmentalized me-
tabolism and its relation to neuronal signaling in the central nervous system. The model was
designed based on knowledge of the underlying biophysics and required input parameters and
equations from multiple species, time and spatial scales. The model is inspired by previous
work from Aubert and colleagues [13, 40] and consists of four compartments: neuron, astro-
cyte, capillary and extracellular space (see Fig. 1). These compartments are referred to by the
subscripts n, g (for glia/astrocyte), c and e respectively. In addition, the neuronal and astrocytic
compartments are further divided between cytosolic and mitochondrial sub-compartments to
account for the compartmentalization of nicotinamide adenine dinucleotide (NADH). These
are referred to by the superscripts cyto andmito. Transport between compartments is noted
with the subscripts of both compartments; for instance, transport from the neuronal compart-
ment to the extracellular space is labeled with ne or, conversely, en.

The model is formulated as a series of 33 differential equations adapted from previous work
[13, 40] with the following improvements: the compartmentalization of (mostly) NADH
between the cytosolic and mitochondrial compartments; the model was joined to a Hodgkin-
Huxley-type model [43, 44]; the input to the neuronal and astrocytic compartments is formu-
lated as a glutamatergic input and not anymore as an abstract stimulation; the model explicitly
models sodium entry and extrusion in both the neuronal and astrocytic compartments, contin-
uously updating the corresponding reversal potentials. The model, which for the first time
bridges mathematical descriptions of energy metabolism and Hodgkin-Huxley equations, was
constrained on in vitro data and correctly predicts in vivo results.

Parameters that were difficult to determine experimentally such as transport constants were
left free to vary [10, 42]. Free parameters were then optimized so that the model reproduces the
experimental results presented in [23]. The number of free parameters was maintained as small as
possible by enforcing constraints on the value of metabolites at steady state. Simulations with ran-
domized fluctuations in parameter values (up to plus or minus 10% of reported values) did not re-
veal significant changes in behavior of the model. This approach successfully predicts qualitatively
and quantitatively in vivomeasurements in rodents and in humans (see Results, Fig. 5 and 6).
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The pooling together of equations from various sources is unfortunately necessary for con-
struction of such a broad and multi-dimensional model. There is no single source of equations
that can be tapped for this model. Note however that most equations come from only two pub-
lished sources. The variables, their steady-state values and the corresponding governing equa-
tions are given in Table 1. Equations (A.1)-(A.8), (A.13) and (A.16)-(A.22) are taken from
Aubert and Costalat [40] and were originally introduced in ref. [45] for the equations describ-
ing metabolism and by Buxton and colleagues [46] for the equations describing the vascular
dynamics. Equations (A.9)-(A.12), (A.14) and (A.15) are original. Equations (A.23)-(A.26) de-
scribe the neuronal membrane excitability following the Hodgkin-Huxley formalism and the
neuronal calcium dynamics. They are adapted from [44].

All the fluxes and currents appearing in Table 1, as well the equations describing the dynam-
ics of the gating variables, are given in Table 2. Like for Table 1, these equations are taken from
[40, 44–46] except equations (A.35)-(A.37) which are original. All rates and state variables are
given per unit cell volume (neuron or astrocyte) or per unit capillary volume to the exception

Figure 1. Model structure. The model is divided in four main compartments: a neuronal compartment, an astrocytic compartment, the extracellular space
and a vascular compartment. Neurons and astrocytes are further divided between a cytosolic sub-compartment and a mitochondrial sub-compartment to
account for the compartmentalization of oxidative and glycolytic metabolisms. Both neurons and astrocytes contain a metabolic network including glycolytic
enzymes, lactate dehydrogenase, glucose and lactate transporters, NADH shuttles, oxidative metabolism, phosphocreatine and the Na, K-ATPase
electrogenic pump. Additionally, the neuronal compartment contains voltage- and calcium-gated ion channels following the Hodgkin-Huxley formalism. The
system as a whole is driven by two independent inputs (red). First, a glutamatergic presynaptic population activates AMPA receptors on the neuronal
membrane and excitatory amino-acid transporters (EAATs) on the astrocytic membrane. The activation of both AMPA receptors and EAATs leads to
an increase of the intracellular sodium concentration which activates the energy consuming Na, K-ATPase pump and subsequent metabolic processes.
Activation of AMPA receptors also depolarizes neurons and might lead to the generation of action potentials, which will also lead to an increase in
intracellular sodium in the neuronal compartment via opening of voltage-gated sodium channels. Second, the cerebral blood flow (CBF) is modulated as
a separate input. For comparison to in vitro experiments using acute brain slices, the only input is the presynaptic neuronal population while the supply of
oxygen and glucose that normally comes from the CBF is held constant as a proxy for the laminar flow of a controlled perfusing solution. Finally, the
extracellular space is the place where cells and capillaries exchange metabolites

doi:10.1371/journal.pcbi.1004036.g001
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of JGLC
ce, JLAC

ec, LACe and GLCe that are given per unit extracellular volume. Mitochondrial
and cytosolic NADH levels are given per unit mitochondrial or cytosolic volume respectively.

Additional equations
ADPx is given as a function of the ATP concentration (x stands for n or g). It reads:

ADPx ¼
ATPx

2
½�qAK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2AK þ 4qAKðA=ATPx � 1Þ

q
� ð1Þ

with A = AMPx+ADPx+ATPx = 2.212 mM the total adenine nucleotide concentration and

Table 1. Governing equations.

Variable Value at rest Equation

Intracellular sodium 8/15 mM d
dt Na

þ
x ¼ Jx

leak;Na � 3Jx
pump þ Jx

stimðtÞ * (A.1)

Neuronal glucose 1.2 mM d
dt GLCn ¼ Jen

GLC � Jn
HKPFK (A.2)

Astrocytic glucose 1.19 mM d
dt GLCg ¼ Jcg

GLC þ Jeg
GLC � Jg

HKPFK (A.3)

Glyceraldehyde-3-
phosphate

0.0046 mM d
dt GAPx ¼ 2Jx

HKPFK � Jx
PGK (A.4)

Phosphoenolpyruvate 0.015 mM d
dt PEPx ¼ Jx

PGK � Jx
PK (A.5)

Pyruvate 0.17 mM d
dt PYRx ¼ Jx

PK � Jx
LDH � Jx

mito;in (A.6)

Neuronal lactate 0.6 mM d
dt LACn ¼ Jn

LDH � Jne
LAC (A.7)

Astrocytic lactate 0.6 mM d
dt LACg ¼ Jg

LDH � Jge
LAC � Jgc

LAC (A.8)

Cytosolic NADH † 0.006/
0.1

mM d
dt NADH

cyto
x ¼ ð1� xÞ�1ðJx

PGK � Jx
LDH � Jx

shuttleÞ (A.9)

Mitochondrial NADH † 0.12 mM d
dt NADH

mito
x ¼ x�1ð4Jx

mito;in � Jx
mito;out þ Jx

shuttleÞ (A.10)

Neuronal ATP ‡ 2.2 mM d
dt ATPn ¼ ð�2Jn

HKPFK þ Jn
PGK þ Jn

PK � Jn
ATPases � Jn

pump þ 3:6Jn
mito;out þ Jn

CKÞ 1� dAMPn
dATPn

� ��1 (A.11)

Astrocytic ATP † 2.2 mM d
dt ATPg ¼ �2Jg

HKPFK þ Jg
PGK þ Jg

PK � Jg
ATPases � 7

4J
g
pump þ 3

4 J
g
pump;0 þ 3:6Jg

mito;out þ Jg
CK

� �
1� dAMPg

dATPg

� ��1 (A.12)

Phosphocreatine 4.9 mM d
dt PCrx ¼ �Jx

CK (A.13)

Neuronal oxygen 0.028 mM d
dt O2n ¼ Jcn

O2m
� 0:6Jn

mito;out (A.14)

Astrocytic oxygen 0.028 mM d
dt O2g ¼ Jcg

O2m
� 0:6Jg

mito;out (A.15)

Capillary oxygen 7 mM d
dt O2c ¼ Jc

O2
� 1=rcnJ

cn
O2m

� 1=rcgJ
cg
O2m

(A.16)

Capillary glucose 4.5 mM d
dt GLCc ¼ Jc

GLC � 1=rceJ
ce
GLC � 1=rcgJ

cg
GLC (A.17)

Capillary lactate 0.55 mM d
dt LACc ¼ Jc

LAC þ 1=rceJ
ec
LAC þ 1=rcgJ

gc
LAC (A.18)

Venous volume 0.02 d
dt Vv = Fin (t)-Fout *(A.19)

Deoxyhemoglobin 0.058 mM d
dt dHb ¼ FinðtÞðO2a �O2 �c�Þ � Fout

dHb
Vv

*(A.20)

Extracellular glucose 2.48 mM d
dt GLCe ¼ Jce

GLC � 1=regJ
eg
GLC � 1=renJ

en
GLC (A.21)

Extracellular lactate 0.6 mM d
dt LACe ¼ 1=renJ

ne
LAC þ 1=regJ

ge
LAC � Jec

LAC (A.22)

Neuronal membrane
voltage

-73 mV d
dtcn ¼ C�1

m ð�IL � INa � IK � ICa � ImAHP � Ipump þ IsynðtÞÞ *(A.23)

h gating variable 0.99 d
dt h ¼ �h

th
ðh1 � hÞ (A.24)

n gating variable 0.02 d
dt n ¼ �n

tn
ðn1 � nÞ (A.25)

Neuronal calcium 5 10-5 mM d
dt Ca

2þ ¼ � SmVn
F ICa � 1=tCaðCa2þ � Ca2þ

0 Þ (A.26)

*When two values are indicated, the first one corresponds to the neuronal compartment and the second one to the astrocytic compartment.
† NADH stands for nicotinamide adenine dinucleotide.
‡ ATP stands for adenosine triphosphate.

doi:10.1371/journal.pcbi.1004036.t001
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qAK = 0.92 the adenylate kinase equilibrium constant [40, 45]. As a consequence:

dAMPx

dATPx

¼ �1þ qAK
2

� 1

2

ffiffiffiffiffi
ux

p þ qAK�A
ATPx

ffiffiffiffiffi
ux

p ð2Þ

with ux = q2AK+4�qAK�(A/ATPx-1).

Table 2. Rates, transports and currents.

Reaction, transport or current Equation

Sodium leak Jx
leak;Na ¼ SmVx

F gx
Na

RT
F logðNaþ

e =Na
þ
x Þ � cx

� �
(A.27)

Na, K-ATPase Jx
pump ¼ SmVxk

x
pumpATPxNa

þ
x 1þ ATPx

Km;pump

� ��1 (A.28)

Glucose transport Jxy
GLC ¼ Txy

max;GLC
GLCx

GLCxþKxy
t;GLC

� GLCy

GLCyþKxy
t;GLC

� �
(A.29)

Hexokinase-phosphofructokinase Jx
HKPFK ¼ kx

HKPFKATPx
GLCx

GLCxþKg
1þ ATPx

KI;ATP

� �nH
	 
�1 (A.30)

Phosphoglycerate kinase Jx
PGK ¼ kx

PGKGAPxADPxðN� NADHcyto
x Þ=NADHcyto

x
(A.31)

Pyruvate kinase Jx
PK ¼ kx

PKPEPxADPx (A.32)

Lactate dehydrogenase Jx
LDH ¼ kxþ

LDHPYRxNADH
cyto
x � kx�

LDHPYRxðN� NADHcyto
x Þ (A.33)

Lactate transport Jxy
LAC ¼ Txy

max;LAC
LACx

LACxþKxy
t;LAC

� LACy

LACyþKxy
t;LAC

� �
(A.34)

TCA cycle Jx
mito;in ¼ Vx

max;in
PYRx

PYRxþKmito
m

N�NADHmito
x

N�NADHmito
x þKx

m;NAD

(A.35)

Electron transport chain Jx
mito;out ¼ Vx

max;out
O2x

O2xþKmito
O2

ADPx
ADPxþKx

m;ADP

NADHmito
x

NADHmito
x þKx

m;NADH

(A.36)

NADH shuttles Jx
shuttle ¼ Tx

NADH
R�
x

R�
x þMcyto

x

Rþ
x

Rþ
x þMmito

x

† (A.37)

Creatine kinase Jx
CK ¼ kxþ

CKADPxPCrx � kx�
CKATPxðC� PCrxÞ (A.38)

Oxygen exchange Jcx
O2m ¼ PScap

Vx
KO2

Hb:OP
O2c

� 1
� ��1=nh

�O2n

� �
(A.39)

Capillary oxygen flow Jc
O2

¼ 2FinðtÞ
Vcap

ðO2a �O2cÞ (A.40)

Capillary glucose flow Jc
GLC ¼ 2FinðtÞ

Vcap
ðGLCa �GLCcÞ (A.41)

Capillary lactate flow Jc
LAC ¼ 2FinðtÞ

Vcap
ðLACa � LACcÞ (A.42)

Oxygen concentration at the end of the capillary O2 �c� ¼ 2O2c �O2c (A.43)

Leak current IL ¼ gLðcn � ELÞ (A.44)

Sodium current INa ¼ gNam
3
1h cn � RT

F logðNaþ
e =Na

þ
n Þ

� � ‡ (A.45)

Potassium current IK ¼ gKn
4ðcn � EKÞ ‡ (A.46)

Calcium current ICa ¼ gCam
2
Caðcn � ECaÞ ‡ (A.47)

Calcium-dependent potassium current ImAHP ¼ gmAHP
Ca2þ

Ca2þþKD
ðcn � EKÞ (A.48)

Na, K-ATPase current Ipump ¼ Fkn
pumpATPnðNaþ

n �Naþ
0 Þ 1þ ATPx

Km;pump

� ��1 (A.49)

Flow out of the venous balloon Fout ¼ F0
Vv
Vv0

� �1=av þ tV
Vv0

Vv
Vv0

� ��1=2
dVv
dt

	 

(A.50)

† With R�
x ¼ NADHcyto

x =ðN�NADHcyto
x Þ and Rþ

x ¼ ðN� NADHmito
x Þ=NADHmito

x .
‡ Further equations in the Hodgkin-Huxley model are: am ¼ �0:1ðcn þ 33Þ=ðexp½�0:1fcn þ 33g� � 1Þ, bm ¼ 4exp½�fcn þ 58g=12�,
ah ¼ 0:07exp½�fcn þ 50g=10�, bh ¼ 1=ðexp½�0:1fcn þ 20g� þ 1Þ, an ¼ �0:01ðcn þ 34Þ=ðexp½�0:1fcn þ 34g� � 1Þ, bn ¼ 0:125exp½�fcn þ 44g=25�,
m1 ¼ amðam þ bmÞ�1, n1 ¼ anðan þ bnÞ�1, h1 ¼ ahðah þ bhÞ�1, tn ¼ 10�3ðan þ bnÞ�1, th ¼ 10�3ðah þ bhÞ�1, mCa ¼ 1=ð1þ exp½�fcn þ 20g=9�Þ and
EL ¼ ðgpas

K þ gn
NaÞ�1 gpas

K EK þ gn
Na

RT
F logðNaþ

e =Na
þ
n Þ

� �
.

doi:10.1371/journal.pcbi.1004036.t002
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Input to the model
The model receives input from a presynaptic excitatory population. Glutamate released by
excitatory presynaptic neurons drives the intracellular sodium concentration in neurons and
astrocytes and activates AMPA receptors on neurons, thus inducing a synaptic current Isyn.
The presynaptic population contains Nexc excitatory neurons discharging at frequency fexc(t).
This presynaptic population thus generates an excitatory conductance gexc(t) given by:

gexcðtÞ ¼ Nexc�g fexcðtÞ ð3Þ
with g = 7.8�10-6 mS�cm-2�sec the total surface under the conductance evoked by one excitatory
event [47, 48]. The corresponding synaptic current is then given by:

IsynðtÞ ¼ gexcðtÞðcn � EAMPAÞ ð4Þ

with ψn the neuronal membrane voltage and EAMPA = 0 mV the reversal potential of AMPA
ionotropic receptors. It is estimated that about two thirds of the current generated at AMPA
receptors is due to a flow of sodium ions [49]. Sodium also flows through voltage-dependent
sodium channels when the neuron is active (INa). As a consequence, the sodium drive to the
neuron is approximated by:

Jnstim ¼ SmVn

F
ð2
3
Isyn � INaÞ ð5Þ

with Sm�Vn = 2.5�104 cm-1 the ratio between neuronal membrane surface and neuronal volume
and F = 9.64853�104 C�mol-1 the Faraday constant. Finally, the glutamate is cleared from
the synaptic cleft by excitatory amino acid transporters located on the astrocyte membrane.
Those transporters use the electrochemical sodium gradient to transport glutamate with a stoi-
chiometry of three sodium ions for one glutamate molecule. We thus write the sodium drive to
the astrocyte as follows:

Jgstim ¼ 3DglutNexcfexcðtÞ ð6Þ

with Δglut = 2.25�10-5 mM a constant, which corresponds to the total amount of glutamate
released in the synaptic cleft by each presynaptic action potential multiplied by the ratio be-
tween synaptic and astrocytic fractional volumes. For the sake of simplicity, we assume that
fexc(t) always follows the same temporal dynamics exponentially decaying from f0 = 3.2 Hz to
f1 = 0.5 Hz with a time constant tf = 2.5 sec and Nexc = 1500.

Cerebral blood flow
Following in vivomeasurements in rodents [50, 51], the cerebral blood flow is modeled as
a piecewise double exponential function delayed in time by t1 relatively to the onset of stimula-
tion t0. It reads:

F tð Þ ¼ F0

F0

1:1þ 1:5 exp � t � t1
5

� �
� exp

t � t1
2

� �h i

F0 þ F tendð Þ � F0½ �exp � t � tend
5

� �

8>>>><
>>>>:

9>>>>=
>>>>;
if

t < t1

t1 � t � tend

t < tend

8>>>><
>>>>:

ð7Þ

with F0 = 0.012 sec-1 [46]. Typical values are t0 = 0 sec and t0 = 1 sec, tend being the time at
which stimulation ends. Two distinct simulation scenarios are considered to mimic in vitro
and in vivo conditions. In the in vivo scenario, Equation (7) is used while in the in vitro scenar-
io, the capillary state variables remain constant at their steady-state while the rest of the
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variables are left free to vary. Our simulations have shown that this is almost equivalent to tak-
ing a constant blood flow F(t) = F0.

BOLD signal
The blood-oxygen-level-dependent (BOLD) signal is computed following [52]. It is written as
a function of the deoxyhemoglobin concentration (dHb) and of the venous volume (Vv):

BOLDðtÞ ¼ VV;0½ðk1 þ k2Þð1�
dHb
dHb0

Þ � ðk2 þ k3Þð1�
VV

VV ;0

Þ� ð8Þ

with dimensionless parameters k1 = 2.22, k2 = 0.46 and k3 = 0.43 [40]. The steady-state values
of deoxyhemoglobin (dHb0) and venous volume (Vv,0) are given in Table A1.

Optimization procedure
As noted already by Aubert and colleagues [53], most models of energy metabolism concen-
trate on erythrocytes, muscles or other organs such as the liver. It is also not clear whether or
not parameters drawn from experiments could be directly injected as such into a model with-
out spatial dimensions and without diffusion processes like ours. To circumvent this problem,
we proceeded as follows:

First, we chose target steady-state values for the concentration of metabolites following mea-
sures reported in the literature. Specifically, we chose the concentration of intracellular sodium
following [54], the concentration of intracellular glucose, phosphoenolpyruvate, pyruvate,
adenosine triphosphate and phosphocreatine following [55], and glyceraldehyde-3-phosphate
following [56]. Finally, the NADH concentration in all four compartments where it appears in
the model was chosen following [56] and calculations based on results by Kasischke and
colleagues [23].

We then optimized a subset of model parameters (see Table 3) by fitting its predictions to
the temporal dynamics of NADH fluorescence as measured by Kasischke et al. [23]. Namely,
the dynamics of the NADH concentration in various compartments was extracted empirically
from Fig. 4D in [23]. Data points were then fitted with sums of exponentials in order to obtain
continuous curves. We then optimized the model by minimizing the distance between the tem-
poral dynamics of NADH in the model and the one in the smoothed curve obtained from [23]
using least-square distance as the error measure and using the downhill simplex algorithm.
After the optimization converged, we rounded the value of the optimal parameter set and re-
computed the steady-state value. All along optimization, we checked that the steady-state was
stable by computing its Jacobian matrix (first order approximation) [45]. The parameter set in
Table 3 is the set resulting from this procedure.

Numerics
The simulations were run in MATLAB (The Mathworks, Natick MA, USA). The model
was integrated with the ordinary differential equation solver with fixed and optimized parame-
ters (ode15s) that is adapted to stiff systems. We used a time step @t = 10-4 sec when the
neuron is spiking and @t = 1 sec starting one second after the end of presynaptic stimulation.
@t = 10-4 sec is smaller than the fastest time constant appearing in the Hodgkin-Huxley
equations [tauh(-80 mV) = 6.4·10-4 sec]. The second time step (@t = 1 sec) is small enough for
the slow metabolic processes and maintains simulation time and memory usage to reasonable
values for an average desktop PC. Simulations take a couple of minutes to execute on a recent
laptop.
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Table 3. Parameters.

Fixed parameters

Volume fractions Ve = 0.2, Vcap = 0.0055, Vg = 0.25, Vn = 0.45, x ¼ 0:07, ren = Ve/Vn, reg = Ve/Vg, rce = Vcap/Ve, rcg = Vcap/Vg,
rcn = Vcap/Vn

Surface-to-volume ratios SmVn = 2.5 104, SmVg = 2.5 104 cm-1

Physical constants R = 8.31451 J mol-1 K-1, F = 9.64853 104 C mol-1, RT/F = 26.73 mV, cg ¼ �70mV, Naþ
e ¼ 150mM

Glucose exchange affinities Ken
t;GLC ¼ 8, Keg

t;GLC ¼ 8, Kcg
t;GLC ¼ 8, Kce

t;GLC ¼ 8mM

Lactate exchange affinities Ken
t;LAC ¼ 0:74, Kge

t;LAC ¼ 3:5, Kgc
t;LAC ¼ 1, Kec

t;LAC ¼ 1mM

Hexokinase-phosphofructokinase system KI, ATP = 1 mM, nH = 4, Kg = 0.05 mM

Oxygen exchange constants KO2
¼ 0:0361mM, Hb.OP = 8.6 mM, nh = 2.73

Electron transport chain Kmito
O2

¼ 0:001mM

Hodgkin-Huxley parameters Cm = 10-3 mF cm-2, gL = 0.02, gNa = 40, gK = 18, gCa = 0.02, gmAHP = 6.5 mS cm-2, KD = 30 10-3 mM,
tCa ¼ 15010�3s, Ca2þ

0 ¼ 0:510�4mM, EK = −80, ECa = 120 mV, �n ¼ �h ¼ 4

Venous balloon tv ¼ 35s, av ¼ 0:5

Blood flow contribution to capillary glucose
and oxygen

O2a = 8.35, GLCa = 4.75 mM

Na, K-ATPase and sodium leak gn
Na ¼ 0:0136, gg

Na ¼ 0:0061, gpas
K ¼ 0:2035mS cm-2, kn

pump ¼ 2:210�6, kg
pump ¼ 4:510�7cm mM-1 s-1, Jg

pump;0=
0.0687 mM s-1, Km, pump = 0.5 mM

Total creatine plus phosphocreatine
concentration

C = 10 mM

Total nicotinamide adenine dinucleotide
concentration

N = 0.212 mM

TCA cycle Kmito
m ¼ 0:04mM

Optimized parameters

Lactate dehydrogenase knþ
LDH ¼ 72:3, kgþ

LDH ¼ 1:59mM-1 s-1

NADH shuttles Mcyto
n ¼ 4:910�8, Mcyto

g ¼ 2:510�4, Mmito
n ¼ 3:93105, Mmito

g ¼ 1:06104

Electron transport chain Kn
m;ADP ¼ 3:4110�3, Kg

m;ADP ¼ 0:48310�3, Kn
m;NADH ¼ 4:4410�2, Kg

m;NADH ¼ 2:6910�2mM

Creatine kinase knþ
CK ¼ 0:0433, kgþ

CK ¼ 0:00135mM-1 s-1

TCA cycle Kn
m;NAD ¼ 0:409, Kg

m;NAD ¼ 40:3mM

Constrained parameters

Glucose exchange constants Ten
max;GLC ¼ 0:041, Tce

max;GLC ¼ 0:239, Teg
max;GLC ¼ 0:147, Tcg

max;GLC ¼ 0:0016mM s-1

Lactate exchange constants Tgc
max;LAC ¼ 0:00243, Tne

max;LAC ¼ 24:3, Tge
max;LAC ¼ 106:1, Tec

max;LAC ¼ 0:25mM s-1

Hexokinase-phosphofructokinase system kn
HKPFK ¼ 0:0504, kg

HKPFK ¼ 0:185s-1

Lactate dehydrogenase kn�
LDH ¼ 0:72, kg�

LDH ¼ 0:071mM-1 s-1

Oxygen exchange constants PScap
Vn

¼ 1:66, PScap
Vg

¼ 0:87s-1

Electron transport chain Vn
max;out ¼ 0:164, Vg

max;out ¼ 0:064mM s-1

TCA cycle Vn
max;in ¼ 0:1303, Vg

max;in ¼ 5:7mM s-1

Phosphoglycerate kinase kn
PGK ¼ 3:97, kg

PGK ¼ 135:2mM-1 s-1

Pyruvate kinase kn
PK ¼ 36:7, kg

PK ¼ 401:7mM-1 s-1

ATPases Jn
ATPases ¼ 0:1695, Jg

ATPases ¼ 0:1404mM s-1

Creatine kinase kn�
CK ¼ 0:00028, kg�

CK ¼ 10�5mM-1 s-1

NADH shuttles Tn
NADH ¼ 10330, Tg

NADH ¼ 150mM s-1

Blood flow contribution to capillary lactate LACa = 0.506 mM

doi:10.1371/journal.pcbi.1004036.t003
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Results
We developed a model of the coupling between neuronal activity and metabolic response in
neurons and astrocytes. The model employed to simulate the neural-glial-vascular (NGV)
functional system is composed of four distinct computational units representing a neuron, an
astrocyte, a capillary and the extracellular space (Fig. 1). The core of our model is composed of
the compartmentalized model of brain energy metabolism recently proposed by Aubert and
Costalat [13, 40]. This model connects a model of erythrocyte glycolytic metabolism [45, 56]
together with the so-called “Balloon model” of blood flow dynamics [46]. From this starting
point, we added a precise description of neuronal membrane excitability formulated within the
Hodgkin-Huxley framework [57]. Channels dynamics is drawn from a model proposed by
Wang [44]. It includes all the standard Hodgkin-Huxley currents plus a high-threshold calci-
um current and a calcium-gated potassium current inducing spike-frequency adaptation. The
Hodgkin-Huxley model is connected to the metabolic pathways through the electrogenic Na,
K-ATPase pump which is responsible for a net outward current and concomitant ATP con-
sumption. We modified the metabolic pathways to include compartmentalization of NADH
between the cytosol and mitochondria. To do so, we developed a very simple model of mito-
chondrial respiration and added NADHmalate-aspartate shuttles between the cytosol and mi-
tochondria, drawing inspiration from a model by [58]. Finally, the model is driven by external
input modeled as a global excitatory presynaptic activity and coordinated increase of the cere-
bral blood flow. The presynaptic population is coarsely described through a time-dependent
excitatory conductance. This conductance drives sodium flow in neurons through AMPA re-
ceptors and action potential-generating voltage-gated sodium channels, and in astrocytes
through excitatory amino acid transporters which co-transport glutamate using the sodium
gradient. The model is illustrated in Fig. 1 and extensively described in the Methods section.

We first tested the model for its responsiveness to an excitatory stimulus (Fig. 2A) and re-
corded its voltage response (Fig. 2B). In response to this stimulus, the model generated action
potentials within the initial 7 sec of the stimulation. Because of spike-frequency adaptation and
of the time course of the excitatory stimulus, the frequency of elicited action potentials quickly
decreased until the neuron eventually ceased to fire (Fig. 2B inset). Response trajectories of in-
tracellular sodium, in both the astrocyte (red) and neuron (blue), showed significant differ-
ences in both amplitude and duration, with astrocytes exhibiting a smaller but more sustained
response and a delayed recovery (Fig. 2C).

We then examined the time course of critical intermediates in energy metabolism in re-
sponse to the same excitatory stimulus. We first focused on the concentration changes of aden-
osine triphosphate (ATP) and phosphocreatine (PCr) in the glial and neuronal compartments
(Fig. 3). In both cases, the response to the excitatory stimulation, evidenced as a consumption
of these energy rich metabolites, was slower in the astrocytic (red) than in the neuronal com-
partment (blue) (Fig. 3A). And while the decrease in glial ATP surpassed that seen in the
neuron (Fig. 3C), the consumption of PCr predominated in the neuron (Fig. 3B). In both com-
partments, the resulting decrease in ATP concentration was very limited.

NADH responses evoked in vitro are consistent with the ANLS
hypothesis
Next, we examined the trajectories of nicotinamide adenine dinucleotide (NADH) in response
to the stimulation in the astrocytic, neuronal and mitochondrial compartments (Fig. 4A).
The dashed lines represent experimental data from Kasischke et al. [23]. Fig. 4A shows the
temporal evolution of the concentration of NADH in the astrocytic cytosol, in the neuronal
mitochondria and averaged over the whole tissue as evoked by a 20 sec stimulation episode
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(see Methods). All three curves are in excellent quantitative agreement with the results reported
by Kasischke et al. [23]. In particular, the NADH concentration in the neuronal mitochondria
displays an initial dip of about-10% indicating a strong increase of the oxidative metabolism in
neurons (Fig. 4B). It then returns towards its baseline before the presynaptic bombardment has
finished and finally slightly overshoots in the poststimulus period. On the contrary, the NADH
concentration in the astrocytic cytosol increases significantly only about 10 sec after the onset
of the stimulation and displays a long-lasting monophasic behavior. This corresponds to
a strong and sustained increase of the glycolysis in this compartment (Fig. 4B).

Figure 2. Simulated dynamics of Hodgkin-Huxley equations and of intracellular sodium
concentrations during an in vitro 20 sec stimulation episode. A. Time course of the global excitatory
conductance simulating the activation of AMPA receptors by the presynaptic population. The gray area
denotes the stimulation period.B. Neuronal membrane voltage recorded in response to the excitatory
stimulation plotted in A and instantaneous firing rate (inset). C. Sodium concentration in the neuronal cytosol
(blue) and in the astrocytic cytosol (red) recorded in response to the excitatory stimulation plotted in A

doi:10.1371/journal.pcbi.1004036.g002
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The initial dip in the neuronal mitochondria is the result of consumption of NADH to pro-
duce ATP. A recovery and rebound results when NADH is produced from the consumption of
lactate imported into the neuronal cytosol from the extracellular space (Fig. 4C). In both
Fig. 4B and C, it can be seen that the astrocytic response is slower than the neuronal response.
In particular, both oxygen and glucose consumption increase immediately at the beginning of
the stimulation in the neuronal compartment. Partially supporting this metabolic activity, neu-
rons immediately start to import lactate from the extracellular space (Fig. 4C). On the contrary,
the increase in glucose consumption by astrocytes (Fig. 4B) is more gradual and the increase in
lactate export by astrocytes to the extracellular space is slightly delayed (Fig. 4C). The initial
release of presynaptic glutamate with subsequent neuronal activity and reuptake into astrocytes
lead to the increase in intracellular sodium concentration and activation of the Na, K-ATPase
imposing, along with the conversion of glutamate to glutamine in astrocytes, an increased met-
abolic demand. However, as can be seen in Fig. 2C, the increase in intracellular sodium is
slower and more gradual in the astrocytic compartment leading to the 10 second delay in the
glial cell metabolic response to the stimulation. Finally, the dynamics of tissue NADH (Fig. 4A)
is mirrored in the predicted tissue and extracellular lactate concentrations (Fig. 4D).

Figure 3. Simulated dynamics of ATP and PCr concentrations during an in vitro 20 sec stimulation
episode. A. Concentration of phosphocreatine (PCr; upper lines at ~5.0 mM) and adenosine triphosphate
(ATP; lower lines at ~2.2 mM) in the neuronal (blue) and astrocytic compartments (red) during a 20 sec
in vitro stimulation episode (same simulation as in Fig. 2). B. Zoom-in re-scaling of the area of interest in
panel A for PCr in neuronal (blue) and astrocytic compartments (red). C. Zoom-in re-scaling of the area of
interest in panel A for ATP in neuronal (blue) and astrocytic compartments (red). In panels A, B and C, the
gray area denotes the stimulation period

doi:10.1371/journal.pcbi.1004036.g003
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The utilization of glucose and oxygen by neurons and astrocytes during this 20 sec stimula-
tion episode is shown in Fig. 4B. For model optimization, we imposed that the largest fraction
of glucose goes to astrocytes while the largest fraction of oxygen goes to neurons [42]. We ob-
served that this bias is further increased during stimulation. The neuronal oxygen utilization
immediately increased at the onset of stimulation in register with the initial dip of the NADH
in the neuronal mitochondria. This is consistent with reports that the astrocytic fraction of glu-
cose utilization increases during stimulation [19].

Figure 4. Simulated dynamics of NADH concentrations, of lactate concentrations and of glucose and
oxygen consumption during an in vitro 20 sec stimulation episode. A. Relative fluctuations of the NADH
concentration in the astrocytic cytosol (red), in the neuronal mitochondria (blue) and averaged over the
whole tissue (black) as evoked by a 20 sec stimulation episode in vitro (grey area; same simulation as in Fig.
2 and 3). The dotted lines indicate corresponding in vitro data reproduced from Kasischke et al. [23].
B. Oxygen utilization (thick lines) and glucose utilization (thin lines) by neurons (blue) and astrocytes (red) as
evoked by the same 20 sec stimulation episode as in A. Glucose utilization is multiplied by 6 to allow a direct
comparison to oxygen utilization. C. Net transport of lactate between the four compartments of the model
during the same 20 sec stimulation episode as in A. Lactate is exported by the astrocyte to the extracellular
space (thick red line) and imported by the neuron from the extracellular space (thick blue line; net import is
negative by convention in this model). The thin red line denotes the activity of the lactate dehydrogenase
converting pyruvate into lactate in the astrocytic cytosol while the thin blue line denotes the activity of the
lactate dehydrogenase converting lactate into pyruvate in the neuronal cytosol (again, the negative sign is
a convention). Note how increase in lactate-to-pyruvate conversion precedes the increase in net lactate
import by neurons, while pyruvate-to-lactate conversion follows the increase in net lactate export by
astrocytes. D. Relative fluctuations of tissue lactate (pink) and of extracellular lactate (black) during the same
20 sec stimulation episode as in A to C. Both lines are superimposed and barely distinguishable

doi:10.1371/journal.pcbi.1004036.g004
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The biophysical model correctly predicts rodent in vivo oxygen and
lactate evoked responses
One of the hallmarks of a successful model is its ability to reproduce and explain empirical ob-
servations. We thus now turn to an in vivo situation and compare the predictions of the mathe-
matical model we designed in the precedent sections to two experiments carried out in rats.
Tissue oxygen and lactate during stimulus (Fig. 5B and C), and lactate transfer between com-
partments were compared (Fig. 5D).

Upon stimulation, CBF increases after a delay of ~1 sec (see Equation 7), quickly peaks be-
fore relaxing to an elevated plateau. This pattern matches neurovascular responses observed in

Figure 5. Predicted evoked responses of tissue lactate and of tissue oxygen in vivo in rodents during
a 60 sec stimulation episode. A. Temporal evolution of the cerebral blood flow chosen as an input to the
model during a simulated 60 sec stimulation episode in vivo (grey area). This specific time course closely
matches measurements in rodents during functional forepaw or whisker stimulation [50, 51]. Note that the
blood flow only significantly increases approximately 1 sec after the onset of activation (inset). B. Relative
fluctuations of the intra-parenchymal oxygen concentration as evoked by a 60 sec stimulation episode with
the blood flow as in A. These results closely match the experimental results of Ances et al. [50] (their Fig. 1).
C. Relative fluctuations of tissue lactate (pink line) and of extracellular lactate (black line) during the same
60 sec stimulation episode as in A to B. These results closely match the experimental results of Hu and
Wilson [16] (their Fig. 1). D. Net transport of lactate between the four compartments of the model during
the same 60 sec stimulation episode as in A to C. Like in the in vitro case (Fig. 4), lactate is exported by
the astrocyte to the extracellular space (thick red line) and imported by the neuron from the extracellular
space (thick blue line; net import is negative by convention in this model). A small amount of lactate is
exported from the extracellular space to the capillary at baseline and this export increases by 69% after the
end of the stimulation (pink line). The thin red line denotes the activity of the lactate dehydrogenase
converting pyruvate into lactate in the astrocytic cytosol while the thin blue line denotes the activity of
the lactate dehydrogenase converting lactate into pyruvate in the neuronal cytosol (again, the negative sign
is a convention)

doi:10.1371/journal.pcbi.1004036.g005
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Figure 6. Predicted evoked responses of tissue lactate, CMRglc, CMRO2, oxygen-glucose index (OGI) and BOLD in vivo in humans. A. Temporal
evolution of the cerebral blood flow chosen as an input to the model during a simulated 900 sec stimulation episode in vivo (grey area). This specific time
course closely matches in vivomeasurements in humans during imaging experiments [52, 60]. B. Relative fluctuations of tissue lactate concentration during
the same stimulation episode as in A. The model predicts an initial lactate dip followed by a 60% increase sustained till the end of the stimulation. The
presence of a dip matches experimental data fromMangia et al. [17]. C and D. Cerebral metabolic rate of glucose consumption (CMRglc) and cerebral
metabolic rate of oxygen consumption (CMRO2) during the same 900 sec stimulation episode as in A to B. In both cases, the light area corresponds to the
contribution of the astrocytic compartment towards the total tissue consumption, while the dark area corresponds to the contribution of the neuronal
compartment. While glucose consumption increases by about 40%, the increase is mostly due to the astrocytic compartment (light red) with the neuronal
glucose utilization even slightly decreasing at the onset of activation (dark red). On the contrary, while oxygen utilization increases by about 10%, most of this
increase is due to the neuronal compartment (dark blue) with the astrocytic oxygen utilization being almost constant (light blue). E. The predicted ratio of
CMRO2 to CMRglc or oxygen-glucose index (OGI) during the same 900 sec stimulation episode as in A to D. F. Predicted BOLD signal for the same 900 sec
stimulation episode as in A to E. Like the tissue lactate concentration (B), the BOLD shows a clear dip at the onset of activation

doi:10.1371/journal.pcbi.1004036.g006
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rodents in response to sustained sensory stimulation (for instance by mechanical activation of
the whiskers [50, 51] (Fig. 5A)). The 1 sec delay seen in panel A is hardcoded in the model
(see Equation 7). This matches our own observations that CBF only starts to increase above its
baseline ~0.5–1 sec after the onset of stimulation [51, 59].

Because neuronal activity slightly precedes functional hyperemia, the oxygen concentration
initially dips below its resting value before rising as cerebral blood flow finally increases after
the 1 sec delay (Fig. 5B inset). The dip in oxygen below baseline levels after stimulation has
ceased reflects the rapid decrease in the replenishment rate by blood at a time when oxygen is
still consumed to replenish the ATP that is used to fuel the Na, K-ATPase pump.

Extracellular lactate is consumed throughout the stimulation. Its concentration initially
dips until the cerebral blood flow increases and leads to a sustained overproduction of lactate
(Fig. 5C). At rest, the astrocytic compartment exports lactate to the extracellular space, part
of which is taken up by the neuronal compartment for energy production (Fig. 5D), the rest
being exported to the circulation. Upon stimulation, export of extracellular lactate to the cir-
culation is reduced while import into neurons is increased. Export of lactate to the extracellu-
lar space by the astrocytic compartment is also increased but with a delay and explains the
initial dip in concentration. In the recovery period, all transports slowly return back to their
baseline values explaining the long lasting overshoot of extracellular and tissue lactate. Export
of extracellular lactate to the circulation is durably increased in the recovery period (Fig. 5D;
pink line).

Fig. 5 shows results of simulations independent from the simulations that yielded Fig. 2 to 4
where the model was constrained to reproduce the experimental results from ref. [23]. In these
new simulations, not only is the temporal course of tissue oxygen qualitatively predicted, but
the amplitude of fluctuations is, to some extent, quantitatively predicted as well. Our model
predicts that the oxygen pressure first drops by −1.7% (inset), then overshoots at +17.7% before
stabilizing 2.4% above its baseline in the last 20 sec of the stimulation. Finally, it undershoots to
−2.6% in the post-stimulus period. These figures are to be compared with the values reported
by [50], namely, an initial drop at−1.8%, an overshoot at +19.9%, a stabilization 1.7% above the
baseline and a final undershoot at −3.1%.

The consumption of lactate closely tracks the stimulation dependent oxygen consumption
but lacks the inflections corresponding to CBF changes as it is less affected by the blood flow
(Fig. 5D). Lactate is exported by the astrocyte to the extracellular space (thick red line) and im-
ported by the neuron from the extracellular space (thick blue line; net import is negative by
convention in this model). A small amount of lactate is exported from the extracellular space
to the capillary at baseline and this export increases by 69% after the end of the stimulation
(pink line). The thin red line denotes the activity of the lactate dehydrogenase converting pyru-
vate into lactate in the astrocytic cytosol while the thin blue line denotes the activity of the
lactate dehydrogenase converting lactate into pyruvate in the neuronal cytosol (again, the nega-
tive sign is a convention). These net transfers all contribute to the evolution of the tissue and
extracellular lactate concentrations (Fig. 5C). This prediction closely matches the experimental
results of Hu and Wilson [16] (their Fig. 1).

The biophysical model correctly predicts human glucose and oxygen
utilization during brain activation
We then compared new simulations to measurements from human subjects [26, 52, 60]. As in
Fig. 5, the neurovascular response was adapted from experimental measurements (Fig. 6A).
Simulated levels of lactate (Fig. 6B), the cerebral metabolic rate for glucose (Fig. 6C), the cere-
bral metabolic rate for oxygen (Fig. 6D), the ratio of cerebral uptake of O2 to cerebral uptake of
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glucose (Oxygen-Glucose Index or OGI) (Fig. 6E), as well as the blood-oxygen-level dependent
signal (Fig. 6F) all supported a validation of the model.

The model qualitatively and to some extent quantitatively predicted well-known features
of these various macroscopic observables, including the BOLD signal [52, 60], despite extrapola-
tion frommultiple sources. For instance, after an initial dip [17], the tissue lactate concentration
reached a plateau that last until the end of the stimulation [61]. The initial dip in extracellular
lactate (Fig. 6B inset) is representative of a surge in lactate consumption at the beginning of neu-
ral activity, and a symptom of the intrinsic latency in the start-up of the ANLS and of functional
hyperaemia. The time lag between the onset and offset of neuronal activation and the onset and
offset of CBF also explain other transients such as the slow recovery of the lactate concentration
after the cessation of neural activity [61]. Relative increase in glucose and oxygen consumption
also matched experimental results and led to a decreased OGI during stimulation [26].

Discussion
There is mounting evidence in support of a metabolic link between neurons and glial cells. The
most prominent experimentally-based conceptual model of neuron-glia metabolic coupling,
the astrocyte-neuron lactate shuttle (ANLS), has raised controversies, not so much for the
proposed energy-dependent link between the two cell types, but because certain details and
mechanisms are debated [11, 62]. Although experimental evidence gathered over the last two
decades largely supports it [11], experimentally untangling this system is challenging.

Our detailed biophysical model of the NGV ensemble expands on previous models in four
distinct ways. First, a shuttling of lactate from astrocytes to neurons emerged in response to
activation. Second, the model is consistent with increased neuronal oxidative metabolism and
delayed increased astrocytic glycolysis for generating the activity-dependent NADH transients.
Third, the model correctly predicts the dynamics of tissue lactate and oxygen as observed in
vivo in rats. Fourth, the model correctly predicts with good quantitative precision the temporal
dynamics of tissue lactate, CMRglc, CMRO2 and of the BOLD signal as reported in human stud-
ies. These findings not only support the ANLS hypothesis but also provide a quantitative math-
ematical description of the metabolic activation in neurons and astrocytes, as well as the
macroscopic measurements obtained with brain imaging techniques.

The blood oxygen-level dependent (BOLD) signal which forms the basis of the functional
magnetic resonance imaging (fMRI) technology reports fluctuations in brain activity, the mo-
lecular and cellular mechanisms of which are still incompletely understood [8, 63]. Although
somewhat limited in representing detailed processes, our use of the Buxton model was suffi-
cient to correctly predict known features of the BOLD signal (Fig. 6F). Ultimately, modeling ef-
forts that build on our work will have to include more detailed descriptions of blood flow
regulation. For instance, blood flow regulation in the brain was recently suggested to happen in
the microvasculature at the capillary level by active dilation of pericytes [64]. Subsequent ef-
forts will need to focus on the daunting task of modeling the numerous pathways that relate
neuronal activity to functional hyperaemia [65].

Recent modeling of the neuron-astrocyte cross-talk during oscillations linked to blood
oxygenation levels verified the possibility that the slow fMRI BOLD signals might reflect the
spontaneous ongoing activity of neuroglial networks [66]. Our results support this view by
accurately modeling results from human imaging experiments [52, 60]. A course for future
modeling will be to examine and model data from multi-modal imaging experiments [67].

As noted in the introduction, controversy surrounds the directionality of lactate flow in the
brain with a neuron-to-astrocyte direction proposed by some. Here, following the arguments
delineated in Jolivet et al. [42], we imposed that the largest fraction of glucose should go to
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astrocytes (there is no controversy that neurons are responsible for the vast majority of oxygen
consumption). We derive confidence in our model from the fact that it correctly predicts
a vast array of in vivo experimental findings while being only loosely constrained by in vitro
experimental findings and by the imposed compartmentalization of glucose uptake between
neurons and astrocytes. As argued in Jolivet et al. [42], metabolic shuttling between the astro-
cytic and neuronal compartments originates from the imbalance between the high oxygen
consumption of neurons and their limited glucose utilization for ATP production purposes.
Unlike astrocytes, neurons are unable to up-regulate their rate of glycolysis in response to in-
creased activity due to constitutive inhibition of the rate limiting glycolytic enzyme Pfkfb3
(6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3) [68]. This mechanism is crucial to
neuronal defenses against reactive oxygen species. Additional in vitromechanisms support
that compartmentalization includes the existence of glutamate-induced glycolysis in astrocytes
[5, 69], glutamate-induced inhibition of glucose transport in neurons [70] and the involvement
of extracellular increases in potassium inducing an Na, K-ATPase-dependent activation of gly-
colysis in astrocytes [71]. However, it is to be noted that if the proportion of glucose directly
taken up by neurons was to be increased, the astrocyte-to-neuron lactate shuttle would be re-
duced in amplitude, and its direction eventually reversed if neurons were consuming glucose in
excess of what they oxidize (see [42] for further discussion of this question).

Metabolic phenotypes have been suggested that convey a metabolic identity depending on
how they utilize the various oxidative and non-oxidative pathways [14]. The re-equilibration of
the constituents of extracellular space, a process involving physical flushing mediated by
astrocytes, is also now thought to be one of the key housekeeping functions of sleep [72] and
the disruption of normal metabolic processes is suggested to underlie the progression of neuro-
degenerative diseases such as Alzheimer’s [73]. Lactate, whether sourced from glia or plasma,
is associated with neuroprotection [32–34]. Assuming the ANLS is indeed taking place, we are
left to question: What is it good for?

Neurons do not appear to suffer functional consequences as a result of their metabolic
peculiarities. Lactate can sustain prolonged firing in neurons more efficiently than glucose in
culture and can preferentially support activity in both resting and active states in vitro and
in vivo [30, 31, 74]. Recently, it was shown in the subfornical organ that this pathway can also
affect the dynamics of the local neural network by modulating the excitability of GABAergic
neurons through the regulation of ATP-dependent potassium channels [36]. It is not necessary
perhaps to preclude the use of glucose by both neurons and glia under certain circumstances as
has been suggested by a computational model studying the ATP supply to neurons under hyp-
oxic conditions [75], and as is indeed suggested by our own results (see Fig. 4B, 5D and 6C).
Finally, extracellular lactate might also act as a messenger to the vasculature [28] and it is thus
possible that the ANLS plays a role as one of the pathways regulating functional hyperaemia.

Astrocytes also support memory formation by supplying neurons with lactate [76]. So cen-
tral is the ANLS to the normal function of the brain that learning, as measured by LTP and
long term memory formation in the hippocampus of rats, is abolished by interfering with the
transport of lactate from astrocytes to neurons [76]. Consistent with those findings, lactate, but
not glucose, has been show to induce the expression of plasticity genes such as Arc, Zif 268 and
BDNF in vitro in neurons and in vivo [77]. Further, the mechanism by which glucose enhances
memory storage has been shown to involve the neuronal consumption of lactate [78].

Summary
We present here the first temporal multi-scale model of the NGV that accurately reflects exper-
imental observations in multiple settings and organisms. These findings not only support the
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ANLS hypothesis but also provide a quantitative mathematical description of the metabolic
activation in neurons and astrocytes, as well as of the macroscopic measurements obtained
with functional brain imaging techniques.
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