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Abstract

Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2
diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation
costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the
better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented,
along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR
mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice
versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale
model of all metabolic pathways in T2DM, we found out that branched-chain amino acids’ degradation and fatty acids
oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice
versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the
flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino
acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model
was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the
model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of
pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino
acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.
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Introduction

Type 2 Diabetes Mellitus (T2DM), the most common form of

Diabetes in America, is becoming a global pandemic with the

greatest increase in cases in many developing countries. The

pathophysiology of T2DM primarily involves defects in three

organ systems– liver, peripheral target tissues (skeletal muscle and

fat), and pancreatic b-cells [1]. Insulin resistance in the peripheral

target tissues, primarily skeletal muscle, is considered the primary

reason for insulin resistance in T2DM [2].

In the patients with T2DM, withdrawal of insulin treatment has

been shown to be associated with increased levels of branched-

chain amino acids (BCAAs) in the plasma [3]. Moreover,

metabolite profiling from the plasma of T2DM patients [4]

revealed BCAAs as the key-biomarkers during the progression of

T2DM. It is shown that the concentrations of BCAAs in plasma,

liver, and skeletal muscle are higher in T2DM conditions such as

in the Zucker diabetic rat [5]. Another study performed on

hyperglycemic/T2DM Finnish males revealed high plasma level

of BCAAs [6] too. Additionally, it has been shown that high levels

of BCAAs in plasma of T2DM subjects are associated with

conditions of insulin-resistance [7–12].

It is also known that elevated free fatty acid (FFA) levels in

plasma is linked to T2DM in patients [13]. One of the studies [14]

on the effect of high plasma FFA levels, pointed out the

contribution of high FFA levels in plasma on the impaired insulin

response of the T2DM subjects.

In contrast to the wealth of knowledge available for the

concentrations of circulating BCAAs and FFAs in T2DM patients,

the actual mechanisms leading to these changes at the metabolic

and genetic levels are less understood. With the emergence of

systems biology tools associated with high-throughput data, it is

now feasible to create in silico genome scale metabolic

reconstruction models to study the causes of various metabolic

disorders [15]. After completion of a global human metabolic

network [16], Recon1, constraint-based modeling became feasible

to study metabolic disorders in silico. Accounting for more than

3000 human metabolic reactions, Recon1 provides a firm basis for

studying human metabolism and metabolic disorders such as
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cancer, diabetes, obesity, and inherited gene and enzyme

deficiencies [15].

Following Recon1 coming into existence, several tissue-specific

models have also been generated [17–22]. Recon1 in itself is not

sufficient for modeling specific tissues as different tissues exhibit

different physiological and hence metabolic behaviors. Increased

efforts are creating multi-tissue metabolic models to study the

pathophysiology of human metabolic disorders [23].

Insulin resistance leading to Type 2 Diabetes Mellitus (T2DM)

is regulated by more than one tissue system requiring analysis at

multi-tissue level. Major tissues involved in T2DM are skeletal

muscle, liver, adipose, pancreas, brain, and gastrointestinal tract

[24]. As far as the level of metabolites is concerned, skeletal

muscle, liver, and adipose tissues are the major role players in

secreting these metabolites into the blood by various biochemical

pathways. Metabolite concentration levels (such as amino acids

levels) from T2DM subjects’ blood is readily available in literature,

allowing comparison of an in silico model to T2DM phenotype.

The current study introduces a comprehensive multi-tissue-specific

model to study interdependence of hepatocytes, mycoytes, and

adipocytes in the T2DM condition. Table 1 shows a summary of

some different models including the model for the current study

(Kumar et al.) [17,18,20,25,26]. Each model provides specific

advantages and limitation for specific applications. Models can

vary in size and scope and also tissue distribution. For example,

while some models are specific for certain tissues, the current

Kumar model expands the scope to include three tissues.

Moreover, microarray data used in our study contextualizes the

reconstruction according to the three different tissues (liver, WAT,

and skeletal muscle). Furthermore, we used microarray data for

three different tissues from the same animals. While we recognize

that the current approach incorporates this data from a different

organism (mice) into a model based on human metabolism, the

similarity in physiological responses across species makes such an

approach reasonable in the absence of fully validated models and

data sets for each species. Most of the studies involving T2DM and

insulin resistance utilize data from insulin-resistant or diabetic

animal models, such as Zucker fatty (ZF) and Zucker diabetic fatty

rats (ZDF)[27], high-fat-fed mice[28], muscle IGF-1 receptor–

lysine–arginine (MKR) mice[29,30], and lep/lep mice[31]. A

common feature of these animal models is that all models have

manifested insulin resistance and often exhibit islet dysfunction as

occurs in the early stages of type 2 diabetes in humans. It is, in our

opinion, valid to use MKR mice and Zucker diabetic fatty rat data

for making predictions on humans’ T2DM phenotypes. To

validate the model, its capability to predict expected phenotypes

from known genotypes was tested. For this purpose, a publically

available comprehensive database for genes and genetic pheno-

types, the Online Mendelian Inheritance in Man (OMIM)

database was used. This was followed by a comparison between

constraint-based simulation results and the levels of plasma amino

acid in the Zucker diabetic rat after gene expression data for the

three tissues from the diabetic MKR mouse compared to normal

control mice [32].

Results

A.1 Multi-confidence level (MCL) multi-tissue model
Before generating the model, an algorithm was applied to

generate a list of high confidence, medium confidence, and low

confidence reactions, based on the source of a particular reaction.

The high confidence list comprised reactions from published

literature and was not altered by the algorithm; the medium

confidence list comprised of reactions from online databases such

as HPRD, etc.; and the low confidence list comprised of all

remaining reactions that weren’t present in high and medium

confidence reaction lists, as shown in Figure 1 (detailed in

Materials and Methods). The final high confidence reaction list

(Ch) consists of 1110 reactions and 1593 metabolites. The final

medium confidence reaction list (Cm) consists of 1099 reactions

and 1643 metabolites. The final low confidence reaction list (Cx)

consists of 4433 reactions and 3679 metabolites. The algorithm

required six iterations before completing to give multi-confidence

level (MCL) multi-tissue model with 4704 reactions and 3131

metabolites. Completion is indicated by the fact that the objective

function for the whole model is at a maximum for a particular set

of flux distributions and no more reactions can be added in

subsequent iterations (detailed in Materials and Methods).

A.2 Validation using Online Mendelian Inheritance in Man
(OMIM) Database

N From the OMIM database [33], 17 disorders were chosen and

characterized with regard to increases or decreases in

metabolite level in the blood as shown in Figure 2 [22]. Each

of the disorders involves changes in the amino acid levels. The

phenotype of each of these disorders is outlined in Figure 2

above. Each disorder has a set of associated genes, as listed in

Figure 2, which can be used to map to reactions in silico. S-

Adenosylhomocysteine hydrolase is associated with AHCY

gene deficiency [34]. Alkaptonuria is associated with HGD

gene deficiency [35]. Argininemia is associated with mutation

in ARG1 gene [36]. Cystinuria is associated with mutations in

SLC3A1 and SLC7A9 genes [37]. Lysinuric protein intoler-

ance is associated with mutation in SLC7A7 gene [38].

Formiminotransferace deficiency is associated with mutation in

FTCD gene [39]. Histidinemia is associated with mutation in

HAL gene [40]. Homocystinuria is associated with mutation in

CBS gene [41]. Hyperprolinemia is associated with mutation

in PRODH gene [42]. Maple syrup urine disease is associated

with mutation in DBT, BCKDHB, and BCKDHA genes [43].

Methionine adenosyltransferase deficiency is caused by

mutation in MAT1A gene [44]. Methylmalonic aciduria is

caused by mutation in MUT gene [45]. Phenylketonuria is

caused by mutation in PAH gene [46]. Hyperphenylalanin-

emia is associated with mutation in QDPR [47]. Tyrosinemia,

Type I is caused by mutation in FAH gene [48]. Tyrosinemia,

type III is caused by mutation in HPD gene [49]. Glycine

encephalopathy is associated with mutation in AMT, GLDC,

and GCSH genes [50]. In this validation, the reactions

associated with these genes were removed and simulation of

the in silico model was run to predict the phenotype of the

disease associated with removing that particular gene(s). The

predicted phenotype was then compared to the actual

phenotype from the OMIM database. Exchange reactions tell

about the concentration and the exchange flux balances

indicate the increase or decrease in concentration of a

metabolite in the model in the blood/extracellular compart-

ment. This analysis was performed on the MCL multi-tissue

model, Recon1, and the multi-tissue version of Recon1

(modeling the three tissues: adipose, liver, and skeletal muscle).

The results from simulations of Recon1 and the multi-tissue

version of Recon1 served as benchmarks to compare to the

simulations of MCL multi-tissue model, as shown in receiver-

operator curves (ROC) in Figure 3. ROC curves portray the

trade-off between true positive rate (TPR) and false positive

rate (FPR) predictor of a model as the decision threshold of a

parameter is varied.

Multi-Tissue Computational Modeling in MKR Mice
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Recon1 and the multi-tissue version of Recon1 have an

identical curve which is understandable as a multi-tissue version

of Recon1 is just a combination of Recon1 models of the three

tissues and the external exchange compartment; however, it is

necessary to test the differences between the two because the

number of type III cycles can increase in the multi-tissue version of

Recon1. A type III cycle is one of three types of extreme pathways

that can exist in a reaction network (type I, type II, and type III)

and could cause the behavior of the multi-tissue version to be

different than the single tissue version of Recon1. Figure 3

illustrates that the MCL multi-tissue model reaches higher true

positive rates as compared to Recon1. Also, all data points other

than the last one at (1,1) are clustered in an area with a very low

false positive rate. This indicates that all models evaluated in this

experiment performed as expected. The area under the curve

(AUC) provides a quantitative measure of the performance of each

model. The AUC of the MCL multi-tissue model is 0.7151, and

the AUC of Multi – Recon1 and Recon1 is 0.6719, and AUC of a

random selector (not shown) is approximately 0.3866.

A.3 Validation using Type 2 Diabetes Gene Expression
Change
Subsequent validation analysis involved the application of

microarray data from MKR T2DM mice to the aforementioned

in silico models. The microarray data of the two sets was

compared and genes that had statistically significant (with p-value

,0.05) fold changes were tabulated. These differentially expressed

genes were then mapped to Recon1 and the MCL multi-tissue

model to determine sets of upregulated and downregulated

reactions. The bounds of these reactions were changed according

to the procedure defined elsewhere (Materials and Methods). The

resulting differences in the exchange reactions flux bounds in both

models were compared with amino acid data for the Zucker

diabetic fatty rat from the literature [5], as shown in Table 2. With

Table 1. A comparison of different models.

Kumar Bordbar Jerby Gille Mardinoglu Recon1

Intracellular Reaction 2202 518 1056 1081 6160 2180

Genes 1496 931 - - 1809 1496

Unique Metabolites 610 413 729 777 2497 1509

Compartments 4 4 6 6 8 7

A comparison of intracellular reaction, number of distinct genes, number of unique metabolites, and total compartments in different metabolic reconstructions.
doi:10.1371/journal.pone.0102319.t001

Figure 1. Multi-tissue model building workflow. Recon1, downloaded from BiGG database, is the basis of building this multi-tissue model for
liver, skeletal muscle, and adipose tissues. From the Recon1 individual compartment models, the algorithm first loads a randomized flux distribution
matrix representing randomization of linear programming (LP) problems. Then a Boolean vector describing activity (1 = active, 0 = inactive) of each
reaction is created. Then scoring for each column of the flux distribution is done. If the objective score is greater than 0, corresponding reaction is
added in the construction. This process is repeated until highest objective score is greater than 0, implying objective function is at its maximum. This
generates a partial model. Then the whole process is repeated again based on the partial model, until there is no change in model size between one
iteration to another iteration.
doi:10.1371/journal.pone.0102319.g001

Multi-Tissue Computational Modeling in MKR Mice
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respect to the reference model with no change; any positive value

corresponds to upregulated and any negative value corresponds to

downregulated.

The difference between the two pairs (Recon 1 and MCL multi-

tissue model) of columns in Table 2 represent two different

analyses in which reactions were used in calculating increases and

decreases in plasma concentration of the corresponding amino

acids. The columns labeled ‘‘Ex-Recon1’’ and ‘‘Ex-MCL Multi-

tissue Model’’ represent analyses in which the exchange reactions

were used solely to determine the increases and decreases in

concentration of amino acids in the blood/plasma. The columns

labeled ‘‘Trans-Recon1’’ and ‘‘Trans-MCL Multi-tissue Model’’

represent analyses in which transport reactions were used to

determine the increases and decreases in different pathways’

fluxes. In this instance, a transport reaction is defined as a reaction

that moves a particular amino acid from the cytosol to the

extracellular/blood compartment. An exchange reaction is a

special type of reaction that only exists in these types of

computational models and represent flow of metabolites across a

system boundary [51].

The first two rows in Table 3 represent the analyses using

exchange reactions, and as expected the MCL multi-tissue model

outperforms Recon1 in every category (a lower FPR is better). The

last two rows in Table 3 represent the analyses using the transport

reactions. Table 3 shows that the MCL multi-tissue model

significantly outperformed Recon1 when using exchange reac-

tions, but the results appear to be much closer when using

transport reactions. The MCL multi-tissue model outperformed

Recon1 in every category except recall (recall is same as true

positive rate). ROC curves for the differences in flux bounds of the

exchange reactions and transport reactions are shown in Figure 4

and Figure 5 respectively.

These ROC curves clearly demonstrate the differences between

Recon1 and MCL multi-tissue model by providing the clear

differences in the area under the curve (AUC) between the two

models. In Figure 4, the MCL multi-tissue model outperformed

Recon1, which isn’t surprising given the results in Table 3. In the

figures 4 and 5, there are more points in Recon1 because of the

fact that there are greater number of reactions in Recon1 as

compared to the multi-tissue model and therefore downregulated

genes were mapped to more reactions. The AUC of the fold

change simulations of MCL multi-tissue model using Transport

reactions in Figure 4 is 0.3100; the AUC of Recon1 in Figure 4 is

0.0412 and the AUC of random selector (not shown) is 0.3866.

The AUC’s of the MCL multi-tissue model using Exchange

reactions and Recon1 in Figure 5 are 0.5048 and 0.3998,

respectively, which means that both Recon1 and the MCL

multi-tissue model are better than a random selector for transport

reactions. Thus, the MCL multi-tissue model is consistently above

Recon1 for both transport and exchange reactions and exceeds the

random selector curve for transport reactions but not for exchange

reactions. The random selector curve is based on a set of reactions

generated by random permutation from the entire set of reactions.

Recon1 was highly inaccurate for transport reactions at each

threshold, which demonstrates the difficulty with predicting

increases or decreases of exchange from gene expression fold

changes. The fact that the MCL multi-tissue model displays an

AUC that is roughly 7.5 times greater than the AUC produced by

Recon1 provides further validation for the MCL multi-tissue

model in these analyses, at least compared to other systems

available.

Figure 2. OMIM data used for model validation. Blue and red squares depict an increase and decrease in concentration, respectively. White
squares represent unchanged concentration levels.
doi:10.1371/journal.pone.0102319.g002
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A.4 MCL multi-tissue model’s application on MKR mice
microarray data
After the two extensive validations outlined in sections 2.1 and

2.2, the model was used to study physiological behaviors during

T2DM condition – higher plasma concentration of branched-

chain amino acids (BCAAs) and free fatty acids (FFAs) in T2DM

subjects. Branched-chain amino acid metabolism has been studied

in T2DM condition previously [10], [52], [53], but none of the

groups have determined metabolic fluxes through relevant

pathways, as described in this study using a robust computational

model. Past studies [18], [17] have focused on a single tissue (such

as liver) for investigating metabolic disorders. However, this

doesn’t give a complete picture of the metabolic disorder. In

another study [20] the investigators studied T2DM on fat, liver,

and muscle tissues using an in silico model which was less

comprehensive in terms of the number of metabolic reactions used

in the one presented in this study. In order to use the MCL multi-

tissue model for predicting physiological changes in fully T2DM

MKR mice as compared to healthy mice, gene expression data

was first generated for liver, skeletal muscle, and fat tissues for

healthy and diabetic mice. Statistical tests on gene expression data

suggested that several genes were differentially regulated between

MKR and healthy mice. The statistical test – Fisher’s exact test,

providing significance of the association of the experimental gene

expression values and the Ingenuity Pathway Analysis canonical

pathways, was done using the Ingenuity software (www.ingenuity.

com). From gene expression fold change analysis in the three

tissues, it was found that for BCAA degradation and FA oxidation

pathways, some of the genes are upregulated and some are

downregulated in liver, while the same were predominantly

downregulated in the T2DM MKR mice’s fat and muscle tissues

when compared to their healthy euglycemic littermates, as shown

in Table 4.

The liver tissues’ FA degradation pathway genes did not provide

a clear explanation of high concentration of FFAs in the plasma of

T2DM subjects. However, the biosynthesis pathway from

Ingenuity Pathway Analysis (Figure 6) for fatty acids in the liver

tissues of MKR mice does provide an explanation of the

differences in FFA levels in healthy and diseased subjects’ plasma.

There is a clear increase in the gene expression patterns for

biosynthesis of fatty acids in liver and a decrease in fatty acid

oxidation in skeletal muscle and fat tissues, thereby accumulating

more free fatty acids in the plasma of T2DM subjects.

In order to perform systems level analysis of the gene expression

data, to achieve a better understanding of BCAA and FA

metabolism, we next used the gene expression data along with

Figure 3. ROC plot for validation using OMIM data. ROC plot comparing different models using gene-deletion study. This figure demonstrates
the true positive and false positive rates at various threshold values.
doi:10.1371/journal.pone.0102319.g003
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the MCL multi-tissue model to generate flux predictions. Gene

expression data was used for generating a context-specific MCL

multi-tissue network using an algorithm which uses gene

expression data to remove the reactions associated with no gene

expression, thereby creating a context-specific metabolic network

for the in silico T2DM condition simulation. Then, flux variability

analysis is performed to find out the reactions without fluxes,

which are then removed. The remaining reactions then represent

an active context-specific metabolic network. This active model

was used to find out the differences between biochemical reaction

activity between T2DM and healthy states.

Figure 7 (A)–(F) represent the data corresponding to each

subsystem in the three tissues compared to a hypothetical dataset

represented by a random selector. T-scores were obtained for each

subsystem to determine the statistical significance of the degree of

differential expression. The purpose of organizing the data in this

way is to identify particular subsystems affected more greatly by

T2DM. This organization scheme helps filter out small subsystems

that contain all downregulated reactions but have very few

reactions, and therefore do not control the overall behavior of the

model.

Cholesterol metabolism is upregulated in adipose tissue (Figure 7

– D) and downregulated in liver tissue (Figure 7 – B) and muscle

tissue (Figure 7 – C). This can lead to higher cholesterol level in

plasma of T2DM subjects as also observed through actual

measurements [54]. The carnitine shuttle is downregulated in

adipose tissues (Figure 7 – A) and muscle tissues (Figure 7 – C), and

is upregulated in liver tissues (Figure 7 – E). As reported in

literature [14], a downregulated carnitine shuttle leads to insulin

resistance by triglyceride accumulations in the cytosol of the cells

by hampering beta-oxidation. Another interesting observation is

the upregulated N-Glycan degradation in adipose tissues (Figure 7

– C) and downregulated N-Glycan biosynthesis in liver tissues

(Figure 7 – B). The behavior of these pathways leads to altered N-

Glycans structure in the plasma of T2DM subjects [55,56].

Sphingolipid metabolism is upregulated both in adipose tissues

(Figure 7 – D) and muscle tissues (Figure 7 – F), which matches

expectations, as ceramide levels in skeletal muscle of T2DM

Zucker fatty rat were found normal [57,58]. However, there is no

known relation between T2DM and skeletal muscle ceramide level

[59].

It is important to note that in most of the research work done on

studying behavior of these subsystems deal with studying

differences in gene expression in the two physiological conditions;

however, in this study we present differences in fluxes in the

biochemical reactions in the two physiological conditions (T2DM

vs healthy). Figures S1–S15 in File S1 show percentage of

reactions retained by subsystems in the three tissues, fold change

analysis in the three tissues, OMIM data analysis including the

random selector along with zoomed in version, and robustness

analysis results. File S2 provides direction of flux changes

(upregulated or downregulated) in different subsystems along with

the t-scores in adipose, skeletal muscle, and liver tissues in three

individual worksheets corresponding to each tissue type. In the

former method of study, if genes associated with few reactions in a

subsystem are downregulated, then most of the subsystem will be

downregulated because of the steady-state condition. However, in

subsystems with a combination of upregulated and downregulated

genes, the whole subsystem behaves unpredictably, so the flux

results can help decipher such ambiguous situations clearly.

Table 2. Simplified depiction of the validation results.

Amino acid Zucker diabetic fatty rat Ex-Recon1 Ex-MCL multi-tissue Model Trans-Recon1 Trans-MCL multi-tissue Model

Arginine Q q - - Q

Leucine q - - q -

Phenylalanine - q - - -

Cysteine - - - Q -

Glutamine Q - q q -

Serine Q q - q -

Asparagine Q - - q -

Tryptophan Q - - - Q

Proline - Q - - -

Threonine Q - - q -

Aspartate - q q - -

Glycine Q - - Q -

Glutamate q - - Q -

Isoleucine q - q - q

Lysine Q - - - q

Valine q - - q q

Methionine Q q q - q

Tyrosine Q - Q Q Q

Alanine - Q q - -

Histidine Q q Q Q q

The upward arrow (q) depicts higher amino acid level in Zucker diabetic fatty rat versus healthy rat. The downward arrow (Q) depicts lower amino acid level in Zucker
diabetic fatty rat versus healthy rat. (-) depicts no difference in the amino acid level between the two types of rats.
doi:10.1371/journal.pone.0102319.t002
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Discussion

In the present study, microarray technology was used to

elucidate the relation of free fatty acid and branched-chain amino

acids levels under T2DM and normal condition and the gene

expression profiles in three different tissues – liver, muscle, and

adipose of diabetic MKR mice. The findings from microarray

analysis show that MKR mice have a downregulated fatty acid

oxidation profile in muscle and adipose tissues. In liver, the entire

fatty acid oxidation profile is not downregulated. On the contrary,

fatty acid biosynthesis in liver tissues is considerably upregulated as

shown in figure 6. Therefore, a possible explanation for the higher

circulating free fatty acid levels in the diabetic MKR mice is the

upregulated biosynthesis of fatty acids in liver and considerable

lower oxidation of the fatty acids in the muscle and adipose tissues

of the animals. Gene expression for branched-chain amino acids

metabolism is significantly downregulated too. However, mere

downregulation of gene expression does not imply downregulation

of the flux through these pathways. Moreover, using gene

expression data alone doesn’t clearly predict how fast or slow a

biochemical reaction proceeds. However, incorporating metabolic

flux results, based on such computational models, greatly enhances

the understanding of reaction fluxes.

Wang et al. [60] pointed out that comparisons using only

enrichment statistics with gene expression data provides far fewer

predictions as given by model based approaches. There are a

larger number of pathways that can be identified using the model

based approach as compared to using gene expression data alone.

Subsequently, an algorithm for building a multi-tissue model is

presented in the current paper. The algorithm presented in this

paper uses as few linear programming solutions as possible to

achieve an optimal solution, so that the solution can be found in a

reasonable amount of time. The model provides users with the

ability to predict changes in metabolite levels in the medium after

deleting specific metabolic genes, as well as the ability to predict

changes in metabolite concentrations in the plasma/medium after

applying fold changes to specific genes. Other capabilities include

using a quadratic programming solver to apply experimentally

derived fluxes to specific reactions in the model and determining

the remaining fluxes to examine the behavior of the overall model

in given by the experiment [17].

The positive aspect of this approach is that metabolic fluxes can

be predicted; this is important because metabolic fluxes are

difficult to measure in mammalian tissues, and metabolic fluxes

provide essential information used for characterizing phenotypes

Figure 4. ROC plot for exchange flux changes using Zucker fatty rat data. ROC plot of the results generated by comparing the exchange
flux changes determined by applying diabetic and wild-type gene expression data to the MCL multi-tissue model and Recon1 to available literature
data on amino acid concentration changes in the blood/plasma.
doi:10.1371/journal.pone.0102319.g004
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of cellular systems. Flux information can help predict metabolic

biomarkers in blood/plasma [22], and can potentially help predict

causes for certain metabolic disorders. However, due to their

qualitative nature, results from these steady state models should be

thought of as supplements to experiments; they are best used to

help provide potential targets for biological experiments.

Figures S7–S12 in file S1 delineate the results of the fold change

analyses by separating the upregulated and downregulated

reactions by subsystems (pathways). As mentioned before, it is

easier to find out approximately which subsystems are upregulated

or downregulated by microarray analysis, but that does not fully

explain the physical effects of the fold changes in these genes, in

terms of changes in the metabolic fluxes. The results show a

significant downregulation of branched-chain amino acid metab-

olism and fatty acid oxidation in muscle and adipose tissues (there

is some down regulation of branched-chain amino acid metabo-

lism in the liver tissue, but it is less apparent than in the other two

tissues). There are more downregulated reactions than upregulated

reactions. Changes in gene expression can only be assumed to

affect relative enzyme levels, which can only affect upper and

lower flux bounds; therefore, we can assume that more downreg-

ulated reactions are affected than upregulated reactions because a

decrease in the flux bounds represents more restriction than an

increase in flux bounds. This is because reactions with increased

flux bounds can still be forced to have lower fluxes by adjacent

downregulated reactions, whereas reaction with decreased flux

bounds cannot be forced to have higher fluxes by adjacent

upregulated reactions.

Statistical significance of the differential regulation of the

subsystems was calculated by using a two sample t-test (assuming

the second sample is a randomly generated set of upregulated,

downregulated, and unchanged reaction predictions and is of the

same size as the subsystem) to determine the statistical significance

of the subsystem’s deviation from random behavior. For example,

if the subsystem is 100% downregulated with two reactions, then,

intuitively, this is not very statistically relevant because a random

selector can make this selection 1/9 of the time (assuming the

random selector chooses downregulated, upregulated, and un-

changed each 1/3 of the time). Thus, sorting by the t-score of each

subsystem provides a better understanding of the extent of

differential regulation of the subsystems. Figures S1–S12 in file

S1 demonstrate the approximate effect of the gene expression

during T2DM on certain subsystems. As expected branched chain

amino acid metabolism and fatty acid oxidation have very high t-

scores in muscle and adipose tissue. The results regarding the

branched-chain amino acid metabolism is consistent with the

results available in literature [61]. The downregulation of BCAA

metabolism in adipose tissue causes an increase in BCAAs in the

circulation, which is shown by the amino acid transport fluxes.

This increase in circulating BCAAs causes a decrease in BCAA

metabolism in muscle tissue as well [53], which is consistent with

results in this study. Newgard et al. have reported increased

concentration of BCAA in the plasma of T2DM subjects [10].

Although we didn’t have access to in vivo methods of metabolic

flux measurement, we did find evidences supporting our results.

For example, it is reported that gluconeogenesis flux in humans is

decreased in Type 2 Diabetes [62], which is also demonstrated in

our model. In skeletal muscle, free fatty oxidation flux is reduced

implying abnormal mitochondrial function [63–66] which is also

suggested by our results with reduced fatty acid oxidation in

skeletal muscle as well as reduced carnitine shuttle which is

responsible for fatty acid transport across mitochondria. In order

to compare our findings and the above reported findings, we have

reported predictions on the BCAA exchange metabolites. Apart
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from BCAA, other exchange fluxes predictions also resulted from

the analysis, but those predictions’ in vivo validity with respect to

T2DM is not yet confirmed.

The most negative t-score in adipose and muscle tissues is for

the carnitine shuttle subsystem. The ‘Nucleotides’ subsystem is also

strongly downregulated in both muscle and adipose tissue.

Interestingly, liver tissue displays more upregulation than the

other tissues, with the carnitine shuttle subsystem showing

upregulation. Thus, the carnitine shuttle subsystem appears to

be the subsystem most affected in T2DM. The carnitine shuttle is

responsible for transport of long chain fatty acids into mitochon-

dria for oxidation. So, a downregulated carnitine shuttle in adipose

and muscle tissues implies lower metabolism of the FFAs in those

two tissues. Even though the FFA metabolism is higher in liver

because of upregulated carnitine shuttle, the biosynthesis pathway

of fatty acids is also elevated (Figure 6). This explains the overall

high FFA plasma level in T2DM condition. Other subsystems that

appear to be affected strongly include most metabolic subsystems

of bile acid metabolism, cholesterol metabolism, and branched-

chain amino acid metabolism. These subsystems should be studied

in more depth in future studies.

In summary, the integration of microarray data and in silico

predictions via constraint-based modeling has facilitated better

understanding of the reason behind high BCAA and FFA levels in

plasma of T2DM subjects. Prior systems biology studies have

shown the ability of constraint-based models to predict metabolic

biomarkers [22]. Similarly, this model provides the complete set of

biomarker predictions generated by the genetic fold change study.

These metabolites represent potential biomarkers that can

facilitate T2DM studies.

Type 2 diabetes is characterized by two major defects: beta-cell

dysfunction and insulin resistance in peripheral tissues. The exact

alterations in molecular pathways associated with beta-cell

dysfunction in insulin-resistant and diabetic states are not clearly

understood. Most of the studies involving T2DM and insulin

resistance utilize data from insulin-resistant or diabetic animal

models, such as Zucker fatty (ZF) and Zucker diabetic fatty rats

(ZDF) [27], high-fat-fed mice [28], muscle IGF-1 receptor–lysine–

arginine (MKR) mice [29,30], and lep/lep mice [31]. A common

feature of all these animal models is that all models have

manifested insulin resistance and often exhibit islet dysfunction

as occurs in the early stages of type 2 diabetes in humans.

Figure 5. ROC plot for transport reaction flux changes using Zucker fatty rat data. ROC plot of the results generated by the flux changes in
transport reactions determined by applying T2DM and wild-type gene expression data to the MCL multi-tissue model and Recon1and then
comparing the results to available literature data on amino acid concentration changes in the plasma of T2DM Zucker diabetic fatty rat.
doi:10.1371/journal.pone.0102319.g005
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Therefore, it is, in our opinion, valid to use MKR mice and

Zucker diabetic fatty rat data for making predictions on humans’

T2DM phenotypes.

In a mammalian system, the specific objective of a particular

function of a cell, at a given time and under certain conditions, is

difficult to identify, whereas in unicellular systems, the objective

function can be assumed to be the maximization of cell growth.

This is because mammalian systems are much more complex,

especially when attempting to define models for different tissues,

because each tissue has a different objective. One may consider

that there is an over-arching objective function when considering a

system that defines the overall human body as a linear

combination of partial Recon1’s associated with each tissue, but

this again is difficult to define, because the objective of maximizing

biomass in unicellular organisms only applies during the expo-

nential growth phase. Thus, maximizing biomass in mammalian

systems may be applicable, but only during the growth phase of

the mammal.

Materials and Methods

B.1 Animal Studies
All animal study protocols were approved by the Mount Sinai

School of Medicine Institutional Animal Care and Use Committee

(IACUC). Mice were housed in The Mount Sinai School of

Medicine Center for Comparative Medicine and Surgery, an

Association for Assessment and Accreditation of Laboratory

Animal Care (AAALAC) and Office of Laboratory Animal

Welfare (OLAW) accredited facility, where animal care and

maintenance were provided.

Male 10-weeks old FVB/N – MKR mice were used for the

microarray studies. Generation and characterization of MKR

mice have been described elsewhere [32]. Mice were kept on a 12-

h light/dark cycle, they were allowed free access to diet (Picolab

rodent diet #5053) and fresh water. Death of the mice was caused

by subjecting them to CO2. Liver, Skeletal muscle, and fat tissues

were flash frozen in liquid nitrogen, stored at 280uC, and shipped

on dry ice to NIDDK/NIH facility for further processing.

B.2 RNA Sampling
Total RNA from the liver, fat, and skeletal muscle tissues was

isolated for three biological replicates for both diseased and

healthy animal subjects. Qiagen’s Microarray Tissue Mini Kit

(Qiagen GmbH, Germany) was used for RNA isolation purpose

according to the manufacturer’s instructions. Purified total RNA

was quantified using a spectrophotometer (Thermo Scientific Ltd).

The absorbance values at 260 and 280 nm were used for assessing

the quality of the sample. Only the samples with greater than 1.80

260/280 absorbance ratio were used for microarray analysis [67].

B.3 Microarrays procedure, Statistical analysis and
Biological Inference
RNA quality was tested using bioanalyzer (RNA Nano assay in

the Expert 2100 software, Agilent Technologies, CA) and RIN

(RNA Integrity Number) values were above 8.0 for all the samples.

100 ng of RNA from each sample was amplified to generate

cDNA using NUGEN Applause WT – Amp ST system (NuGEN

Technologies, CA), according to the manufacturer’s instructions.

2.5 mg of cDNA was fragmented and biotinylated using Encore

Biotin module (NUGEN Technologies, CA). Resultant sample mix

with hybridization reagents (Affymetrix Inc. CA) and injected into

Affymetrix Mouse Gene 1.0 ST arrays and incubated for

18+2 hours in hybridization oven rotating at 60 rpm at 45uC

(Affymetrix Inc., CA). Arrays were processed using Affymetrix 450
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Fluidic stations using wash and stain kit (Affymetrix Inc.). Chips

were scanned using Affymetrix GeneChip scanner 3000 operated

by Gene Chip Operating Software, version 1. 4 (GCOS 1.4) and

generated.CEL.CHP and RPT files. To access the efficiency of

cDNA synthesis Poly A controls (dap, lys, phe, thr- Affymetrix

Inc.) was spiked to the samples and hybridization controls (bioB,

bioD, bioC and Cre, Affymetrix Inc.) were added to monitor

labeling efficiency according to the manufacturer’s instructions.

The microarray raw data was analyzed using software Partek

genomics suite, version 6.3 Copyright 2008 Partek Inc., St. Louis,

MO, USA. Raw data were subjected to Robust Multichip Average

(RMA) quantile normalization to remove biases introduced by

technical and experimental effects. All expression data were log

base 2 -transformed to get near normal distribution for accurate

statistical inference. Quality control by visualizing the data using

Principal Component Analysis cluster plot ensured that no outliers

were included for the analysis. Next, two-way ANOVA analysis

was performed to obtain a set of differentially expressed genes. A

filter of P-value ,0.05 and Fold-change .1.5 times was applied to

get the significantly differentially expressed genes list. The results

of the microarray analysis have been deposited to National Center

for Biotechnology Information (NCBI) repository and can be

accessed with Gene Omnibus Expression accession: GSE51866.

The significantly differentially expressed genes list was exported

to – Ingenuity Pathway Analysis (Ingenuity Systems, www.

ingenuity.com) for finding biological inference. Ingenuity Pathway

Analysis is an online software used to study relationship between

genes, proteins, and biological reactions. More technical details

about the Ingenuity Pathway Analysis’ capabilities can be accessed

from the Ingenuity Systems website. Statistically significant genes

from Partek analysis were overlaid on the Ingenuity Pathway

Analysis global molecular network, which is based on information

from other databases such as KEGG, HumanCyc, etc. in the

Ingenuity knowledge base after applying a filter on species type

(mouse) and tissue type (e.g. adipose).

Figure 6. Canonical biosynthesis pathway of fatty acids in liver using microarray data. Mapping of gene expression for liver tissues on
biosynthesis of fatty acids, using Ingenuity Pathway Analysis software. Red color shows upregulated gene expression in MKR mice versus Healthy
mice.
doi:10.1371/journal.pone.0102319.g006
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B.4 Tissue-specific Model Building Algorithm
Published, detailed reconstruction of human metabolism

(Recon1) was downloaded from the BiGG database in SBML

format [68,69]. The models were created, maintained, and altered

using the COBRA toolbox in MATLAB version 2010a [70]. A

three tissue version of Recon1 was generated by adding prefixes -

‘A:’, ‘H:’, and ‘M:’ to each reaction name and suffixes - [Adp],

[Hep], and [Msc] to each metabolite for adipocytes, hepatocytes,

and skeletal muscle tissue respectively. The extracellular compart-

ment is shared between all three tissues and only one set of

reactions comprising of only extracellular metabolites was

maintained in the MCL multi-tissue model. After removing all

reactions associated with dead-end metabolites from the model,

the size of the three tissue version of Recon1 becomes 6644

reactions with 4103 metabolites.

The algorithm for trimming down the general three tissue

version of Recon1 is built by minimizing the number of linear

programming problems needed to trim the reconstruction [17,22].

The algorithm contains three sets of reactions: a high-confidence

set, a medium-confidence set, and a low-confidence set. The high

confidence set of reactions was created based on literature results

containing confirmed protein expression in the three tissues and

were mapped to specific reactions in Recon1 for specific tissue

types [71–101]. The medium confidence set of reactions was

obtained from tissue-specific data from publically available

databases HPRD [102–104], UniProt [105], and Brenda [106]

and their online databases with tissue-specific data [107–109]. The

low confidence set of reactions was the list of remaining reactions

that were not in either the high or medium confidence sets.

The overall goal of this algorithm is: (1) maintain all high

confidence reactions and (2) maximize the number of medium

confidence reactions minus 0.5 multiplied by the number of low

confidence reactions in the final trimmed version of the

reconstruction. Statement (2) can be considered the objective

function of the algorithm as shown below –

Maximize CM\RP{0:5 � CX\RP

The value 0.5 reflects equal probability of obtaining the most

parsimonious model as well as including a maximal number of

moderate probability reactions in the partial model using above

algorithm [17].

Rp is a partial subset of reactions from Recon1 that defines the

solution space for the tissue-specific reconstruction, CM and CX

are the medium and low confidence set of reactions, respectively.

The algorithm makes more efficient use of all of the information

gained from a single linear programming (LP) solution. Every

reconstruction can be broken down into elementary flux modes;

these can be thought of as the simplest possible flux distributions.

Therefore, every reconstruction is a linear combination of

elementary flux modes, and thus, each linear programming

solution is a smaller linear combination of elementary flux modes.

Ideally, the algorithm would identify all elementary flux modes in

a reconstruction or even LP solution and find the optimal

combination from the elementary flux modes, but as of now, this is

computationally infeasible due to combinatorial explosion [110].

Elementary flux modes have been determined for smaller

networks, but cannot be found for more complex networks like

Figure 7. MCL multi-tissue model predictions on different pathways. (A), (B), and (C) represent downregulated pathways (subsystem) for
adipose, liver, and skeletal muscle tissues respectively. (D), (E), and (F) represent upregulated pathways for adipose, liver, and skeletal muscle tissues
respectively. They are organized by t-score; the more negative the t-score, the more down-regulated the subsystem and the more positive the t-
score, the more up-regulated the subsystem.
doi:10.1371/journal.pone.0102319.g007
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Recon1. However, LP solutions represent feasible flux distribu-

tions that are typically much smaller than the size of the final

networks. Final networks can also be thought of as linear

combinations of all of these possible linear programming solutions.

Therefore, the algorithm pre-loads a very large matrix with

information on around 10,000–20,000 randomly generated flux

distributions represented by linear programming solutions. The

randomization of the solutions is the randomization of the

objective functions of the associated linear programming prob-

lems. The algorithm randomly selects a few high confidence and

medium confidence reactions to be maximized in the objective

function; low confidence reactions will never be in the objective

function. Then, a Boolean vector is created which describes the

activity of each reaction in the network (1 for active and 0 for

inactive). This vector represents one flux distribution and also

represents one column in the large matrix of random flux

distributions (the large matrix is named fdMatrix). The rows of

each Boolean column vector, and consequently the matrix,

represent distinct reactions in the general network. The creation

of this matrix represents the second step of the algorithm.

The next step of the algorithm consists of providing scores for

each flux distribution. The scores are calculated by subtracting

half the number of active low confidence reactions from the

number of active medium confidence reactions. If a score is

positive, it means that adding the reactions associated with this flux

distribution will add to the value of the objective function of the

algorithm. Scores are calculated for each column in the matrix.

This marks the beginning of the third step of the algorithm. This

step involves addition of flux distributions associated with the high

confidence set of reactions. It starts by ordering the list of scores

associated with the flux distributions from high to low values.

Then, the flux distribution with the highest score is checked for

any active high confidence reactions; if there are no high

confidence reactions, then the flux distribution with the second

highest score is checked for high confidence reactions. This

procedure continues until the highest scoring flux distribution

containing at least one high confidence reaction is found. All of the

active reactions within this flux distribution are added to a final list

of reactions. Also, any high confidence reactions added to the final

list of reactions are removed from the list of remaining high

confidence reactions. Then, the rows of the fdMatrix which are

associated with the set of active reactions that were recently added

to the final list of reactions are set to rows filled with zeros. This is

done because these reactions are now in the final list of reactions

and therefore do not contribute to the objective score anymore.

Changing the values in the rows changes the scores associated with

each column/flux distribution in fdMatrix, thus the scores must be

re-calculated to reflect the changes in the rows. These re-

calculated scores are sorted again to reveal the columns/flux

distributions with the highest scores. Then, the highest scoring

column/flux distribution with at least one reaction that is in the list

of remaining high confidence reactions is selected, and the whole

cycle repeats itself. This cycle is repeated until there are no

reactions left in the list of remaining high confidence reactions,

which means that all of the high confidence reactions were added

to the list of final reactions, which is one of the requirements of the

algorithm. Also, it’s important to note that the high confidence

reactions were added in a way that maximizes the score/objective

function of the algorithm.

The next step of the algorithm involves adding other flux

distributions that increase the value of the objective function. After

adding all of the high confidence reactions, the number of medium

confidence reactions added to the reconstruction was optimized.

The process for adding flux distributions that adds a positive value

to the objective function is very similar to the process that added

all of the high confidence reactions. Each of the remaining flux

distributions is assigned an objective score based on the number of

medium confidence reactions and low confidence reactions

remaining within that distribution. These scores are sorted to find

the distribution with the highest objective value. If the highest

objective score is above zero, then the reactions of that distribution

are added to the reconstruction. Then, the rows that correspond to

the reactions that were just added are filled with zeros to prevent

double counting toward the objective function. This process is

repeated as long as the highest objective score is greater than zero.

This means that reactions are added only if the corresponding

distributions increase the objective function, and reactions are no

longer added when the objective function cannot be increased by

the randomly created distributions, meaning that the objective

function is at a maximum for this particular set of flux

distributions.

Then, this whole process is repeated again; a new set of random

flux distributions is created based on the partial model this time

(the distributions were created from the general model the first

time), and reactions from the high confidence list are added along

with their associated reactions determined by the flux distribu-

tions, and medium confidence reactions are optimized. As part of

the model building algorithm during the reconstruction process,

maximizing the flux to ascertain activity/inactivity of a reaction is

needed. A random flux distribution is used only in the

reconstruction process which is subjected to our algorithm to find

out whether each reaction adds to biological meaning or not. This

process repeats itself until the model doesn’t change in size from

one iteration to the next. The time required to solve a problem

associated with a three tissue system varies from 0.05–0.1 seconds.

The number of reactions maximized in each iteration is variable;

in the first iteration, all reactions are maximized. In the second

iteration, all reactions that had zero flux in the solution to the first

linear programming iteration are maximized, and so on. This

continues until either all reactions are proven to carry a flux (have

a non-zero solution to any linear programming problem), or some

set of reactions are proven to be unable to carry flux (the set of

reactions is maximized/minimized and no flux profiles result). The

latter is explicitly proven by performing distinct linear program-

ming problems and maximizing/minimizing each reaction in the

set individually as explained in f tissue-specific model building

algorithm.

B.5 Validation Procedure
Robustness analysis of the algorithm was performed by

generating 5 replicate models with starting point as 5 different

randomized stoichiometric matrices. All 5 of the replicate models

were similar in size (Figure S15 in File S1), thereby validating the

robustness of the algorithm. Further validations of the model are

described in the following subsections.

B.5.1 OMIM gene deletion analysis. The first validation

procedure uses similar approach as used in studies by Shlomi et al.

The validation tests the effect of deleting genes in silico versus

experimental data. The experimental phenotypic effect of deleting

genes is available in the public database – OMIM [111]. The

known biomarkers of the amino acid-associated disorders com-

piled above were manually extracted from the disease description

field in the OMIM database. This set of disorders was further

filtered to include only the disorders that were reported to show a

concentration change in at least one of the model’s boundary

metabolites. This resulted in a final set of 17 disorders that

composed the validation set. In this validation, disorders that are

known to increase or decrease amino acid levels in the blood were
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considered. This is because the calculated steady state models can

only allow accumulation in the extracellular (blood) compartment.

After mapping OMIM disorder identifier to specific human

genes, reactions associated with the affected genes were found.

Then, those reactions were artificially ‘‘turned on’’ by equating the

lower bounds of the associated reactions to 1. This means that a

flux with zero value through the affected reactions is not

permitted. The purpose of forcing the reactions to be active is to

model a situation in which these reactions are used; this will

provide a greater contrast for when the reactions are removed (if

zero flux is still allowed, then the model may not use the affected

reactions and therefore the comparison would be between

reactions that may not be used and reactions that are deactivated).

After the lower bounds are changed, flux variability analysis is

performed on the model [112] providing a minimum and

maximum flux allowed by the solution space of the model. Then,

the two sets of flux bounds are compared to determine if the

reactions are upregulated, downregulated or unchanged. The

reactions are considered either upregulated or downregulated if

the change in flux bounds is greater than a threshold, or less than

the negative of that same threshold. The change between the sets

of flux bounds is calculated by:

For reaction ‘i’:

Disease reaction flux , wild-type reaction flux if,

diseaseMin(i)zM(i)vrefMin(i)½ �AND diseaseMax(i)ƒrefMax(i)½ �

OR

diseaseMin(i)ƒrefMin(i)½ �AND diseaseMax(i)zM(i)vrefMax(i)½ �

Disease reaction flux . wild-type reaction flux if,

diseaseMin(i)w refMin(i)zM(i)ð Þ½ �AND diseaseMax(i)§refMax(i)½ �

OR

diseaseMin(i)§refMin(i)½ �AND diseaseMax(i)w refMax(i)zM(i)ð Þ½ �

Where:

M(i)~" � Dmean refMin(i),refMax(i),diseaseMin(i),diseaseMax(i)ð ÞD

The set of reactions represented by the variable ‘i’ are the set of

exchange reactions of metabolites that have been identified in the

phenotype descriptions of the OMIM database. In this validation,

they are amino acids. The variables diseaseMax and diseaseMin

are the flux bounds of the amino acids in the disease version of the

model with particular genes knocked out. The variables refMin

and refMax are the flux bounds of the amino acids in the healthy

model that has no genes knocked out. The variable e represents

the threshold value used for the receiver-operator characteristic

(ROC) curves.

The results of this validation are depicted via ROC curves in the

Results section. In this simulation, the threshold value is varied to

distinguish between very large changes in flux bounds and very

small changes in flux bounds. Thus, for a given threshold value

and disease, upregulated and downregulated predictions are made

for each amino acid exchange reaction. These predictions are

checked against the known phenotype of that specific disease. This

generates a list of true positive, false positive, true negative, and

false negative predictions for the specific disease at a particular

threshold. This analysis is repeated using the same threshold value

for each disease in the validation. All of the predictions from each

disease are added together, to provide a number of true positives

(TP), false positives (FP), true negatives (TN), and false negatives

(FN) for that particular threshold value. Then, the false positive

rate (FPR) and the true positive rate (TPR) are calculated as below.

FPR~
1{"

1{a"

TPR~
1{"

1z"

Where, a~
1{Po

1zPo

; Po is proportion of unchanged metabolites

in the data; " is the threshold, defined above.

TPR = true positive rate; (number of true positives)/(number

of true positives + number of false negatives).

FPR = false positive rate; (number of false positives)/(number

of false positives + number of true negatives).

These values for FPR and TPR are calculated for a range of

threshold values; typically from 0 to 1000, and plotted with FPR

on the x-axis and TPR is on the y-axis. The area under the curve

(AUC) of this plot is the indicator of the quality of the

reconstruction network. An AUC of 0.5 represents a random

classifier; any AUC over 0.5 represents a system that is better than

a random guessing.

B.5.2 T2DM gene expression fold change analysis. The

gene expression of adipose, liver, and muscle tissue for MKR mice

model was examined. The MKR mouse model was developed by

over-expressing the IGF-I receptor in skeletal muscle [113].

Statistical tests were used to identify genes that were significantly

upregulated or downregulated (p-value ,0.05). These genes were

mapped to Entrez gene IDs, and subsequently mapped to the

steady-state model. This identified specific reactions that were

either upregulated or downregulated due to differential gene

transcription in type II diabetes. For reactions that had both

upregulated and downregulated genes mapped to them, regulation

status of the reaction was determined by summing the number of

up and downregulated genes that map to that specific reaction in

question and compare the results. This is only done when multiple

gene IDs from the microarray data map to the same Entrez gene

ID; this is not performed in the case where multiple distinct gene

IDs map to the same reaction through gene-to-reaction maps. In

the latter case, the gene-to-reaction logical mapping is used to

determine the regulation status.

Transcription levels of genes do not directly correspond to

reaction fluxes, but a few assumptions can be made to demonstrate

the effect of the levels. The main assumption is that relative gene

transcription levels correlate with relative protein concentrations.

With this assumption, the effect of increased or decreased protein

concentration manifests itself in the upper and lower bounds of the

reactions that are associated with the protein. The reason for this is

because enzyme concentration only affects Vmax in enzyme

kinetics equations. Vmax is equal to kcat multiplied by enzyme

concentration; therefore, a lower enzyme concentration decreases

the maximum reaction velocity (and minimum reaction velocity, if

the reaction is reversible). Reactions that are determined to be

affected by gene regulation have upper bounds initially set to 100

and lower bounds initially set to 2100 or 0 depending on
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reversibility. Unaffected reactions have normal reaction bounds

(upper bounds are 1000 and lower bounds are 21000 or 0). Initial

FVA is then performed. Then, upregulated reactions have bounds

doubled downregulated reactions have bounds halved. Then, FVA

is performed, and resulting bounds are compared to initial FVA

results for comparison and analysis. The reasoning for initially

changing affected reaction bounds from 1000 to 100 was to

magnify the effect of upgregulating reactions. If reaction bounds of

affected reactions are kept at normal 1000 values, then doubling

the reaction bounds due to upregulation may not display

downstream upregulation or display the far-reaching effects of

gene upregulation. The lower bound and upper bound for

exchange reactions are 1 and 1000 respectively.

The first step is to identify all upregulated and downregulated

reactions, and change the associated bounds to one-tenth of the

initial value. This is done so that the effect of increases in reaction

bounds due to upregulation will have an effect in a steady-state

model. Then, FVA is performed on the model to establish a

control set of bounds. After that, the bounds of upregulated

reactions are doubled and downregulated reactions are halved.

Then, FVA is performed again to generate a disease-state set of

bounds. Then, the difference between the two sets of bounds is

determined by the following:

For a given reaction ‘i’;

change(i)~
diseaseMin(i){refMin(i)ð Þz diseaseMax(i){refMax(i)ð Þ

DM(i)D

diseaseMin,diseaseMax½ � represent the lower and upper bounds

of the disease set.

refMin,refMax½ � represent the lower and upper bounds of the

control set.

DM(i)D is the absolute value of the mean of all four bounds for

reaction ‘i’.

Literature results were obtained for specific concentrations of

amino acids in the plasma for T2DM rat versus healthy rat. The

effect on each of the transport fluxes of each amino acid were

considered to determine an increase or decrease in concentration

in the plasma. This was done instead of simply inspecting the

exchange reactions for each amino acid because the full effect of

the gene expression changes may not be observed on an exchange

reaction if an unaffected pathway exists that involves the exchange

reaction in question. Taking all transport reactions into account

generates a more complete picture of the uptake or secretion of

metabolites.
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