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Abstract

Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to
enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the
transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as
tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose,
and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus;
Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age
of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the
power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by
combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight
tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific
genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-
regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25
loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP
were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed
2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-
pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e.,
PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics analyses improve understanding of the
number of genes and their complex interactions for puberty in cattle.
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Introduction

Puberty is the process by which animals mature into an adult

capable of sexual reproduction [1]. In heifers, puberty is

characterized by the dynamic and biphasic response of the

hypothalamus and pituitary gland to gonadal steroids and the

subsequent increase in pulsatile secretion of luteinizing hormone

(LH). These endocrine patterns result in first ovulation followed by

a short estrous cycle and then normal cycles thereafter [2,3]. These

events are similar in the two bovine sub-species (i.e., Bos indicus
and Bos taurus), but occurred at markedly older ages in Bos
indicus heifers [4,5]. However, despite a growing molecular and

physiological understanding of the reproductive system, knowledge

of the precise mechanisms regulating puberty in ruminants is

limited, and phenotypic identification of animals that undergo

puberty at an early age is costly and labor-intensive. Therefore,
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enhancing our understanding of the genes and regulatory

pathways and networks involved in bovine puberty will provide

knowledge to help improve genetic selection and reproductive

management in cattle.

The first bovine genome assembly was published in 2009 [6],

and since that time, the development and use of various whole

genome-omics tools has accelerated investigations of various

aspects of cattle genetics [7,8]. Whole genome single nucleotide

polymorphism (SNP)-chip and RNA sequencing (RNA-Seq) data

from the hypothalamus were used to construct gene networks

associated with puberty in cattle [9,10,11]. Results from these

approaches allowed us to postulate that regulatory loci underlying

the quantitative trait loci (QTL) associated with heifer fertility

traits influence puberty. Livestock production traits are usually

complex and involve multiple tissues. The construction of gene co-

expression networks can therefore help identify entire groups of

differentially regulated genes across the various tissues composing

the reproductive-endocrine axis of mammals. This approach has

been useful in studies of skeletal muscle in ruminants [12,13,14]

and human disease [15,16,17].

In the present study, we characterized the transcriptome of five

reproductive tissues (i.e. hypothalamus, pituitary gland, ovary,

uterus, and endometrium) as well as tissues known to be relevant to

growth and metabolism and needed for cattle to achieve puberty

(i.e., longissimus dorsi muscle, adipose, and liver). These tissues

were collected from pre (PRE)- and post (POST)-pubertal Brangus

heifers (3/8 Brahman x 5/8 Angus) that were progeny of a

pedigreed-population of cattle used to identify QTL associated

with fertility [11,18,19]. The fertility traits were age of first

observed corpus luteum (ACL), first service conception (FSC), and

heifer pregnancy (HPG). The first trait is quantitative and the

other two are binary. A heifer that records success for these traits is

considered to have experienced early puberty. This age require-

ment is a challenge for Bos indicus-influenced heifers [2,4,11,19].

The QTL associated with these traits were determined with

genome-wide association studies (GWAS). In order to exploit the

power of complementary omics analyses, PRE and POST puberty

co-expression gene networks were constructed by combining the

results from GWAS and RNA-Seq (i.e., differential expression

(DE) and tissue specific expression (TS)). The knowledge of

transcription factors (TF) and network theory framework also

contributed new insights into the regulatory genes (i.e., hubs)

within these networks.

Results and Discussion

RNA-Seq data and normalization
Sixty-one samples from PRE (n= 4) and POST (n= 4) Brangus

beef heifers were analyzed with RNA-Seq (Figure 1). Samples were

harvested from animals handled and managed according to the

Institutional Care and Use Committee of New Mexico State

University (approval number 2010-013). An average of 30 million

sequence reads was obtained from each sample. These sequence

results were assembled and mapped to the annotated 27,368 genes

in the bovine genome assembly UMD3.1.74.

The relatively high number of reads from each cDNA library

used in this study provided the sensitivity needed to detect lowly

expressed genes. This statement is based on the conclusions of the

studies described in Rapaport et al [20]. Specifically, differential

expression of genes as measured with RNA-Seq provides

enhanced sensitivity for detection of lowly expressed genes. Also,

our prior experience analyzing RNA-Seq data provided strong

evidence that our read-depth and number of libraries per tissue

were adequate for this type of study [21,22,23].

In the current study, 70 to 80% of the sequences were

categorized as mapped reads to the bovine reference assembly.

Analyses of the reads per kilobase of exon per million reads

(RPKM values) of sequence [24] were used to establish the total

number of genes expressed in the transcriptome of the hypothal-

amus, pituitary gland, liver, longissimus dorsi muscle, adipose,

uterine horn, endometrium, and ovary. Approximately 65% of the

bovine transcriptome was represented in at least one tissue and

physiological state (17,832 genes out of a total of 27,368 annotated

Bos taurus genes). Hierarchical cluster analysis validated the

optimality of RNA-Seq data normalization procedures. Figure 2

shows that RNA-Seq data clustered first according to tissue, and

then according to developmental stage (PRE and POST). The

number of unique reads and RPKM of each gene within each of

the 61 samples are publically available at the Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/; accession

number GSE55435). Table S1 list the 2,450 genes that will be

discussed in the following sections. Specifically, this table provides

average gene expression level for DE, TS, TF, and (or) containing

a SNP detected with GWAS in PRE and POST heifers.

Differentially expressed genes among PRE and POST
puberty heifers
The statistical significance of differential gene expression was

ascertained via mixtures of distributions. The two-component

mixture model was applied to the vector of differential expression

measures in all genes simultaneously. However, for each gene, the

p-values correspond to the posterior probability of belonging to

each component in the mixture, the component with non-

differentially expressed genes (clustered around zero and with

small variance) and the component with differentially expressed

genes (also clustered around zero, but with large variance allowing

to capture extreme values).

Resulting from this approach, a total of 2,212 transcripts

corresponding to 1,515 annotated genes were found to be DE (P,
0.001) among PRE and POST heifers in at least one of the eight

tissues. Figure 3 shows the numbers of genes differentially up- and

down-regulated for each of the eight tissues among PRE and

POST heifers. The highest proportion of up-regulated genes was

observed in the hypothalamus as 204 of the 275 DE genes were

up-regulated in heifers reaching puberty. In adipose tissue, 197

genes were up-regulated and 119 genes were down-regulated. This

tissue therefore had the largest overall number of DE genes

(n = 316) between the PRE and POST states. These results were

expected as the endocrine response of the hypothalamus to signals

from adipose tissue have been a long-term focus of study for cattle

puberty [3,25,26].

Arginine vasopressin (AVP) and oxytocin (OXT) were the most

significantly DE genes in hypothalamus. The AVP gene was also

DE between PRE and POST heifers in adipose, liver, ovary, and

uterus (up-regulated in all) while OXT showed up-regulation in

adipose, hypothalamus and ovary and down-regulation in

longissimus dorsi muscle. Arginine vasopressin and oxytocin are

posterior pituitary peptide hormones, which are synthesized in the

supraoptic and paraventricular nuclei of the hypothalamus. These

hormones are involved in many physiological events such as

lactation, renal and cardiovascular functions, as well as cognition,

tolerance, adaptation, and complex sexual and maternal behavior

[27,28]. However, this is an interesting observation as adipose

tissue is generally considered an endocrine target of OXT. The
vasoactive intestinal peptide (VIP) gene was found DE in

hypothalamus and pituitary gland (up regulated). This gene was

also associated with ovarian development [29,30].

Gene Networks for Bovine Puberty
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The pituitary gland had 292 DE genes (i.e. 135 down- and 157

up-regulated, respectively). The largest DE was observed for the

genes of ribosomal protein L39 gene (RPL39) essential for cell

growth development and Vitamin K-dependent protein Z (PROZ)
known to be involved in the venous thrombosis and pregnancy in

several human populations [31,32]. The RPL39 gene was initially

associated with reduced body size and diminished fertility [32,33]

and more recently with testicular function [34]. This gene was also

DE in hypothalamus and longissimus dorsi muscle (up-regulated at

puberty). The relaxin gene, specifically RLN3, was also observed

in the list of the most down-regulated genes in the pituitary gland.

This gene is expressed in several reproductive tissues as it has

various roles in the female such as softening of the cervix,

elongation of the pubic symphysis, inhibition of uterine contrac-

tions at parturition, as well as unique roles in enhancing sperm

motility. Regarding the pituitary gland, relaxin has a role in

regulating secretion of oxytocin and vasopressin [35,36].

In samples from the uterine horn and endometrium, 207 and

276 DE genes respectively were detected among PRE and POST

heifers. The teratocarcinoma-derived growth factor 1 (TDGF1)
and proenkephalin (PENK) genes were the most DE genes

observed and both have been shown to play an essential role in

embryonic development, the estrous cycle, and early pregnancy,

which coincide with the strong body of evidence for the role of

PENK in neural tissues [37,38]. TDGF1 and PENK were up-

regulated in the POST heifers in five out of eight tissues analyzed

(uterus, endometrium, hypothalamus, pituitary gland and liver).

The PENK gene maps to a region on bovine chromosome 14,

which has been shown to be associated with fertility traits in this

population of Brangus cattle as well as Brahman cattle of Australia

[19,39,40].

The SIX homeobox 6 (SIX6) and PROP paired-like homeobox

1 (PROP1) genes also appeared as some of the most significantly

up-regulated genes in the endometrium. The SIX6 gene was also

up-regulated in the hypothalamus and liver, consistent with its

postulated role as an important regulator of gonadotropin-

releasing hormone (GnRH) [41]. This is an interesting result as

GnRH is now known for its role in a plethora of tissues [42]. The

PROP1 gene has roles in pituitary development and hormone

expression such as luteinizing hormone, follicle-stimulating hor-

mone, growth hormone, prolactin, and thyroid-stimulating hor-

mone [43,44,45].

The number of DE genes detected in the liver and ovary were

288 and 311, respectively. In the ovary, 186 genes were up-

regulated and 125 were down-regulated. The liver had a higher

proportion of genes up-regulated (n = 161) versus down-regulated

(n= 127) with the neuregulin 3 (NRG3) gene as one of the most

up-regulated genes in POST heifers. This gene encodes ligands for

the transmembrane tyrosine kinase receptors members of the

epidermal growth factor (EGF) receptor family. It also promotes

mammary differentiation during embryogenesis [46]. Differential

expression of DHRS9 (dehydrogenase/reductase (SDR family)

member 9) gene was observed among PRE and POST heifers.

Dysregulation of several genes involved in lipid metabolism and

Wnt signaling involve DHRS9 and it has been associated with

abnormal ovary development and function [47].

Enrichment analyses of GO terms were performed using the

1,515 DE genes and the genes expressed in at least one tissue and

physiological state (17,832 genes) as a background list. As expected

of PRE versus POST heifers and the reproductive axis, GO terms

related with hormone activity, receptor activity and neuropeptide

receptor binding were abundant (Table 1). The molecular function

of GO terms included hormone activity, G-protein coupled

receptor activity, and serine-type endopeptidase activity (P,
4.61E-13). Additionally, a variety of molecular functions related to

cell signaling activity, receptor binding and receptor activity were

also present in the list of most significant GO terms including the

Figure 1. Flowchart of the analytical steps from tissue collection to RNA-Seq to normalization and network construction. DE
(differentially expressed genes); RPKM (reads per kilobase of exon per million reads); TS (tissue specific); PCIT (partial correlation and information
theory). Note: We failed to process three tissue samples, so 61 tissues were used for RNA-Seq analyses.
doi:10.1371/journal.pone.0102551.g001

Figure 2. Hierarchical clusters from RNA-Seq data of 17,832 genes across 61 tissues. Samples clustered first by tissue of origin and then by
stage, PRE or POST-puberty. Abbreviations of samples include: HYP (hypothalamus); PIT (pituitary gland); UTE (uterus); END (endometrium); OVA
(ovary); FAT (adipose); LIV (liver); LDM (longissimus dorsi muscle).
doi:10.1371/journal.pone.0102551.g002

Gene Networks for Bovine Puberty
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Figure 3. Genes down- and up-regulated between PRE and POST puberty heifers across eight tissues. Number of genes down- (red) and
up-regulated (green) from the 2,212 differentially expressed genes between PRE and POST puberty heifers (corresponding to 1,515 unique genes)
detected with RNA-Seq analysis. Abbreviations include: HYP (hypothalamus); PIT (pituitary gland); UTE (uterus); END (endometrium); OVA (ovary); FAT
(adipose); LIV (liver); LDM (longissimus dorsi muscle).
doi:10.1371/journal.pone.0102551.g003

Table 1. Top ten molecular function gene ontology (GO) terms significantly enriched among the 1,515 differentially expressed
unique genes across the tissues.

GO term Description P-value FDR q-value DE Genes

GO:0005179 Hormone activity 2.4E-19 9.23E-16 39

GO:0004930 G-protein coupled receptor activity 1.12E-13 2.15E-10 74

GO:0004252 serine-type endopeptidase activity 4.61E-13 5.91E-10 37

GO:0004888 Transmembrane signaling receptor activity 6.65E-13 6.4E-10 112

GO:0008236 Serine-type peptidase activity 7.42E-13 5.71E-10 40

GO:0017171 Serine hydrolase activity 1.25E-12 8.03E-10 40

GO:0038023 Signaling receptor activity 2.5E-12 1.37E-09 121

GO:0005102 Receptor binding 7.74E-12 3.73E-09 148

GO:0004872 Receptor activity 2.14E-11 9.15E-09 138

GO:0030594 Neurotransmitter receptor activity 6.95E-11 2.67E-08 26

doi:10.1371/journal.pone.0102551.t001
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highest proportion of DE genes (from 121 to 148 DE genes across

tissues and physiological states; Table 1).

Serine-type endopeptidase activity, serine-type peptidase activ-

ity, and serine hydrolase activity were also among the most

enriched GO terms (Table 1). The serine protease family of genes

includes plasminogen activator inhibitor (PAI2) secreted by the

placenta and used as maternal biomarkers and early fetal size in

humans. Genes related to fat metabolism and hormonal processes

(ADIPOQ), growth (GH1 and VGF), regulation of body weight

(LEP), and formation of the mammary gland (PTHLH) were also

observed. Several of these genes have been used in both physiology

and genotype to phenotype association studies related to growth

and reproduction in the population of Brangus cattle from which

the heifers of the current study were selected [48,49,50].

Tissue specific genes
Nine hundred and forty-three genes were found to have TS

expression (P,0.001) in at least one of the eight tissues.

Endometrium (n= 142), uterus (n = 132), pituitary gland

(n = 122), ovary (n = 166) and longissimus dorsi muscle (n = 170)

expressed more than 100 TS genes while the number of TS genes

in hypothalamus, liver and fat ranged from 85 to 96. The ovary

and endometrium expressed the highest number of TS genes and

many of these genes were also found to be DE between PRE and

POST heifers. An example of such a gene was the insulin-like

peptide 3 (INSL3) gene, which is transcribed in gonadal tissues

[51,52].

Myosin heavy chain 1 (MYH1), fatty acid binding protein 4

(FABP4), and adiponectin (ADIPOQ) were the most significant

TS genes expressed in longissimus dorsi muscle and subcutaneous

fat. Myosin is involved in contraction, while FABP4 encodes the

fatty acid binding protein found in adipocytes. The functions of

FABP proteins include fatty acid uptake, transport, and metab-

olism [53,54]. Also, FABP4 has been associated with marbling

and carcass weight in cattle [55]. Changes in the gene expression

of ADIPOQ and its receptors were associated with ovarian

follicular recruitment and luteal function in Holstein cows [56].

Cumulatively, these results provide gene-specific information to

support the rationale for long-term study of the relationships of

adiposity with fertility in Brangus cattle [57,48,58].

A GO enrichment analysis was performed using the 943 TS

genes. Sequence-specific DNA binding and nucleic acid binding

transcription factor activity was amongst the most significantly

enriched GO terms (Table 2). G-protein coupled receptor activity,

structural constituents of muscle, structural molecule activity,

peptidase inhibitor activity, and neurotransmitter receptor activity

should also be noted. Hormone activity was an expected GO term

to be observed in this analysis as half the tissues from which RNA

was extracted have known endocrine activities. Of the 23 genes

composed in this list, notable gene observations included PTHLH,

UTMP, and FSH. The first two genes in this list have roles in

development of females for organs such as the mammary and the

reproductive tract-uterus [59,60,61] and expression was observed

in uterus and endometrium. Follicle stimulating hormone (FSH) is

the well-characterized dimeric-glycoprotein synthesized and

secreted by the anterior pituitary gland to stimulate ovarian

follicular growth and steroidogenesis [62,63].

Identification of key gene regulators
Regulatory impact factor (RIF) and transcription factor binding

sites (TFBS) approaches were used to identify regulators with the

highest evidence contributing to DE and (or) TS gene specificity in

PRE and POST heifers. Using the RIF metrics, which exploits the

concept of differential co-expression (see Materials and Methods),

1,329 regulators were contrasted against a unique list of genes that

were either DE or TS, identifying 221 TF. A search for motifs

corresponding to TFBS of known TF identified 143 TF.

Combining the results from RIF (221 TF) and TFBS (143 TF)

approaches, 364 TF were identified contributing to DE and (or)

TS among PRE and POST heifers. Figure 4 shows the top 20 TF

from these efforts.

The highest proportion of up-regulated genes between PRE and

POST heifers was observed in the hypothalamus (Figure 3). There

have been several attempts to construct gene networks to

understand the role of the hypothalamus in on-set of puberty in

several model animals [64,65,66]. In the cattle of the current

study, 11 of the 20 most highly ranked TF were highly expressed

in hypothalamus and (or) pituitary gland (Figure 4). Among them,

OVGP1 (oviductal glycoprotein 1), DACH2 (dachshund homolog

2), CDX2 (caudal type homeobox 2) and SIX6 (SIX homeobox 6)

were the highest ranked TF. These genes are also involved in

follicular and embryonic development (OVGP1), premature

ovarian failure (DACH2), early embryonic development of the

intestinal tract (CDX2), and regulation of gonadotropin-releasing

hormone expression (SIX6) [41,67]. Our results show SIX6 as one

of the most relevant TF as its data values were maximized in

hypothalamus and (or) pituitary gland. Other noted TF included

the forkhead family of transcription factors such as FOXN4,
FOXE1 and FOXB2 as they appeared in the middle of the overall

ranking (Figure 4). These TF are involved in a variety of biological

processes such as body development and metabolism [68,69].

Reproduction involves an endocrine axis and many genes are

regulated by TF; therefore, heat maps of hierarchical cluster

analyses involving hormones and TF among PRE and POST

heifers were constructed (Figure 5). Note that autoimmune

regulator (AIRE), dachshund homolog 2 (DACH2) and forkhead

box L2 (FOXL2) were observed as differentially expressed TF

among PRE and POST heifers. These TF are involved in ovarian

development and function as well as oocyte gene expression

[70,71,72]. Both AIRE and FOXL2 were down-regulated at

puberty in the eight tissues while DACH2 was up-regulated in

hypothalamus via puberty.

The homeobox genes encode a highly conserved family of

transcription factors such as HOXD13, HOXC11, HOXD11,
HOXA11 and HOXA7 (Figure 5). These TF have an important

role in morphogenesis in all multicellular organisms and have been

associated with severe limb and genital abnormalities (HOXD11
and HOXD13), early intestinal development (HOXC11), and

regulation of uterine development and fertility (HOXA11)
[72,73,74]. Most of the HOX family genes were down regulated

at puberty across eight tissues with the exception of HOXA11 and

HOXA7, which were up-regulated in the hypothalamus and

pituitary gland post puberty.

Identification of genes harboring SNP
We used GWAS results from three recent studies of heifer

fertility traits (i.e., ACL, FCS, and HPG) to yield a list of genes

harboring SNP with significant associations to the timing of

puberty [11,39]. This list was compared with the 17,832 genes

observed in at least one tissue among the two physiological states

evaluated with RNA-Seq. This effort identified 235 genes.

Table 3 is a list of genes harboring SNP associated with heifer

fertility traits observed with a GWAS and detected as either DE or

TS genes with RNA-Seq analyses. Combining these results

allowed the identification of 25 QTL associated with ACL (11

QTL), FSC (4 QTL) and HPG (10 QTL). Among them, 19 out of

the 25 QTL were detected as DE genes. Of the eight SNP that

were within 10 Mb of an annotated gene, 5 were found to be

Gene Networks for Bovine Puberty
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upstream in the promoter enhancer region and 3 were found to be

downstream in the 39 untranslated region. Note that the PENK
(proenkephalin) gene was DE among PRE and POST heifers and

expressed in the pituitary gland. In our DE analyses, this gene was

also detected in uterus, endometrium, hypothalamus, and liver

(i.e., five out of eight tissues analyzed). The PENK gene is part of

the opioid system, which influences the axes composed of the

hypothalamus, pituitary gland, and both the gonad and adrenal

gland [35,37,38].

The chromosomal locus containing PENK is also associated

with ACL [10,40]. Single nucleotide polymorphisms located in

close proximity to the MOS (v-mos Moloney murine sarcoma viral

Table 2. Top ten molecular function gene ontology (GO) terms significantly enriched among the 943 tissue-specific (TS) unique
genes (across all tissues).

GO term Description P-value FDR q-value TS Genes

GO:0043565 Sequence-specific DNA binding 1.8E-17 6.92E-14 86

GO:0003700 Sequence-specific DNA binding transcription factor activity 1.12E-11 2.15E-08 97

GO:0001071 Nucleic acid binding transcription factor activity 1.28E-11 1.64E-08 97

GO:0004930 G-protein coupled receptor activity 5.03E-11 4.84E-08 53

GO:0008307 Structural constituent of muscle 2.22E-10 1.71E-07 16

GO:0005179 Hormone activity 4.08E-10 2.62E-07 23

GO:0000976 Transcription regulatory region sequence-specific DNA binding 7.3E-07 4.01E-04 24

GO:0005198 Structural molecule activity 7.31E-07 3.51E-04 57

GO:0030414 Peptidase inhibitor activity 9.84E-07 4.21E-04 22

GO:0030594 Neurotransmitter receptor activity 2.1E-06 8.06E-04 16

doi:10.1371/journal.pone.0102551.t002

Figure 4. Relevant Transcription Factors (TF): Top 20 (for nominal 5% significance) transcription factors from the 364 included in
the network according to nine criteria*. Colors represent tissue of maximum expression: hypothalamus and (or) pituitary gland (dark blue), ovary
(light blue), uterus and (or) Endometrium (pink), liver (green), longissimus dorsi muscle (red), adipose (yellow).*Ranking criteria are: 1) RIF1; 2) RIF2; 3)
Overall differential expression; 4) Maximum differential expression (DE); 5) Connections in PRE-puberty network; 6) Connections in POST-puberty
network; 7) Fold change in connections between PRE- and POST-puberty networks; 8) Network expansion ability in PRE-puberty; and 9) Network
expansion ability in POST-puberty.
doi:10.1371/journal.pone.0102551.g004
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oncogene homolog) gene were associated with ACL. This gene is

involved in oocyte maturation [75] and was DE among the PRE

and POST heifers in ovarian tissue. Two other transcription

factors, ELF5 and POU4F2 were identified with high levels of

expression in endometrium, hypothalamus, and pituitary gland

(Figure 4). These genes were also found to be associated with ACL

and HPG (Table 3). This is an interesting result as these genes are

considered oncogenes that may interact with the estrogen receptor

[76,77] and therefore may influence the biphasic response of the

hypothalamus to estrogen through the pubertal transitioning

process [1,3,26]. Even though the hypothalamus was such a

reactive tissue to puberty, it should be noted that 13 of the loci

detected by combining results of GWAS and RNA-Seq revealed

the uterus and endometrium as the primary tissues expressing the

candidate gene. Furthermore, three of the SNP were found to be

expressed within the ovary (Table 3). In particularly, INHA
(inhibin alpha) which has various polymorphisms associated with

Holstein cow response to superovulation and is well known for its

role in regulating follicle stimulating hormone secretion [78]. This

gene was also reported in the GWAS-gene identification efforts of

Fortes et al. [11].

PRE and POST puberty gene networks
Gene networks offer a platform to systematically quantify and

visualize perturbations of gene interactions encompassing path-

ways that infer phenotypes [16,17]. Complex traits, which are

typical of livestock production, usually involve multiple tissues;

therefore, co-expression networks allow evaluation in genes across

physiological systems and states (PRE vs POST). This strategy has

proven effective in our initial studies involving skeletal muscle

[12,14,79]. Since puberty is a complex event involving multiple

tissue and physiological systems (reproduction and metabolism),

gene networks were constructed using results from GWAS, RNA-

Seq of eight tissues, and the knowledge of transcriptional

regulators in a network theory framework. Hence ‘‘informative’’

genes to reverse engineer the networks were selected from four

sources of information: 1) DE genes (n = 1,515) between PRE vs

POST; 2) TS genes (n = 943) of eight tissues; 3) key regulators

(n = 364) identified with RIF and TFBS analyses; and 4) genes

harboring SNPs (n = 235) associated with ACL, FSC, and (or)

HPG observed with GWAS. Thus, 2,450 unique genes were used

to construct PRE and POST gene co-expression networks

involving eight tissues. Figure 6 is a Venn diagram of the genes

Figure 5. Heat maps of the differential expression in PRE versus POST pubertal heifers across tissues. Left panel: differential expression
(DE) of 39 hormones. Right panel: differential expression of 40 tissue-specific (TS) transcription factors. Abbreviations of tissues: HYP (hypothalamus);
PIT (pituitary gland); UTE (uterus); END (endometrium); OVA (ovary); FAT (adipose); LIV (liver); LDM (longissimus dorsimuscle). The spectrum goes from
bright green (down-regulation) to bright red (up-regulation).
doi:10.1371/journal.pone.0102551.g005
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detected among these four sources of information/categories. Note

that there are numerous genes that fit two of these categories, but

no one gene was observed in all four categories.

Pre- and post-puberty co-expression gene networks are

presented in Figure 7. The PRE network had 372,861 connections

for the 2,450 genes, whereas the POST network had 328,357

connections. Note the differences in the patterns among the tissues

comprising the two networks. Specifically, the liver and longissi-
mus dorsi muscle had an abundance of connections within the

networks (i.e., ,40% and ,25%, respectively), while adipose and

uterus had very low percentage of connections (,2%; Table 4).

This table also provides information about the number of

connections that disappeared or emerged among the PRE and

POST states. More connections emerged rather than disappeared

in the hypothalamus, pituitary gland, endometrium, and longis-
simus dorsi muscle. The hypothalamus appeared to have gained

the largest number of connections via the on-set of puberty (i.e.,

30.4%), whereas the liver experienced the largest disappearance of

connections. The longissimus dorsi muscle appeared to have a

similar rate of disappearance and emergence connections among

the two physiological states. This large gain in gene numbers by

the hypothalamus was expected based on knowledge of the role of

this tissue in regulating puberty [26,65,66].

In order to identify potential regulators of the predicted

networks, we focused on the 364 TF contained in the network.

We applied an information lossless approach that explored all the

TF trios (having 7,971,964 possible trios) and identified the TF trio

that, through their connected genes, spanned most of the network

topology with minimum redundancy. The expansion of the best

trio of TF for PRE and POST gene co-expression networks is

presented in the lower panels of Figure 7. The transcription factors

OVGP1, NRIP1 and MYF5, were defined as the best trio of TF in

terms of their ability to expand the majority of the topology of the

entire networks. Different patterns were observed in the expansion

of the best trio of TF among PRE and POST co-expression

networks. In brief, results revealed that the hypothalamus,

pituitary gland, skeletal muscle and ovary were the tissues with

the maximum expression in PRE networks, while the hypothal-

amus, pituitary gland and skeletal muscle were the tissues with the

maximum expression in the POST network (Figure 7). In addition,

a sub-network with highly co-expressed genes and significantly DE

genes in the hypothalamus and pituitary gland was constructed

(Figure 8). This sub-network suggested a different degree of

Figure 6. Venn diagram of 2,450 genes used to construct gene networks. Strategies used to construct gene networks involved genes that
were (1) Differentially expressed (DE) between pre- and post-puberty, (2) Tissue specific (TS), (3) Transcription factors (TF), (4) Genes harboring SNP
observed with GWAS and associated with indicator traits of puberty (age at puberty as measured by the presence of the first corpus luteum (ACL), first
service conception (FSC), and heifer pregnancy (HPG)).
doi:10.1371/journal.pone.0102551.g006
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connectivity among highly co-expressed genes and TF. The

highest degree of connectivity was observed in TF such as PITX2,
FOXA1, TSG1D1, DACH2, LHX4, PROP1 and SIX6. These
types of results parallel the reports of Ojeda and co-workers

investigating TF and oncogenic factors influencing puberty in

model organisms [64,65,66] and improved our initial bovine gene

networks constructed with only GWAS and hypothalamus RNA-

seq results [11]. Also, six genes captured in the cattle network are

concordant with the human network that reported 30 loci for age

at menarche (Table S2) [80].

Concluding remarks
Analysis of RNA-Seq of eight tissues among PRE and POST

Brangus heifers revealed 1,515 DE and 943 TS genes within the

Figure 7. Gene co-expression networks constructed by combining results from RNA-Seq and GWAS with the knowledge of
transcription regulators for pre-PRE (left panels) and post-pubertal (right panel) heifers. Upper panels correspond to the visualization of
the entire network comprising 2,450 nodes (or genes) while the lower panels correspond to the expansion of trio of TF comprised of OVGP1, NRIP1
and MYF5, defined as the best trio in terms of their ability to expand the majority of the topology of the entire networks. Colors represent tissue of
maximum expression: hypothalamus and/or pituitary gland (dark blue), ovary (light blue), uterus and/or endometrium (pink), liver (green), longissimus
dorsi muscle (red), adipose (yellow).
doi:10.1371/journal.pone.0102551.g007
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17,832 genes with an RPKM .0.2. The hypothalamus experi-

enced the most notable up-regulation of genes upon puberty

among the eight tissues involved in reproduction (i.e., hypothal-

amus, pituitary gland, uterus-endometrium, and ovary) and in

growth and metabolism (i.e., liver, muscle, adipose). As this study

was conducted with heifers from a cattle breeding population, it

allowed the combination of RNA-Seq and GWAS results with

knowledge of transcription factors for construction of gene co-

expression networks.

Combining results of GWAS with RNA-Seq identified 25 SNP-

loci inferring QTL associated with fertility traits indicative of early

puberty in Bos indicus-influenced heifers (i.e., ACL, FSC, HPG).

Seventeen of these SNP were within genes and 13 of these genes

were expressed in uterus or endometrium. Furthermore, the

various omics analyses revealed 2,450 unique genes relevant to

puberty and a sub-network of key transcription factors (i.e.,

PITX2, FOXA1, TSG1D1, DACH2, LHX4, PROP1 and SIX6)
regulating puberty. Results from these multi-tissue omics analyses

improve understanding of the number of genes and their complex

interactions for puberty in cattle. These results also help

discovering genes that contain biologically relevant SNP-genotypes

that can be used in genetic improvement processes of Bos indicus-
influenced composite cattle.

Materials and Methods

Animals, management, and puberty
Heifers were handled and managed as per approval of the

Institutional Animal Care and Use Committee of New Mexico

State University (protocol #2010-013). Eight Brangus (3/8

Brahman x 5/8 Angus) heifers representing the pedigree diversity

observed in GWAS of fertility traits were selected for this study

from the New Mexico State University Brangus breeding program

[11,18,19,58]. Averages for fertility trait measures indicative of

early puberty in this study were: ACL (651 days), FSC (53.3%),

and HPG (78.0%)[10,11,19,58].

Table 4. Tissue distribution and connectivity structure of the 2,450 genes used to build the PRE- and POST-Puberty networks.

Tissue Tissue of Maximum Expression % Connections in Network % Connections that at Puberty

N % PRE-Puberty POST-Puberty Disappear Emerge

Endometrium 324 13.2 6.3 4.5 8.9 13.9

Fat 219 8.9 2.5 1.8 2.4 0.1

Hypothalamus 510 20.8 16.9 21.0 15.2 30.4

Liver 358 14.6 38.2 36.3 42.5 22.1

Longissimus dorsi muscle 273 11.1 23.7 23.1 15.1 15.8

Ovary 301 12.3 3.4 2.6 8.9 3.9

Pituitary Gland 309 12.6 6.5 9.4 3.4 11.1

Uterus 156 6.4 2.4 1.2 3.6 2.6

doi:10.1371/journal.pone.0102551.t004

Figure 8. Sub-network created with highly co-expressed genes with significant hypothalamic and pituitary gland differential
expression. Triangles represent transcription factors. Color indicate connectivity degree from green (low connectivity) to yellow (medium
connectivity) to red (high connectivity). Size indicates the relative amount of expression in the post-puberty sample.
doi:10.1371/journal.pone.0102551.g008
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Pubertal states were defined using circulating concentrations of

progesterone measured with a radioimmunoassay (i.e., five assays

with intra- and interassay CV of 4.8 and 4.3%) [81]. Bloods

samples were collected twice per week (i.e., Tuesday and Friday)

during the post-weaning period and four heifers were determined

to be pre-pubertal (i.e., PRE; progesterone values less than 1 ng/

mL) and four heifers post-pubertal (i.e., POST; 2 consecutive

progesterone values .1 ng/mL) [48,57]. Day of puberty, for

POST heifers was defined as the second consecutive day when

serum progesterone was .1 ng/mL [47]. When the first heifer of

the cohort of eight heifers obtained puberty, tissues from four

randomly chosen pre-pubertal heifers were harvested. It then took

approximately seven months for the remaining heifers to achieve

puberty (i.e., POST). Tissues were harvested from PRE and

POST heifers via slaughter in the New Mexico State University

Meats Laboratory. Post-pubertal heifers were slaughtered on day

10 (i.e., mid-luteal phase) of the estrous cycle. Serum concentration

of progesterone for the PRE and POST heifers were 0.560.3 and

7.161.0 ng/mL, respectively. Associated data collected during

tissue harvest of PRE and POST heifers were body weights of 290

and 355630 kg and days of age of 353 and 437625, respectively.

Tissue sampling
Heifers were stunned via captive bolt through the parietal bone

of the head as to protect the integrity of the lower brain as

described by Narro et al. [82]. From the lower brain, the

hypothalamus (HYP) spanning from the optic chiasm to the

arcuate nucleus was collected prior to collecting the anterior and

posterior pituitary gland (PIT). Evisceration allowed collection of a

2 cm section of the lateral lobe of the liver (LIV) and the

reproductive tract. Specifically, uterus (UTE) and endometrium

(END) ipsilateral to the ovary (OVA) containing the corpus luteum
was collected for use in this study from POST heifers. The region

of the uterus and endometrium harvested spanned 6 to 8 cm from

the ovarian pedicle. These same tissues were collected from the

PRE heifers; however, they did not possess a corpus luteum, so
tissues were collected from the side of the uterus with the larger

ovary. A one cm section of the longissimus dorsi muscle (LDM)

between the 12th and 13th rib and adipose tissue (FAT) was

collected from the abdominal cavity adjacent to the spine and

pelvis was also collected from both PRE and POST heifers. All

tissues were collected within 15 min post mortem, snap-frozen in

liquid nitrogen, and then stored at280uC until processing. During

tissue sampling and laboratory processing, we failed to collect or

process three tissue samples (i.e., 2 END and 1 PIT). Therefore, a

total of 61 tissue samples were available for RNA-Seq analyses

(i.e., 8 HYP, 7 PIT, 8 LIV, 8 LDM, 8 FAT, 8 UTE, 6 END, and 8

OVA).

RNA extraction and sequencing
Duplicate 10 g samples of each tissue were grounded in liquid

nitrogen with mortar and pestle. From the ovary of POST heifers,

this included tissue composing antral follicles and the corpus

luteum, whereas from PRE heifers, this only included tissue

containing antral follicles. Total RNA was purified using a Trizol

protocol (Invitrogen, Carlsbad, CA). Quality was evaluated using

the RNA Integrity Number (RIN) value from the Experion

automated electrophoresis system (BioRad, Hercules, CA). The

RIN values ranged from 7.6 to 9.8 in the tissues samples; lower

RIN values were observed in adipose samples. As described by

Cánovas et al. [83], mRNA was purified, fragmented, and

converted to cDNA. Adapters were ligated to the ends of

double-stranded cDNA and PCR amplified to create libraries.

These procedures were executed with the TruSeq RNA Sample

Preparation kit (Illumina, San Diego, CA).

Sequencing was completed with an Illumina HiSeq analyzer

that yielded 100 bp single read sequences with exception of two

hypothalamus samples done earlier on an Illumina GA II

sequencer that yielded 36 bp sequence reads. Sequence reads

were assembled to the annotated UMD3.1 bovine reference

genome (release 74; ftp://ftp.ensembl.org/pub/release-74/

genbank/bos_taurus/). Quality control and RNA-Seq expression

analysis was performed using procedures described by Cánovas et

al. [84] and using the CLC Genomics workbench software (CLC

Bio, Aarhus, Denmark). Transcript levels were quantified in reads

per kilobase of exon per million reads (RPKM). By normalizing for

RNA length and total reads in each sample, the RPKM measure

facilitated comparisons of transcript levels both within and

between tissues [24]. In the present study, we used a threshold

of RPKM $0.2 to select genes expressed in a given sample

[22,23].

Normalization of RNA-Seq data
Oshlack et al. [85] acknowledged the optimality of generalized

linear models as the logical extension to the modeling of RNA-Seq

count data. In the present study, we first applied a base-2 log

transformation of the RPKM reads. The log-transformation helps

stabilizing the variance of RPKM values, an issue of critical

importance as differential expression (DE) of particularly low

counts can be easily biased without transformation [86]. We then

adopted methodology initially proposed for the normalization of

gene expression microarray intensity signals and based on mixed-

model linear equations [87]. Accordingly, we fitted the following

mixed effect model to the log-transformed RPKM values: Yijtkp =

m + Li + Gj + GTjt + GAjk + GPjp + eijtkp where Yijtkp represented

the base-2 log-transformed RPKM value from the i-th library

(with 61 levels), j-th gene (with 17,832 levels) in the t-th tissue (with

8 levels) of the k-th animal (with 8 levels) in the p-th physiological

state (with 2 levels); m was the overall mean, Li represented the

fixed effect of the i-th library; Gj represented the random effect of

the j-th gene; GT, GA, and GP represented the random

interaction effects of gene 6 tissue, gene 6 animal, and gene 6

physiological state, respectively; and eijtkp was the residual term

associated with the measurement in Yijtkp. Using standard

stochastic assumptions, the effects of G, GT, GA, GP and e were

assumed to follow a normal distribution with zero mean and

between-gene, between-gene within-tissue, between-gene within-

animal, between-gene within-physiological state and within-gene

components of variance, respectively. Restricted maximum

likelihood estimates of variance components and solutions to

model effects were obtained using VCE6 software (ftp://ftp.tzv.fal.

de/pub/vce6/). The linear combination of solutions G + GT +

GA + GP were used to obtain the normalized mean expression of

each gene in each of the samples under scrutiny. In order to

validate the optimality of the normalization approach, the

normalized mean expression of the 17,832 genes across the 61

libraries was subjected to hierarchical cluster analysis using the

PermutMatrix software [88]. Following normalization, we used a

combination of parametric and non-parametric approaches for the

identification of differentially expressed (DE) and tissue-specific

(TS) genes, respectively.

Identification of differentially expressed genes
For each gene in i (i=1, …, 17,832) and based on the above-

mentioned solutions to the gene6physiological state interactions

(GP), we computed the following difference:
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di~GPPOS
i {GPPRE

i

Large positive (or large negative) values of di are likely to

indicate that the i-th gene is up-regulated (or down-regulated) at

puberty. Therefore, the vector with the difference (d) between the

normalized mean expression of all genes in the two physiological

states (PRE and POST) was computed as the measure of (possible)

DE for each tissue. Using procedures of McLachlan et al. [89] in

order to identify DE genes, we fitted a two-component normal

mixture model as follows:

f d; Wð Þ ~ p0 w0 d; m0, s
2
0

� �

z p1 w1 d; m1, s
2
1

� �

where d denoted the vector of DE measures for all the genes, and

the two components in the mixtures correspond to: w0 .ð Þ for the

empirical null normal density with mean m0 (not necessarily zero)

and variance s20 (not necessarily one), encapsulated the non-DE

genes and w1 .ð Þ for the non-null distribution corresponding to DE

genes. Finally, the mixing proportions p0 and p1 were constrained
to be non-negative and sum to unity. Across the eight tissues,

parameters of the mixture model were estimated using the

EMMIX-GENE software [90] and an estimated experiment-wise

false discovery rate (FDR) of ,1% was used as the threshold for

determining which genes were DE.

Identification of tissue specific genes
We used the method of Schug et al. [91] to identify tissue

specific (TS) genes based on Shannon entropy. Accordingly, the

tissue specificity of gene i in tissue t was computed from the

expression of gene i in tissue t relative to the expression of gene i in
all tissues as follows:

TSti ~
xti

X

8

t~1

xti

where xti represented the expression of gene i in tissue t averaged
across all libraries. In the denominator, the summation goes to 8

for as many tissues under scrutiny and of course the proportions in

TSti sum to unity. These proportions were interpreted as the

probability of a given gene to belong to a given tissue. They were

combined to compute the Shannon’s entropy of a gene’s

expression as follows:

Hi ~ -

X

8

t~1

TSti log2 TSti
� �

Hi ranged from 0 for genes expressed only in one tissue to 3 for

genes equally expressed in all 8 tissues. The entropy values in Hi

were not sensitive to absolute expression levels of genes in tissues

because the values in TSti were relative expression levels. To

circumvent this, a measure of categorical tissue specificity was

computed as follows:

Qt
i~Hi - log2 TSti

� �

.

The gene i was specific to tissue t as Qt
i approaches zero

according to this metric. However, on the other extreme, a gene

equally expressed in all 8 tissues had a Qt
i = 6 in all tissues. We

used a permutation test, permuting the tissue labels in the original

normalized data, to obtain the entropy that could be expected

under random allocation of tissues. A total of 1,000 permutations

were performed and the smallest entropy recorded as the threshold

for tissue specificity at P,0.1%. Genes from the original data with

an entropy value smaller than this threshold were considered TS

genes. In order to validate the functional relationship of DE and

TS genes, gene ontology (GO) enrichment analysis were

performed using the procedures described in Fortes et al.

[9,10,11] and the Gorilla software available at http://cbl-gorilla.

cs.technion.ac.il/.

Identification of key gene regulators
We employed two approaches for the identification of key gene

regulators. For the first approach, we used regulatory impact

factor (RIF) metrics described by Reverter et al. [92] to identify the

regulators with the highest evidence of contributing to DE and (or)

TS in the two physiological states, PRE and POST. We mined the

animal transcription factor (TF) database of Zhang et al. [93],

freely available at http://www.bioguo.org/AnimalTFDB/. From

this database, we downloaded 1,329 TFs in 69 families, 99

chromatin remodeling factors and 255 transcription co-factors of

Bos taurus.
Using the RIF metrics, these regulators were contrasted against

a unique list of genes that were either DE or TS. While the original

implementation of the RIF metrics involved the comparison of the

TF with the DE genes, the exact same algebra was adapted to the

comparison of the TF with the TS genes (or any other group of

genes for that matter) as long as an experimental contrast was

defined. Herein, the experimental contrast was PRE versus POST

and the RIF metrics for the r-th regulator (r=1, 2, …, 1329) were

computed using the following formulae:

RIF1r ~
1

nDETS

X

j~nDETS

j~1

xj | dj |DC2
rj

and

RIF2r ~
1

nDETS

X

j~nDETS

j~1

xPRE
j | rPRE

rj

� �2

{ xPOST
j | rPOST

rj

� �2
� �

where nDETS represented the number of genes that were either DE

or TS; xj was the average expression of the j-th DE or TS gene

across all samples; dj was the DE of the j-th gene in the PRE- vs.

POST-puberty contrast; DCrj was the differential co-expression

between the r-th regulator and the j-th DE or TS gene, and

computed from the difference between rPRE
rj and rPOST

rj , the

correlation co-expression between the r-th regulator and the j-th
DE or TS gene in the PRE- and POST-puberty samples,

respectively; finally, xPRE
j and xPOST

j represented the average

expression of the j-th DE or TS gene in the PRE- and POST-

puberty samples, respectively;

In the second approach to identify key regulators, we used the

methodology described in Gu et al. [13] based on promoter

sequence analysis of the DE and (or) TS genes to search for motifs

corresponding to transcription factor binding sites (TFBS) of

known TF. Specifically, a total of 60,131 promoter sequences

derived from 22,050 genes were downloaded from the bovine
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genome-wide promoter sequence database of Genomatix (http://

www.genomatix.de/; ElDorado Btau 4, v-07-09). To ensure only

high confidence promoters were selected, we applied the concept

of orthologous promoters [94] and retained only those promoters

for which phylogenetically conserved sequences were documented

in both the human and mouse genomes. This resulted in the

identification of 39,696 promoter sequences distributed over

13,623 genes. We subsequently applied a threshold of 1 (100%

confidence) to core and matrix similarities [95] to identify a final

set of 310,316 high confidence TFBS that were used for

integration with the RNA-Seq data.

Identification of key genes harboring SNP
The PRE and POST heifers used in this study were derived

from a population of Brangus heifers that were included in GWAS

of heifer fertility traits [11]. These studies tested associations

between the SNP on the Illumina BovineSNP50 BeadChip

(54,001 ver. 1; Illumina, San Diego, CA) and the traits of FSC

and HPG. Heifers that conceived early in a breeding season, were

considered as early puberty within their first (i.e., yearling)

breeding season. The SNP identified in previous studies involving

ACL were also included in this effort [11,39] and cumulatively

results of these three publications were also used to identify target

genes. Specifically, the 1,555 SNP reported by Fortes et al (11)

predicting FSC and the 169 SNP from study of Brahman cattle

and 84 SNP from study of Australian tropical composite cattle

described by Hawken et al (39) were used in these GWAS efforts.

We also combined results from GWAS (p,1%; ,10 kb) with the

17,832 genes expressed in at least one tissue and physiological state

from RNA-Seq data.

Gene networks and functional analysis
Gene networks analysis was performed using the partial

correlation and information theory (PCIT) algorithms and

software described by Reverter and Chan [96]. This is a soft-

thresholding methodology that exploits the twin concepts of PCIT.

In brief, it explores relationships between all possible triplets of

genes as to determine informative correlations between gene pairs

once the numerical influence of other genes in the system were

estimated. The networks were then viewed with Cytoscape [97]

revealing the highly connected genes and hubs (i.e., 2 SD as a

nominal threshold, P,0.01) [98]. Also, for DE and TS genes, GO

enrichment analysis was performed using GOrilla software

available at http://cbl-gorilla.cs.technion.ac.il/ as to gain under-

standing of the function of the nodes in the networks.

From within the larger networks, comprising DE genes, TS

genes, TF and genes harboring SNP related to fertility, we

explored a series of subnetworks deemed to be of particular

relevance as defined by the connectivity degree and identity of

their gene members. In particular, two of these were: (1) the

subnetwork comprised by the best trio of TF in terms of their

ability to expand the majority of the topology of the entire

networks, and (2) the subnetwork comprised by the significant

coexpression correlations between a highly ranked TF and a

highly DE gene in either the hypothalamus or the pituitary gland.

Supporting Information
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