SCISPACE
 formerly Typeset

〇 Open access • Posted Content • DOI:10.1101/682633

Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies cis-regulated genes for miserableness - Source link \square

Calwing Liao, Calwing Liao, Vuokila, Alexandre D. Laporte ...+5 more authors
Institutions: Montreal Neurological Institute and Hospital, McGill University
Published on: 26 Jun 2019 - bioRxiv (Cold Spring Harbor Laboratory)
Topics: Genome-wide association study

Related papers:

- A powerful fine-mapping method for transcriptome-wide association studies
- Transcriptome-wide association studies: opportunities and challenges
- A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies.
- Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression.
- The anatomical distribution of genetic associations

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/multi-tissue-probabilistic-fine-mapping-of-transcriptome14dtz9ucln

Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies cis-regulated genes for miserableness

Calwing Liao ${ }^{1,2}$ BSc, Veikko Vuokila ${ }^{2}$, Alexandre D Laporte ${ }^{2}$ BSc, Dan Spiegelman ${ }^{2}$ MSc, Patrick A. Dion ${ }^{2,3}$ PhD, Guy A. Rouleau ${ }^{1,2,3^{*}}$ MD, PhD
${ }^{1}$ Department of Human Genetics, McGill University, Montréal, Quebec, Canada
${ }^{2}$ Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
${ }^{3}$ Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada

Short summary: The first transcriptome-wide association study of miserableness identifies many genes including c7orf50 implicated in the trait.

Word count: 1,522 excluding abstract and references
Tables: 3

Keywords: Miserableness, transcriptome-wide association study, TWAS

*Correspondence: | Dr. Guy A. Rouleau | |
| :--- | :--- |
| | Montreal Neurological Institute and Hospital |
| | Department of Neurology and Neurosurgery |
| | 3801 University Street, Montreal, QC |
| | Canada H3A 2B4. |
| | Tel: +1 514 3982690 |
| | Fax: +1 514 3988248 |
| | E-mail: guy.rouleau@mcgill.ca |

Abstract (141 words)

Miserableness is a behavioural trait that is characterized by strong negative feelings in an individual. Although environmental factors tend to invoke miserableness, it is common to feel miserable 'for no reason', suggesting an innate, potential genetic component. Currently, little is known about the functional relevance of common variants associated with miserableness. To further characterize the trait, we conducted a transcriptome-wide association study (TWAS) on 373,733 individuals and identified 104 signals across brain tissue panels with 37 unique genes. Subsequent probabilistic fine-mapping prioritized 95 genes into 90\%-credible sets. Amongst these prioritized hits, C7orf50 had the highest posterior inclusion probability of 0.869 in the brain cortex. Furthermore, we demonstrate that many GWAS hits for miserableness are driven by expression. To conclude, we successfully identified several genes implicated in miserableness and highlighted the power of TWAS to prioritize genes associated with a trait.

Introduction

Miserableness is characterized by emotional distress, typically caused by an event invoking negative feelings in an individual ${ }^{1}$. Although environmental factors may cause feelings of miserableness, it is common for certain individuals to feel miserable independent of environmental influences, suggesting that underlying biologic and genetic factors might play a role in miserableness. Several large-scale genome-wide association studies (GWAS) have focused on characterizing the genetics of neuroticism items such as miserableness ${ }^{2,3}$. No genetic factors fully overlap both miserableness and other neuroticism traits, which suggests that there are variants and/or genes that are specific to miserableness ${ }^{4}$. For instance, previous interrogation of neuroticism items found that miserableness had the highest genetic correlation with feeling "fedup" (0.88) and "experiencing mood swings" (0.86), suggesting that there are genetic differences ${ }^{4}$. However, identifying the biological functionality of these variants remains difficult.

Transcriptomic imputation has recently been used to integrate genotype and expression data to identify predictive cis-eQTLs, which in turn can be applied to independent datasets in a tissuespecific manner ${ }^{5}$. Transcriptome-wide association studies (TWAS) can identify cis-eQTL regulated
genes by integrating expression panels from large consortia such as GTEx and the CommonMind Consortium (CMC) with GWAS data ${ }^{6}$. Furthermore, probabilistic fine-mapping of these TWAS hits can be done by modelling correlation among TWAS hits and assigning a probability for each gene within the risk region to prioritize genes ${ }^{7}$.

To understand cis-eQTL regulated candidate genes in miserableness, we conducted a TWAS consisting of 373,733 individuals using the summary statistics from a recent study dissecting the genetic heterogeneity of neuroticism ${ }^{4}$. The participants were asked whether they tend to 'feel miserable' for no particular reason. A total of 104 TWAS signals with 37 unique genes were transcriptome-wide significant across brain tissue panels. Probabilistic fine-mapping identified a number of putatively causal genes, including C7orf50 in GPX1 in the frontal cortex with a posterior inclusion probability (PIP) of 0.869 and MTCH2 in the nucleus accumbens with a PIP of 0.573. Conditioning on the transcriptome-wide significant hits showed that the hits accounted for $>75 \%$ of the GWAS signal present. To conclude, miserableness genetics is explained partially by cis-eQTLs driving the expression of certain genes. Additional studies are needed to characterize other sources of non-coding variation such as 3^{\prime}-aQTLs.

Results

Transcriptome-wide association study identifies 104 signals associated with miserableness

A multi-tissue TWAS using FUSION identified 104 TWAS signals associated with miserableness after Bonferroni-correction (Table 1, Figure 1). Across all signals, there were 37 genes identified in at least one imputation panel (Supplementary table 1). Amongst all signals, the top five hits in chronological order consisted of GPX1 ($\mathrm{P}_{\text {Bonferroni }}=5.18 \times 10^{-10}$) in the frontal cortex, RNF123 (Panferroni $=3.67 \times 10^{-8}$) in the cerebellum, GPX1 (Pbonferroni $=3.09 \times 10^{-7}$) in the cerebellum, RBM6 ($\mathrm{P}=5.12 \times 10^{-7}$) in the caudate basal ganglia, and MST1R ($\mathrm{P}_{\text {Bonferroni }}=1.29 \times 10^{-6}$) in the prefrontal cortex. Amongst the signals, several implicated RNA-coding genes, reinforcing the notion that non-coding genes are relevant to complex traits (Table 1).

Top GWAS signals are largely explained by expression

To determine how much GWAS signal remains after the expression association from TWAS is removed, conditional testing was done for transcriptome-wide significant TWAS signals. For most of the GWAS signals, the expression accounted for $>75 \%$ of the variance (Table 2, Supplementary Figures 1-14). For RP11-74E22.6, RP11-798G7.5, and DNF-AS, conditioning on the expression accounted for 100% of the signal. There were less TWAS signals compared to the GWAS significant signals for miserableness, suggesting that other genetic mechanisms are driving those signals.

Fine-mapping of TWAS association causally implicates several genes with miserableness

To identify causal genes, FOCUS was used to assign a posterior inclusion probability for genes at each TWAS region and for relevant tissue types. Across all panels, there were 95 hits included in the 90% credible gene set (Table 3). The gene, C7orf50, had the highest posterior inclusion probability (PIP) of 0.869 in the brain cortex. Additionally, the top multi-tissue TWAS hit from the FUSION results, GPX1, was included in the credible sets with a PIP of 0.192 in the frontal cortex. Several other genes also had high PIPs, such as RP11-127L20.3 in the hippocampus with a PIP of 0.304, MTCH2 in the nucleus accumbens with a PIP of 0.573 , ORC4 in the hypothalamus with a PIP of 0.524, ATAD2B in the cerebellar hemisphere with a PIP of 0.264, FANCL in the dorsolateral prefrontal cortex with a PIP of 0.446, and CTC-467M3.3 in the frontal cortex with a PIP of 0.567.

Discussion

With the influx of several large-scale biobanks and GWAS studies, many loci are being identified. The next step is to identify biologically- and phenotypically- relevant genes found by GWAS. To date, few studies have attempted to understand the genetics of miserableness, despite the high prevalence of the trait. Here, we conducted the largest TWAS to date using the summary statistics of 373,733 individuals to further understand this neuroticism item. A total of 104 TWAS signals were transcriptome-wide significant across brain tissues with 37 unique genes.

We identified a total of 104 transcriptome-wide signals across brain tissues with 37 unique genes. The top two signals included GPX1 frontal cortex and RNF123 in the cerebellum. The gene, GPX1, encodes for a cytosolic enzyme, glutathione peroxidase-1, expressed in many different tissues ${ }^{8}$.

This gene has previously been implicated in Alzheimer's disease affecting cortical neurons ${ }^{9}$. Furthermore, neurons lacking GPX1 leads have a greater susceptibility to oxidative-driven cell death ${ }^{8}$. The Z-scores for all GPX1 hits were positive, suggesting that increased expression leads to susceptibility to miserableness. Currently, little is known about the effects of increased GPX1 in the nervous system. The RNF123 gene, encodes for a ubiquitin-protein ligase, and expression has been correlated with depressive disorder, which likely has genetic overlap with miserableness ${ }^{10,11}$.

Often, an implicated GWAS locus contains many genes. Common GWAS mapping techniques would assign the SNP association to the closest gene, however, this has been shown to be suboptimal ${ }^{12-14}$. After conditioning on the TWAS signal for each transcriptome-wide significant hit, most of the signal was explained by the expression of the conditioned gene.

Fine-mapping of the TWAS signals identified many genes included in the credible set, where C7orf50 had the highest PIP of 0.869 in the brain cortex. Currently, the literature is sparse on C7orf50, however, querying the gene using the tissue-specific gene network (GIANT), showed potential implications in autism spectrum disorder and epilepsy ${ }^{15}$. For the brain cortex, GIANT implicated CCDC85B as the top functionally related gene to C7orf50. Previous studies have shown that CCDC85B is implicated in neural tube development ${ }^{16}$.

We conclude this study with some caveats and potential follow-up ideas. First, TWAS only measures the effects of cis-eQTLs and may not capture other genetic regulatory effects that contribute towards miserableness. Second, future large studies with wide ranges of phenotypes such as the All of Us initiative will allow to successfully measure the genetic susceptibility to miserableness in other ethnic populations. Here, we successfully demonstrated that behavioural traits such as miserableness have a strong genetic basis and many signals are driven by cis-eQTL. Genes such as GPX1, RNF123, C7orf50 and MTCH2 should be further investigated to understand the molecular consequences of dysregulated expression.

Methods

Genotype data and patient information

Summary statistics were obtained from Nagel et al. (2018) ${ }^{4}$. Details pertaining to participant ascertainment and quality control were previously reported by Nagel et al. (2018) ${ }^{4}$. Succinctly, the data was derived from the UK BioBank and miserableness was determined by asking "Do you ever feel 'just miserable' for no reason?". A total of 373,733 individuals were included, with 45% of them saying "yes". There were 47% of females who responded "yes", and 43% of males who responded "yes".

Transcriptomic imputation

Transcriptomic imputation (TI) was done using eQTL panels created from tissue-specific gene expression coupled with genotypic data ${ }^{17}$. Here, we used all the brain tissue types from GTEx 53 v7 and the CommonMind Consortium (CMC) ${ }^{6}$. A strict Bonferroni-corrected study-wise threshold was used: $\mathrm{P}=4.97 \mathrm{E}-07(0.05 / 100,572)$ (total number of genes across panels). FUSION was used to conduct the transcriptome-wide association testing ${ }^{17}$. The 1000 Genomes v3 LD panel was used for the TWAS. FUSION utilizes several penalized linear models such as GBLUP, LASSO, Elastic Net ${ }^{17}$. Furthermore, a Bayesian sparse linear mixed model (BSLMM) is used. FUSION works by computing an out-sample R^{2} to determine the best model by performing a fivefold crossvalidating of every model. Further details can be found in the original manuscript.

Conditionally testing GWAS signals

To determine how much GWAS signal remains after the expression association from TWAS is removed, joint and conditional testing was done for genome-wide Bonferroni-corrected TWAS signals. The joint and conditional analyses help to determine genes with independent genetic predictors associated with miserableness from genes that are simply co-expressed with a genetic predictor. Each miserableness GWAS SNP association was conditioned on the joint gene model one SNP at a time.

Fine-mapping of TWAS associations

To address the issue of co-regulation in TWAS, we used the program FOCUS (Fine-mapping of causal gene sets) to directly model predicted expression correlations and to provide a posterior
causal probability for genes in relevant tissue types ${ }^{7}$. FOCUS identifies genes for each TWAS signal to be part of a 90%-credible set while simultaneously controlling for pleiotropic effects of SNPs. Furthermore, the same TWAS reference panels for FUSION were used.

References

1. Vandercammen, L., Hofmans, J. \& Theuns, P. Relating Specific Emotions to Intrinsic Motivation: On the Moderating Role of Positive and Negative Emotion Differentiation. PLoS One 9, e115396 (2014).
2. Luciano, M. et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat. Genet. 50, 6-11 (2018).
3. Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920-927 (2018).
4. Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. \& van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 9, 905 (2018).
5. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245-252 (2016).
6. Consortium, Gte. Genetic effects on gene expression across human tissues. Nature 550, 204-213 (2017).
7. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675-682 (2019).
8. de Haan, J. B. et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stressinducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273, 22528-36 (1998).
9. Crack, P. J., Cimdins, K., Ali, U., Hertzog, P. J. \& lannello, R. C. Lack of glutathione peroxidase-1 exacerbates $A \beta$-mediated neurotoxicity in cortical neurons. J. Neural Transm. 113, 645-657 (2006).
10. Teyssier, J.-R., Rey, R., Ragot, S., Chauvet-Gelinier, J.-C. \& Bonin, B. Correlative gene expression pattern linking RNF123 to cellular stress-senescence genes in patients with depressive disorder: Implication of DRD1 in the cerebral cortex. J. Affect. Disord. 151, 432-438 (2013).
11. Chaturvedi, P., Khanna, R. \& Parnaik, V. K. Ubiquitin ligase RNF123 Mediates Degradation of Heterochromatin Protein 1α and β in Lamin A/C Knock-Down Cells. PLoS One 7, e47558 (2012).
12. Liao, C. et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. bioRxiv 642231 (2019). doi:10.1101/642231
13. Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun. 9, 4079 (2018).
14. Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538-548 (2018).
15. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-
specific networks. Nat. Genet. 47, 569-576 (2015).
16. Markham, N. O. et al. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol. Biol. Cell 25, 2592-603 (2014).
17. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245-252 (2016).

Acknowledgements

This work was supported by a Canadian Institutes of Health Research Foundation Scheme grant (\#332971). G.A.R. holds a Canada Research Chair in Genetics of the Nervous System and the Wilder Penfield Chair in Neurosciences. C.L. is a recipient of the Frederick Banting and Charles Best Canada Graduate Scholarship from the Canadian Institutes of Health Research (CIHR). C.L. conducted the experiments, analyses and drafted the manuscript. V.V. helped with analyses. A.D.L, D.S. helped with bioinformatics. P.A.D. and G.A.R. oversaw the analyses and helped draft the manuscript.

Conflicts of Interest

We report no conflicts of interest.

Table 1. Multi-tissue significant TWAS hits for miserableness.

Gene	Tissue	eQTL	Z-score	Uncorrected P-value	Bonferroni P- value
AF131215.2	ROSMAP Brain	rs17724226	-5.57	$2.51 \mathrm{E}-08$	$3.92 \mathrm{E}-03$
	Cerebellar Hemisphere	rs17724226	-5.93	$3.11 \mathrm{E}-09$	$4.86 \mathrm{E}-04$
AF131215.3	ROSMAP Brain	rs2409745	-6.13	$8.79 \mathrm{E}-10$	$1.37 \mathrm{E}-04$
	Brain Cortex	$\mathrm{rs3448}$	-3.49	$2.05 \mathrm{E}-07$	$3.20 \mathrm{E}-02$
	Caudate Basal Ganglia	rs9834003	-4.89	$7.18 \mathrm{E}-08$	$1.12 \mathrm{E}-02$
	ROSMAP Brain	rs7619016	-11.57	$6.45 \mathrm{E}-08$	$1.01 \mathrm{E}-02$
	Hippocampus	rs 17689471	-4.07	$1.89 \mathrm{E}-08$	$2.95 \mathrm{E}-03$
ARHGAP27	Nucleus Accumbens Basal Ganglia	rs 17689471	5.94	$2.91 \mathrm{E}-09$	$4.54 \mathrm{E}-04$
	Brain Cortex	rs12286721	6.41	$1.41 \mathrm{E}-10$	$2.20 \mathrm{E}-05$
CRHR1-IT1	Brain Cortex	$\mathrm{rs17689471}$	5.17	$2.37 \mathrm{E}-07$	$3.70 \mathrm{E}-02$

	Nucleus Accumbens Basal Ganglia	rs8072451	5.74	$9.67 \mathrm{E}-09$	$1.51 \mathrm{E}-03$
	Caudata Basal Ganglia	rs17763086	5.88	4.10E-09	6.40E-04
	Hypothalamus	rs17763086	5.99	$2.06 \mathrm{E}-09$	$3.22 \mathrm{E}-04$
	Frontal Cortex BA9	rs17763086	6.02	$1.71 \mathrm{E}-09$	$2.67 \mathrm{E}-04$
	Putamen basal ganglia	rs17689471	6.05	1.43E-09	2.23E-04
	Hippocampus	rs17689471	6.43	$1.31 \mathrm{E}-10$	$2.05 \mathrm{E}-05$
ERI1	Dorsolateral prefrontal cortex	rs7826478	5.95	$2.74 \mathrm{E}-09$	$4.28 \mathrm{E}-04$
FAM167A	Dorsolateral prefrontal cortex	rs7844834	5.44	5.47E-08	8.54E-03
	ROSMAP Brain	rs10102600	5.93	3.08E-09	$4.81 \mathrm{E}-04$
FAM212A	Cerebellum	rs7372966	5.860692	4.61E-09	$7.20 \mathrm{E}-04$
FAM66A	ROSMAP Brain	rs12676145	-5.39	7.16E-08	$1.12 \mathrm{E}-02$
FAM66D	ROSMAP Brain	rs12550733	5.21	1.90E-07	$2.97 \mathrm{E}-02$
FAM85B	ROSMAP Brain	rs2945251	5.64	$1.72 \mathrm{E}-08$	$2.69 \mathrm{E}-03$
FAM86B1	Dorsolateral prefrontal cortex	rs11998678	-5.46	4.90E-08	7.65E-03
FAM86B3P	Frontal Cortex BA9	rs2948286	5.5	3.69E-08	5.76E-03
	ROSMAP brain	rs2945230	5.65	$1.57 \mathrm{E}-08$	$2.45 \mathrm{E}-03$
	Cerebellar hemisphere	rs876954	6.25	4.14E-10	6.47E-05
	Cerebellum	rs2980436	6.5	7.99E-11	$1.25 \mathrm{E}-05$
	Brain Cortex	rs2945230	6.5	$7.91 \mathrm{E}-11$	$1.24 \mathrm{E}-05$
FNBP4	ROSMAP Brain	rs7929014	-6.23	4.77E-10	7.45E-05
FTSJ2	Brain Cortex	rs3757440	5.805551	$6.42 \mathrm{E}-09$	$1.00 \mathrm{E}-03$
GPX1	Caudate Basal Ganglia	rs11130186	5.680812	$1.34 \mathrm{E}-08$	$2.09 \mathrm{E}-03$

	Hypothalamus	rs199439	5.81	6.14E-09	9.59E-04
LRRC37A4P	Brain cortex	rs17689918	-5.38	7.49E-08	$1.17 \mathrm{E}-02$
	Caudate basal ganglia	rs8072451	-5.86	$4.68 \mathrm{E}-09$	7.31E-04
	Putamen basal ganglia	rs8072451	-5.86	4.68E-09	7.31E-04
	Hippocampus	rs8072451	-5.86	4.56E-09	$7.12 \mathrm{E}-04$
	Nucleus accumbens basal ganglia	rs8072451	-5.86	4.51E-09	7.04E-04
	Cerebellar hemisphere	rs8072451	-5.87	4.45E-09	6.95E-04
	Cerebellum	rs17689471	-5.87	4.44E-09	6.93E-04
	Frontal cortex BA9	rs17763086	-5.91	3.45E-09	5.39E-04
	Hypothalamus	rs8072451	-6.01	$1.83 \mathrm{E}-09$	$2.86 \mathrm{E}-04$
MAPT	Cerebellar hemisphere	rs17763086	-5.88	4.10E-09	6.40E-04
	Frontal cortex BA9	rs17689882	-5.9	3.55E-09	5.54E-04
	Dorsolateral prefrontal cortex	rs17689471	-6.24	4.40E-10	6.87E-05
	Brain cortex	rs17689882	-6.36	$2.04 \mathrm{E}-10$	$3.19 \mathrm{E}-05$
MST1R	Dorsolateral prefrontal cortex	rs2526388	5.226389	$1.73 \mathrm{E}-07$	$2.70 \mathrm{E}-02$
	Cerebellum	rs2856236	6.563222	5.27E-11	8.23E-06
	ROSMAP brain	rs11713193	6.833558	8.28E-12	1.29E-06
MTCH2	Brain cortex	rs7947730	-5.15	$2.55 \mathrm{E}-07$	3.98E-02
	ROSMAP brain	rs4752856	-5.55	$2.85 \mathrm{E}-08$	$4.45 \mathrm{E}-03$
MTMR9	ROSMAP brain	rs2246606	5.44	5.39E-08	8.42E-03
NICN1	Nucleus accumbens basal ganglia	rs11130186	5.260183	$1.44 \mathrm{E}-07$	$2.25 \mathrm{E}-02$
PLEKHM1	Brain Cortex	rs11012	5.21	$1.94 \mathrm{E}-07$	$3.03 \mathrm{E}-02$
	Cerebellar hemisphere	rs8072451	-5.9	3.63E-09	5.67E-04

	Cerebellum	rs17689918	-6.39	$1.65 \mathrm{E}-10$	$2.58 \mathrm{E}-05$
RBM6	ROSMAP brain	rs6765484	-5.375061	7.66E-08	1.20E-02
	Dorsolateral prefrontal cortex	rs9311446	-5.785099	7.25E-09	$1.13 \mathrm{E}-03$
	Putamen basal ganglia	rs2240329	-5.843777	5.10E-09	7.96E-04
	Frontal cortex BA9	rs2681780	5.852691	4.84E-09	7.56E-04
	Cerebellar hemisphere	rs11713193	-5.870895	4.33E-09	6.76E-04
	Nucleus accumbens basal ganglia	rs4688755	-5.912526	3.37E-09	5.26E-04
	Cerebellum	rs6446193	-6.056184	1.39E-09	2.17E-04
	Brain cortex	rs6765484	-6.185421	6.19E-10	9.67E-05
	Caudate basal ganglia	rs2014830	-6.965004	$3.28 \mathrm{E}-12$	5.12E-07
RNF123	Dorsolateral prefrontal cortex	rs2352974	5.465525	4.62E-08	7.21E-03
	Cerebellar hemisphere	rs7634902	5.474334	4.39E-08	6.86E-03
	Brain cortex	rs7634902	5.559422	2.71E-08	$4.23 \mathrm{E}-03$
	Frontal cortex BA9	rs7634902	5.924265	3.14E-09	4.90E-04
	ROSMAP brain	rs2352974	6.269043	$3.63 \mathrm{E}-10$	5.67E-05
	Caudate basal ganglia	rs11716575	6.449052	1.13E-10	1.76E-05
	Cerebellum	rs11716575	7.327323	$2.35 \mathrm{E}-13$	3.67E-08
RP11-I65J3.6	Cerebellum	rs7025805	5.16009	2.47E-07	3.86E-02
$\begin{aligned} & \text { RP11- } \\ & \text { 481A20.11 } \\ & \hline \end{aligned}$	ROSMAP brain	rs4841662	-5.51	3.63E-08	5.67E-03
$\begin{array}{\|l\|} \hline \text { RP11- } \\ 750 \mathrm{H} 9.5 \\ \hline \end{array}$	Cerebellar hemisphere	rs896817	-6.05	$1.46 \mathrm{E}-09$	$2.28 \mathrm{E}-04$
SEMA3F	ROSMAP brain	rs2247510	-5.798856	6.68E-09	$1.04 \mathrm{E}-03$
SLC38A3	ROSMAP brain	rs1061474	-5.503226	3.73E-08	5.82E-03

UBXN2A	Dorsolateral prefrontal cortex	rs12616678	-5.354554	$8.58 \mathrm{E}-08$	$1.34 \mathrm{E}-02$
	ROSMAP brain	rs7588286	-5.926861	$3.09 \mathrm{E}-09$	$4.83 \mathrm{E}-04$
	ROSMAP brain	rs7821914	-5.52	$3.41 \mathrm{E}-08$	$5.33 \mathrm{E}-03$

Table 2. Variance explained of GWAS signals by conditioning on expression for miserableness.

$\begin{aligned} & \text { Lead GWAS } \\ & \text { SNP } \end{aligned}$	Conditioned on	Tissue	Before conditioning P-value	After conditioning P-value	Variance explained
rs12612492	AC008073.7	Hippocampus	$4.68 \mathrm{E}-08$	0.0717	0.893
Rs9586	AMT	Hypothalamus	$1.57 \mathrm{E}-08$	0.173	0.942
rs1850344	$\begin{aligned} & \hline \text { RP11- } \\ & \text { 115H18.1 } \end{aligned}$	Putamen Basal Ganglia	1.84E-08	0.0344	0.859
rs4840157	RP3- 467N11.1	Cerebellum	$1.02 \mathrm{E}-07$	0.0278	0.829
rs11764590	FTSJ2	Caudate basal ganglia	$9.48 \mathrm{E}-11$	1.3E-06	0.441
rs6463710	RPA3	Caudate basal ganglia	$1.56 \mathrm{E}-06$	0.148	0.909
rs2715147	PCLO	Nucleus accumbens basal banglia	5.5E-07	0.141	0.914
rs7853605	RP11-165J3.5	Cerebellum	1.9E-07	0.499	0.983
rs11030009	DNF-AS	Frontal Cortex	1.9E-06	1.000	1.000
rs11039149	LRP4	Nucleus accumbens basal ganglia	$1.88 \mathrm{E}-13$	0.00204	0.824
rs174549	FADS3	Cerebellar Hemisphere	0.00035	0.129	0.82
rs2013515	RP11-74E22.6	Caudate basal ganglia	$1.27 \mathrm{E}-10$	1.000	1.000
rs12945855	TTC19	Nucleus accumbens basal ganglia	6.75E-09	0.00767	0.788
rs8072451	$\begin{aligned} & \text { RP11- } \\ & 798 G 7.5 \end{aligned}$	Cerebellar Hemisphere	$2.04 \mathrm{E}-12$	1.000	1.000
Rs1292060	VMP1	Cerebellar Hemisphere	1.2E-07	0.0889	0.897

Table 3. Fine-mapped genes for miserableness.

Region	Gene	Tissue	TWAS Z-score	Posterior probabilit y for causality
$\begin{aligned} & 1: 173097989- \\ & 1: 175089768 \end{aligned}$	$\begin{aligned} & \text { RP11- } \\ & \text { 160H22.5 } \\ & \hline \end{aligned}$	brain cortex	-4.76	0.0074
$\begin{aligned} & \hline \text { 1:7247335- } \\ & \text { 1:9365093 } \end{aligned}$	H6PD	brain hippocampus	1.86	0.0189
	RERE	brain cortex	-4.39	0.0176
	UTS2	brain cerebellar hemisphere	-2.94	0.0106
	H6PD	brain cortex	2.62	0.00839
	PARK7	brain dorsolateral prefrontal cortex	2.79	0.00442
$\begin{aligned} & 10: 106695048 \\ & - \\ & 10: 108726491 \end{aligned}$	$\begin{aligned} & \hline \text { RP11- } \\ & \text { 127L20.3 } \end{aligned}$	brain hippocampus	-5.26	0.304
$\begin{aligned} & \hline 11: 44694135- \\ & 11: 47003304 \end{aligned}$	C1QTNF4	brain cerebellar hemisphere	5.26	0.0275
	LRP4	brain dorsolateral prefrontal cortex	-5.28	0.0269
	HSD17B12	brain amygdala	-2.55	0.0153
	F2	brain cerebellum	5.14	0.0104
	PRDM11	brain dorsolateral prefrontal cortex	-2.91	0.01
$\begin{aligned} & \hline \text { 11:47007278- } \\ & \text { 11:49865926 } \end{aligned}$	MTCH2	brain caudate basal ganglia	-5.68	0.127
	FAM180B	brain cerebellar hemisphere	-6.23	0.0153
	MTCH2	brain nucleus accumbens basal ganglia	-6.18	0.573
$\begin{array}{\|l\|} \hline 12: 109025901 \\ - \\ 12: 110336719 \\ \hline \end{array}$	KCTD10	brain cerebellum	5.12	0.177
	MMAB	brain dorsolateral prefrontal cortex	-4.69	0.0216
	VPS29	brain cortex	2.32	0.00618

	$\begin{aligned} & \hline \text { RP11- } \\ & \text { 423G4.7 } \\ & \hline \end{aligned}$	brain caudate basal ganglia	-2.66	0.00387
	KCTD10	brain cerebellar hemisphere	4.12	0.00361
$\begin{aligned} & \hline 15: 76398987- \\ & 15: 78516053 \end{aligned}$	ADAMTS7	brain caudate basal ganglia	-3.74	0.0717
	LINGO1	brain cerebellar hemisphere	-2.48	0.0618
	$\begin{aligned} & \hline \text { RP11- } \\ & 762 \mathrm{H} 8.2 \end{aligned}$	brain cerebellar hemisphere	-2.18	0.0148
	LINGO1	brain cerebellum	-1.29	0.00406
	CHRNA5	brain hypothalamus	2.9	0.00391
$\begin{aligned} & \hline \text { 2:147277162- } \\ & \text { 2:150210292 } \end{aligned}$	ORC4	brain cerebellar hemisphere	3.78	0.0822
	LYPD6	brain cortex	-3.21	0.0187
	ORC4	brain hypothalamus	4.33	0.524
$\begin{aligned} & \hline \text { 2:171226245- } \\ & \text { 2:173138562 } \end{aligned}$	DYNC112	brain cerebellar hemisphere	-3.21	0.01
	SLC25A12	brain cerebellum	3.13	0.0184
	DYNC112	brain cerebellum	-2.99	0.00374
	SLC25A12	brain cortex	3.39	0.0402
	SLC25A12	brain nucleus accumbens basal ganglia	3.21	0.0147
$\begin{aligned} & \text { 2:23342019- } \\ & 2: 24686630 \end{aligned}$	ATAD2B	brain cerebellar hemisphere	5.08	0.264
	ATAD2B	brain cerebellum	5	0.175
	SUCLA2P3	brain cerebellum	-2.67	0.00204
	UBXN2A	brain dorsolateral prefrontal cortex	-4.74	0.0559
	KLHL29	brain substantia nigra	3.23	0.00312
$\begin{aligned} & \hline 2: 57429100- \\ & 2: 58296890 \end{aligned}$	FANCL	brain dorsolateral prefrontal cortex	-4.28	0.446

$\begin{aligned} & \hline 3: 33255592- \\ & 3: 35282963 \end{aligned}$	RP11- 10C24.1	brain cortex	-3.51	0.0575
$\begin{aligned} & 3: 47727379- \\ & 3: 49316164 \end{aligned}$	GPX1	brain frontal cortex ba9	5.7	0.192
	AMT	brain hypothalamus	-5.4	0.0558
	AMT	brain hippocampus	-5.31	0.0289
	PRSS45	brain cerebellar hemisphere	-3.51	0.0123
	AMT	brain frontal cortex ba9	-5.03	0.00828
$\begin{aligned} & \hline 3: 49317338- \\ & 3: 51830565 \end{aligned}$	AMT	brain hypothalamus	-6.18	0.108
	NCKIPSD	brain cerebellar hemisphere	-5.55	0.047
	GPX1	brain dorsolateral prefrontal cortex	5.2	0.0389
	GPX1	brain frontal cortex ba9	5.3	0.0353
	AMT	brain frontal cortex ba9	-5.35	0.033
$\begin{array}{\|l\|} \hline 5: 87390784- \\ 5: 88891530 \\ \hline \end{array}$	CTC467M3.3	brain frontal cortex ba9	-4.37	0.567
$\begin{array}{\|l\|} \hline 7: 1353968- \\ 7: 2061783 \\ \hline \end{array}$	FTSJ2	brain amygdala	5.71	0.134
	AC110781.3	brain nucleus accumbens basal ganglia	4.19	0.00391
	TMEM184A	brain cerebellar hemisphere	1.1	0.00317
	GPR146	brain cerebellar hemisphere	-2.83	0.00247
	PSMG3-AS1	brain cerebellum	-2.64	0.00199
$\begin{aligned} & \hline 7: 2062621- \\ & 7: 2772047 \end{aligned}$	C7orf50	brain cortex	6	0.869
	FTSJ2	brain caudate basal ganglia	4.92	0.0634
	FTSJ2	brain cortex	5.17	0.0358
	FTSJ2	brain cerebellar hemisphere	4.64	0.0122

	INTS1	brain hypothalamus	-3.59	0.0119
$\begin{aligned} & \hline 8: 1163443- \\ & 8: 2042942 \end{aligned}$	$\begin{aligned} & \text { RP11- } \\ & 439 \mathrm{C} 15.5 \end{aligned}$	brain cerebellar hemisphere	-3.15	0.012
$\begin{aligned} & \hline \text { 17:15020965- } \\ & \text { 17:16411522 } \end{aligned}$	CENPV	brain spinal cord cervical c-1	-5.31	0.027
	CENPV	brain anterior cingulate cortex ba24	-5.17	0.0161
	ADORA2B	brain cerebellum	-4.92	0.00452
	ADORA2B	brain cortex	-4.8	0.00289
	ADORA2B	brain dorsolateral prefrontal cortex	-4.78	0.00281
$\begin{aligned} & \hline 17: 1930037- \\ & 17: 3701935 \end{aligned}$	$\begin{aligned} & \text { RP11- } \\ & \text { 74E22.6 } \end{aligned}$	brain caudate basal ganglia	6.13	0.0504
	SERPINF2	brain nucleus accumbens basal ganglia	0.0731	0.0384
	RPA1	brain spinal cord cervical c-1	-3.45	0.00857
$\begin{aligned} & \hline \text { 17:36809344- } \\ & \text { 17:38877404 } \end{aligned}$	KRT23	brain caudate basal ganglia	-5.09	0.0457
	RAPGEFL1	brain cortex	-4.8	0.0257
	MSL1	brain hypothalamus	-4.66	0.0163
	KRT40	brain cerebellum	-4.44	0.00738
	MSL1	brain cerebellum	-4.4	0.0065
$\begin{aligned} & 17: 43056905- \\ & 17: 45876022 \end{aligned}$	FMNL1	brain cerebellar hemisphere	-7.07	0.0255
	PLEKHM1	brain cerebellar hemisphere	-7.03	0.0253
	LRRC37A4P	brain nucleus accumbens basal ganglia	-7.05	0.0221
	MAPT	brain dorsolateral prefrontal cortex	-7.04	0.0212
	$\begin{aligned} & \hline \text { RP11- } \\ & \text { 259G18.3 } \end{aligned}$	brain caudate basal ganglia	7.01	0.0175
	MICE	brain putamen basal ganglia	-5.5	0.167

$\begin{aligned} & \hline 6: 28018353- \\ & 6: 28917091 \end{aligned}$	IFITM4P	brain cerebellum	-5.35	0.104
	ZSCAN9	brain cerebellum	-4.57	0.1
	ZSCAN23	brain hippocampus	-1.49	0.0201
	PRSS16	brain cerebellum	-3.97	0.0102
$\begin{aligned} & \hline 6: 28917832- \\ & 6: 29737971 \end{aligned}$	TRIM26	brain cerebellum	-5.56	0.145
	HLA-H	brain nucleus accumbens basal ganglia	5.45	0.0872
	HLA-H	brain putamen basal ganglia	5.31	0.0444
	ZSCAN31	brain putamen basal ganglia	-2.64	0.0438
	HLA-H	brain caudate basal ganglia	5.08	0.0342
$\begin{aligned} & \hline \text { 6:30798168- } \\ & \text { 6:31570931 } \end{aligned}$	DXO	brain nucleus accumbens basal ganglia	5.18	0.175
	STK19P	brain hypothalamus	5.01	0.0529
	HLA-L	brain nucleus accumbens basal ganglia	4.88	0.0151
	MSH5	brain putamen basal ganglia	3.3	0.0136
	DDAH2	brain dorsolateral prefrontal cortex	3.32	0.00593

Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies cis-regulated genes for miserableness

Calwing Liao*, Veikko Vuokila*, Alexandre D Laporte, Dan Spiegelman, Patrick A. Dion, Guy A. Rouleau
${ }^{1}$ Department of Human Genetics, McGill University, Montréal, Quebec, Canada
${ }^{2}$ Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
${ }^{3}$ Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada

Supplementary

Supplementary Figure 1. Regional association plot of chromosome 2 conditioned on ACOO8073.7 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 2. Regional association plot of chromosome 3 conditioned on AMT expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 3. Regional association plot of chromosome 3 conditioned on RP11115H18.1 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 4. Regional association plot of chromosome 6 conditioned on RP3467N11.1 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 5. Regional association plot of chromosome 7 conditioned on FTSJ2

 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 6. Regional association plot of chromosome 7 conditioned on RPA3

 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 7. Regional association plot of chromosome 7 conditioned on PCLO expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 8. Regional association plot of chromosome 9 conditioned on RP11165J3.5 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 9. Regional association plot of chromosome 11 conditioned on BDNF-AS expression. The top panel highlights all genes in the region. The marginally associated TWAS
genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 10. Regional association plot of chromosome 11 conditioned on LRP4 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 11. Regional association plot of chromosome 11 conditioned on FADS3 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 12. Regional association plot of chromosome 17 conditioned on RP11-
74E22.6 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 13. Regional association plot of chromosome 17 conditioned on TTC19 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Figure 14. Regional association plot of chromosome 17 conditioned on VMP1 expression. The top panel highlights all genes in the region. The marginally associated TWAS genes are shown in blue and the jointly significant genes are shown in green. The bottom panel shows a regional Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the predicted expression of the green genes.

Supplementary Table 1. Within-tissue panel significance thresholds

TI Panel	Number of genes	Within-tissue significance threshold
GTEx Brain Anterior Cingulate Cortex ba24	8731	$5.73 \mathrm{E}-06$
GTEx Caudate Basal Ganglia	9145	$5.47 \mathrm{E}-06$

GTEx Cerebellar Hemisphere	9451	$5.29 \mathrm{E}-06$
GTEx Cerebellum	10002	$5.00 \mathrm{E}-06$
GTEx Cortex	9162	$5.46 \mathrm{E}-06$
GTEx Frontal Cortex BA9	9031	$5.54 \mathrm{E}-06$
GTEx Hippocampus	8535	$5.86 \mathrm{E}-06$
GTEx Hypothalamus	8551	$5.85 \mathrm{E}-06$
GTEx Nucleus Accumbens Basal Ganglia	8913	$5.61 \mathrm{E}-06$
GTEx Brain Putamen Basal Ganglia	8759	$5.71 \mathrm{E}-06$
CMC DLPFC	10292	$4.86 \mathrm{E}-06$
Total	100572	$4.9 \mathrm{E}-07$

