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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–3] is a simple tractable model of quantum chaos

and holography. The model consists of N Majorana fermions, and a Hamiltonian with

all-to-all random interactions of p fermions (the full definition is given in section 1.1).

It has been extensively analyzed in the large N limit, both at finite p [4–6] and when

p ∝
√
N , AKA the double scaled limit [7–10].1 In the fixed p large N limit, the theory

at low energies is governed by an effective Schwarzian action, which, via its relation to

JT gravity, is a simple toy model of holography [12–14]. In the double scaled limit p ∝√
N , the model also has a Schwarzian regime but it is also related to a q-deformation of

random matrix theory [15], and the full large N density of states is given by the q-Gaussian

distribution [7, 10, 16, 17].

As we are dealing with a random Hamiltonian in the large N limit, the natural ob-

jects to consider are disorder averaged. The simplest of these are expectation values of a

single trace; for example we may consider the averaged moments of the Hamiltonian mk =
〈

tr(Hk)
〉

J
, where 〈·〉J represents an ensemble average over different random couplings in

the Hamiltonian, or the averaged thermal partition function Z(β) =
〈

tr(e−βH)
〉

J
. These

teach us about the expected spectral density of the Hamiltonian ρ(E) = 〈∑i δ(E − Ei)〉J .

We may also consider the correlations between the eigenvalues, which are computed

through expectation values of higher trace objects. For example the spectral form factor
〈

tr
(

e(−β+it)H
)

tr
(

e(−β−it)H
)〉

J
at long times gives us insight into the nearest neighbor

eigenvalue spacing [17]. This spacing follows a distribution given by a random matrix theory

(RMT) universality class which only depends on the symmetries of the model [9, 17–21].

The eigenvalues also exhibit long range correlations [22, 23], which dominate at shorter

time scales, and are the focus of this paper. More precisely, our main objects of focus are

the multi-trace thermal expectation values

Z(β1, β2, . . . , βn) =
〈

tr
[

e−β1H
]

tr
[

e−β2H
]

. . . tr
[

e−βnH
]〉

J
(1.1)

(and their behavior at relatively short time scales). Specifically we focus on the connected

component, and to a few leading orders in the large N expansion.

The motivation for focusing on the connected correlators is to understand them in the

gravitational dual theory. In a gravitational theory these objects usually come about from

a path integral over a space-time with multiple boundaries, with the connected components

representing a geometry which is connected, in some sort of way, in the bulk [24]. Such

a picture arises in JT gravity, and its proposed duality to the β-ensemble RMT models

with a Schwarzian envelope density of states. There, the connected components come from

topological connections between boundaries, and replicate exactly the topological recursion

results of RMT [25].

In contradistinction, we are discussing the full SYK model. There at shorter time

scales, the gravitational interpretation is different — the SYK model contains the RMT

results, but it also has modifications to the connected components that come from “global

1For an introduction and review of the SYK literature, we refer the reader to [11] and references therein.
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fluctuations” of the spectrum [22, 23]. These large scale fluctuations are suppressed as

some power of 1/N , rather than the exponential 2−N/2 suppression of the RMT terms,2

and so are dominant at least at early times. We will focus on these global fluctuations at

leading orders in 1/N , and try to fit them into the broader gravitational picture. We note

that in the double scaling limit these corrections go like e−c
√
N log(N), which is exponentially

suppressed but still much larger than 2−N/2. So at short time scales these are effects which

are much larger than geometric wormholes.

Studying the full SYK model is necessary because the JT gravity-RMT correspondence

restricts to extremely low energies and very long times, and throws out many interesting

effects at finite times. In particular we will see that, properly interpreted, these “global

fluctuations” imply the existence of specific ultra light particles in the bulk (or low dimen-

sion operators). Furthermore, when one attempts to discuss the dual model at a given

fixed realization, the relevant information resides in these additional fields.3

1.1 Definition of the model, and some known results

The SYK model consists of N Majorana fermions ψi, i = 1, · · · , N , which satisfy the

canonical commutation relations {ψi, ψj} = 2δij . Throughout the paper we will denote by

I the ordered index sets I = {i1, . . . , ip} (1 ≤ i1 < i2 < . . . < ip ≤ N) of length p, and ΨI

as the p fermion interaction ΨI ≡ ψi1ψi2 . . . ψip . The SYK Hamiltonian consists of random

all-to-all interactions of p fermions:

H = J ip/2

(

N

p

)−1/2
∑

|I|=p
JIΨI , (1.2)

where the sum runs over all index sets I of length p, and J sets an energy scale which we

will normalize to 1. We take JI to be i.i.d random couplings with zero mean and normalized

variance

〈JIJI′〉J = δI,I′ , (1.3)

where expectation value over the random variables JI is denoted by 〈·〉J . Furthermore, we

consider p to be even and JI to have a Gaussian distribution in what follows, though this

is not strictly necessary. (We will discuss non-Gaussian distributions in section 4.)

We define the multi-trace thermal expectation to be

Z(β1, β2, . . . , βn) ≡
〈

tr
[

e−β1H
]

tr
[

e−β2H
]

. . . tr
[

e−βnH
]〉

J
, tr(1) = 1 (1.4)

where we have redefined the trace in (1.1) by a factor of 2−N/2. The calculation proceeds

by expanding in multi-trace moments (and then evaluating them, and resumming)

M(k1, k2, . . . , kn) ≡
〈

tr
[

Hk1

]

tr
[

Hk2

]

. . . tr
[

Hkn

]〉

J
. (1.5)

2Which is 1/dim(H).
3As we were completing this work, [26] appeared, which explores the issue of a single realization in a

related but different setting. The setting is different enough that a direct comparison is difficult.
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We will focus on the leading order (in 1/N) term in the connected part of these moments.

These are defined in the usual way by subtracting all lower disconnected moments. Ex-

plicitly the recursive definition for the connected part is

Mc(k1) = M(k1),

Mc(k1, k2) = M(k1, k2) −Mc(k1)Mc(k2),

Mc(k1, k2, . . . , kn) = M(k1, k2, . . . , kn) −
∑

partitions p
of {1, . . . , n}

∏

{i1,...im}∈p
Mc(ki1 , . . . , kim).

(1.6)

We can similarly define the connected thermal partition functions in the same recursive

manner, or as the exponentiation of the connected moments

Zc(β1, β2, . . . , βn) ≡
∞
∑

k1,...,kn=0

Mc(k1, k2, . . . , kn)
n
∏

j=1

(−βj)kj

kj !
. (1.7)

To put this work in context, we present a brief reference to known results with regards

to the SYK spectrum and spectral fluctuations. An additional more detailed comparison

is carried out in subsection 3.6 where we use our explicit formulas to compare to existing

analytic and numerical results.

Single trace correlators give us the overall shape of the spectrum. For the finite p,

N → ∞ they were computed in [1–5]. In the double scaled limit, N, p → ∞ while keeping

N/p2 fixed, they were computed in [8, 10, 16, 17], and there the SYK model has an

asymptotic q-Gaussian spectrum. This q-Gaussian spectrum is a great approximation of

the actual spectrum at finite N and p [27–29]. The center of this spectrum resembles a

Gaussian distribution [9], while the edge of the spectrum resembles the Schwarzian density

of states ρ(E) ∼ sinh(
√
E − E0) [17, 27, 30, 31].

The nearest neighbor (or a few apart) level spacing in the SYK model follows that of a

random matrix ensemble.4 The precise RMT ensemble (GOE, GUE, or GSE) depends on

the values N mod 8 and p mod 4, which give rise to different particle-hole symmetries,

and have been completely classified in [9, 17–21]. This level spacing statistics results in a

universal RMT contribution to the spectral form factor which is dominant at exponentially

late times [17]. Apart from these universal contributions, there are also global fluctuations

of the spectrum which are less suppressed in the large N limit [10, 17, 23]. It has been

an active area of research in past few years to analytically show the SYK model has RMT

spectral fluctuations, as well as to characterize the global fluctuations.

The most straightforward approach to computing the spectral fluctuations of the SYK

model is to start with its path integral formulation [4–6], and to study the path integral

of two replicas of the SYK model [34]. The two replicas path integral describes the double

trace thermal partition function
〈

tr
(

e−β1H
)

tr
(

e−β2H
)〉

. It has been argued that the

universal RMT contributions should arise from replica non-diagonal saddle points of this

action [17, 25, 34], thus by finding these saddle points one can try to understand the

connected thermal partition function and the spectral form factor. Finding these saddle

points both analytically and numerically has been an ongoing area of research [25, 34–37].

4See [32] for an introduction to RMT ensembles, and [33] for a review of RMT applications in physics.
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A different method to study the spectral fluctuations is to derive a non-linear σ-model

for the SYK model using random matrix theory techniques,5 as was first done in [22].6

This method produces the universal RMT level spacing statistics, as well as corrections

around it, and was also studied in [23]. This σ model is also related to the study of spectral

fluctuations using supersymmetry techniques [39, 40].

We note that this problem can also be mapped to the study of the cummulants of

q-Brownian motion [15, 41].

2 Framework and main results

The goal of this paper is two fold. The first is to calculate explicit expressions for multi-

trace correlators in the SYK model at early times, and develop a general perturbative

framework for calculating corrections to these observables. The second goal is to start

exploring how to interpret such correlators in a gravitational theory. In particular we

identify the leading deviations that an observer sees at a given realization of the couplings.

Two notions that we will discuss are global modes7 and fluctuations parameters. Both have

to do with specific ways in which the spectrum of the theory can fluctuate over specific

energy separations or time scales, although we will focus more on their implications to the

gravitational picture.

Of course, if we start with any fixed Hamiltonian then the full set of eigenvalues

{λi}dim H
i=1 is tantamount to the full model. But if we are interested in expectation values of

simple operators on typical states, or some other coarse grained observables at shorter time

scales, we can do with less information which is captured in a coarse grained description

of the spectrum.8

To understand what is meant by a coarse grained description of the spectrum, consider

the Hamiltonian in (1.2) for some arbitrary choice of couplings J , and the quantity

ρ(E, ǫ) =
2−N/2

ǫ
NE−ǫ/2,E+ǫ/2, (2.1)

where NE−ǫ/2,E+ǫ/2 is the number of eigenvalues in the small interval [E − ǫ/2, E + ǫ/2].

Then the coarse grained spectrum is given by the limits9

ρ0(E) ≡ lim
ǫ→0

lim
N→∞

ρ(E, ǫ). (2.2)

5See [33] and references therein for an overview of the super-symmetry technique and the non-linear

σ-model in RMT.
6This is the first derivation for the Majorana SYK model, a σ model for the complex SYK model was

previously derived in [38].
7The term is borrowed from a discussion with A. Altland, D. Bagrets, S. Shenker and D. Stanford.
8This is true so long as the Hamiltonian is chaotic [42–44], which is the case for the SYK model [14],

and should also be the case for gravitational systems in general [45, 46].
9Note that the order of limits is important: we first take N → ∞ and only then ǫ → 0. This is precisely

what is meant by coarse graining: we first take a coarse description of the spectrum using bins of size ǫ,

then we take an appropriate large N limit, and only at the end we look at the fine grained structure by

taking ǫ → 0.
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If this limit exists then it implies that the coarse grained spectrum coincides with the

ensemble average spectrum

ρ0(E) = lim
N→∞

〈ρ(E)〉J = lim
N→∞

2−N/2

〈

dim H
∑

i=1

δ(E − λi)

〉

J

, (2.3)

and that fluctuations around this average spectrum are small for any typical Hamiltonian in

the ensemble. For a fixed Hamiltonian we can still use this averaged spectrum to compute

observables like the thermal partition function, and it will give the correct result up to

small differences which depend on the exact realizations of the couplings.

We can ask, however, about fluctuations of ρ(E, ǫ) at finite N , and then at infinite N .

We expect that in some cases

δρ(E) = lim
ǫ→0

lim
N→∞

F (N)

(

ρ(E, ǫ) − ρ0(E)

)

(2.4)

will become a finite random function with some fixed distribution, if we choose the right

normalization factor F (N). We will find that

F (N) ∼ Nκ (2.5)

for some fixed positive κ, which depends on the precise scaling of the model at large N .

In other words, as we go over the various realizations with a measure dictated by their

distribution, we can write

ρ(E) = ρ0(E) +N−κδρ(E) (2.6)

where δρ(E) is a random function drawn from some ensemble.10 All the information on

the specific realization is projected into the distribution of this function. Thus we have

coarse grained the information in all the J ’s, but not to the full extent of averaging over

all of them.

The scaling (2.5) is already a striking statement since in ordinary β-ensemble RMT

models, and in the gravitational paraphernalia that goes along with it, the leading coarse

grained information is of order (dim H)−1 ∼ e−const·N . So for SYK like models the fluctu-

ations of the spectrum are much much larger. As we discuss below, δρ(E) is the leading

global mode.

From the coarse grained spectrum, (2.6), we can compute the leading fluctuations

of the multi-energy distribution, ρ(E1, . . . , En) ≡ ρ(E1) . . . ρ(En). These leading order

fluctuations are encoded in the connected part of the multi-energy distribution with respect

to the average over the random fluctuations δρ. Denoting the ensemble from which δρ(E)

is drawn as P({δρ}) the connected part of this multi-energy distribution is given by

ρc(E1, · · · , En) = N−nκ
∫

DP(δρ) δρ(E1) · · · δρ(En). (2.7)

10Note that since a measure on a space of functions is the same as a path integral, we might need to keep

ǫ as a small cutoff.
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Next we can proceed in two directions:

1. We may extend these fluctuations to an entire expansion

ρ(E) = ρ0(E) +
∑

i

N−κiδρk(E) (2.8)

for a series of increasing positive numbers κ. We expect this sum to be asymptotic.

However, if we terminate the expansion at some fixed order, say i = 1, · · · , L we can

hope that there is some joint distribution of the vector of functions

~δρ(E) =
(

δρ1(E), δρ2(E), · · · , δρL(E)
)

, (2.9)

which encodes the leading and some subleading orders coarse grained information on

the exact realization of the couplings. We will derive such an expansion for the SYK

model in sections 5 and 6.

2. In some cases the distribution is highly degenerate, which is the situation in the SYK

model. In this case, the measure on the ρ’s is not on a space of functions with an

infinite number of parameters. Rather, if we truncate the series at some finite order,

the vector ~δρ is a vector of functions that depend on a finite number of parameters,

which we will denote as hi’s. Since these parameters control changes to the entire

spectrum we will refer to them as fluctuation parameters, and we will refer to how

they deform the spectrum as global modes. We call these deformations global as they

encode spectral correlations of eigenvalues with a finite energy separation; this is in

contrast to the local nearest neighbor eigenvalue statistics which follows that of a

β-ensemble RMT universality class.

For example, we will see in section 4.2 that in the SYK model the leading order

fluctuation behaves as an overall rescaling of the spectrum, i.e., we can write

ρ(E, h) = exp





(

N

p

)−1/2

h∂EE



 ρ0(E) (2.10)

with some distribution on h which we denote as P (h). In this case the leading order fluctu-

ation also captures some contributions to smaller terms (larger κi’s) in the expansion (2.8).

The connected leading contribution to the multi-trace correlator will then be

ρc(E1, · · · , En) =

∫

dhP (h)ρ(E1, h) · · · ρ(En, h) − disconnected, (2.11)

where we are subtracting disconnected contribution with respect to the integral over h. In

this case the fluctuation parameter is h and the global mode is a breathing mode which

scales the distribution.

We can now start asking about an observer in a given realization of the couplings, and

how they may measure a deviation from the ensemble averaged theory. Actually this whole

construction was built to allow us to easily isolate this leading coarse grained information.

Indeed equations (2.4) and (2.6) tell us that the leading deviation from the averaged theory

– 6 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
6

is given by measuring a particular deviation δρ(E), or equivalently measuring the particular

values of the fluctuation parameters {hi}. The question is whether we can identify this set

of fluctuation parameters with partial information about the set of random couplings J .

The answer turns out to be yes. Consider the set of couplings JI , where I is an index set

of length p (there are
(N
p

)

distinct couplings), and notice that the SYK Hamiltonian along

with the Gaussian ensemble of couplings is invariant under SO(N) rotations. Thus different

realizations of the couplings are parametrized by the orbits of SO(N), i.e., by the cosets

{JI}/SO(N). (2.12)

Another way of parametrizing these cosets is by the SO(N) invariant combinations of the

J ’s. For example the invariants containing the least number of J ’s are

(h2)2 =

(

N

p

)−1
∑

|I|=p
J2
I , (h3)3 =

(

N

p/2

)−3
∑

|Ii|=p,|I1∩I2|=p/2

JI1JI2JI1⊕I2 , (2.13)

where ⊕ stands for the XOR operation. Already at the level of 4 J ’s there are many differ-

ent invariants. It turns out that the fluctuations parameters that we discussed before are

just these h’s, hence the leading order fluctuations of the SYK model are characterized by

SO(N) invariant combinations of the random couplings which contain the least number of

J ’s. A more detailed explanation and discussion of this general result happens in section 6.

The main implication of these fluctuation parameters is that one needs to introduce

corresponding light fields into the gravitational path integral, which participate in gen-

erating correlations between disconnected bulk geometries. Such correlations should be

distinguished from the standard picture of gravitational wormholes, in which the worm-

hole connects two disconnected boundaries through a connected bulk geometry. Rather

they seem to be related to multi-trace deformations involving these light fields [47–49].

This allows for the description of these non-geometric wormholes as a perturbative expan-

sion around the disconnected geometry saddle. This will also be shown using the path

integral formulation in section 8. It is puzzling that these non-geometric wormholes can

be the dominant term in the multi-boundary dynamics, say, for concreteness, by being the

dominant contribution to the spectral form factor at intermediate times, as we will show

in section 3.6. This shows that these additional fields must be included in any consistent

gravitational dual to the SYK model.

Suppose that indeed all the correlations are multi-trace deformations that live on the

boundary of AdS2 and consider the situation that AdS2 (perhaps times an additional

compact manifold) is obtained as a near horizon limit of some higher dimensional black

hole. In this case, the boundary of AdS2 should be thought of as the transition region

surrounding the near horizon region. The suggestion above then implies that more light

fields need to be introduced in the near horizon limit, with new interactions at the transition

region. An outside observer might see them as new degrees of freedom, beyond standard

fields, living close to the horizon.

– 7 –
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2.1 The outline of the paper

In section 3 we compute the leading correction to the multi-trace moments. We start by

considering the moments as a sum over multi-trace chord diagram, which are generated by

summing over all Wick contractions of the random couplings. Then we focus on the double

trace moments in section 3.1, and show that the leading order correction to the double

trace moments comes from the minimal number of contractions between the two traces.

This minimal connectivity leads to a general structure for the leading order multi-trace

contribution coming from a sum over cactus diagrams, which is developed in section 3.2,

and proven in sections 3.3 and 3.4. In section 3.5 we re-sum these contributions, allowing

us to give explicit formulae for the leading order contribution to the connected parts of the

multi-trace thermal partition function and density of states.

We end section 3 by comparing this leading order correction to previous results of the

spectral fluctuations. Specifically in section 3.6 we compare the leading order connected

contribution of the spectral form factor to the RMT contribution and to numerical simu-

lations from [17]. We show that this leading order contribution is the dominant connected

contribution to the spectral form factor at early times, and even becomes the dominant

contribution overall at intermediate times for large enough N .

In section 4 we show that the leading order contribution calculated in section 3 can be

recast as a dual 0-dimensional large M =
(N
p

)

vector model. We then show, in section 4.1,

that this vector model is actually a theory of the random couplings in the SYK model.

This allows us to extend our analysis to couplings that have a non-Gaussian distribution.

Finally the gravitational interpretation of this leading connected contribution is discussed

is section 4.2, which follows the framework laid out in this introduction.

Section 5 focuses on the first sub-leading contribution to the multi-trace correlators,

which is the leading contribution involving odd moments. Similar to the leading contribu-

tion, we first compute the double trace moments in section 5.1, followed by a derivation of

the general structure of these contributions in section 5.2. We conclude this portion with

section 5.3, in which we recast this sub-leading contribution as a new fluctuation parameter

which is embedded in a fluctuating effective Hamiltonian.

The general structure of the multi-trace correlations, and their gravitational descrip-

tion, is discussed in section 6. We start by systematically describing the high order cor-

rections to the connected multi-trace correlators as a perturbative collection of fluctuation

parameters in section 6.1. This description follows the formalism described is this section.

We then go on to interpret the dual gravitational picture by considering life in a single

realization of the couplings in 6.2, and the connection of these connected contributions to

geometric wormholes in 6.3.

In section 7 we use the multi-trace chord diagram description to calculate the leading

order contributions to the connected multi-trace expectations of random operators. Then in

section 8 we replicate the leading order connected contributions to the double trace correla-

tors in the replica path integral formalism of the SYK model. In particular we show that the

leading order contributions to the double trace correlators can be computed as a perturba-

tive expansion around the disconnected saddle point of the 2-replica action for the collective

fields G and Σ. We end the paper with a brief discussion on future directions in section 9.
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3 Multi-trace thermal partition function

Our goal is to calculate the leading contribution to the connected part of the thermal

partition function (1.1), by expanding in multi-trace moments. For example, the connected

part of double-trace correlator is given explicitly by

Mc(k1, k2) =
J kikp/2

(N
p

)k/2

∑

I1,··· ,Ik

〈

tr
[

JI1ΨI1 · · · JIk1
ΨIk1

]

tr
[

JIk1+1
ΨIk1+1

· · · JIk
ΨIk

]〉

J,c
(3.1)

where k = k1 + k2. The final expression in this case takes a very simple form and is given

in equations (3.3), (3.5) and (3.7).

Diagrammatic representation. A convenient diagrammatic representation of this

quantity is the following. As the distribution of the random variables JI is Gaussian,

we use Wick’s theorem to pair the JI ’s. We then represent this graphically as ‘chord dia-

grams’ (this is similar to the construction in [7], though we stress the following results are

valid both in the double scaled limit and in the finite p large N limit). We then proceed

as follows:

• Each trace is drawn as a circle with kj nodes marked on it, one for each Hamiltonian

insertion.11

• Wick contraction of the coefficients JI is shown by drawing chords connecting the

appropriate nodes. These chords can go between nodes in the same circle, or between

different circles.

• The connected moments only contain contributions from the pairings that fully con-

nect the different traces.12

An example of such a ‘multi-trace chord diagram’ can be seen in figure 1(a,b).

Next, we can represent these multi-trace chord diagrams in a more concise way as

follows: we represent each trace by a single vertex (instead of a circle), and preserve

the external chords connecting the different traces, omitting the internal chords. Only if

the resulting diagram is fully connected will it contribute to the connected moment. An

example of this is presented in figure 1(c,d). In order to avoid confusion with the vertices in

chord diagrams, we represent each trace by a square-like vertex, and refer to these diagrams

as ‘multi-trace diagrams’.

We will use this compact diagrammatic description to compute the leading order con-

nected contributions to the moments and the thermal partition function. We shall start by

focusing on the double trace expectations as an illustrative example in section 3.1. Then,

we move on to the general multi-trace expectations in section 3.2.

11Morally speaking, but technically not quite correct, this circle corresponds to the thermal circle. It is

exactly the thermal circle if we look at expressions like 〈tr((1 + (β/L)H)L)〉 when L → ∞.
12By fully connected, we mean that for any two traces, there is a sequence of chords connecting them.
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(a) •

•

•

• •

•

•

• •

•

•

•

(b) •

•

•

• •

•

•

• •

•

•

•

(c) (d)

� � � � � �

Figure 1. Two different chord diagrams that contribute to the moment M(4, 4, 4). (a) and (b) are

the full chord diagrams, while (c) and (d) are their contracted diagrams respectively. Diagram (b)

(or it’s contraction (d)) is connected while diagram (a) (or its contraction (c)) is not.

3.1 Double trace expectation value

We start by computing the leading order contribution to the double trace connected mo-

ments Mc(k1, k2) (see (3.1)). We shall do this by considering the number of index sets

paired between the two traces, and show that the minimal number of pairings is 2 and that

it dominates at leading order.

Consider first a single pairing of H’s between the two traces. All other multi-fermion

operators ΨI are contracted within themselves in each trace, and the fermion species in

these contractions appear in pairs. This leaves the fermion species, in a single H, un-

paired within the same trace, and the result of the trace in the Hilbert space is zero

(because tr(ψi) = 0). So a single pairing between the two traces gives an exactly vanishing

contribution.

Next we may have two pairings with index sets I1, I2, each of them corresponding to a

pairing between the two traces. An example of this is shown in the left hand side of figure 2.

In this case the traces do not vanish only if I1 = I2 for the same reason as above. Since

the same index set I1 = I2 appears twice in each trace, the corresponding nodes within

each trace are effectively contracted, as shown in the right hand side of figure 2. A priori

the effective contractions within each trace are not independent (they are the same index

set in the two traces), so naively we cannot do the sum over the index sets in each trace

separately. However, since the trace is independent of permutations of the i = 1, · · · , N

– 10 –
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I1

tr H
k1 tr H

k2

⇒

I2

I1 = I2

tr H
k1 tr H

k2

Figure 2. An example of a diagram contributing to the double trace with k1 = 4 and k2 = 8.

sites, and we sum over all the other index sets, we have in (3.1) the exact relation

(

N

p

)−k/2
∑

I,J,K,···
tr (ΨIΨJ · · · ΨI · · · ) tr (ΨIΨK · · · ΨI · · · )

=

(

N

p

)−k/2−1
∑

I,I′,J,K,···
tr (ΨIΨJ · · · ΨI · · · ) tr (ΨI′ΨK · · · ΨI′ · · · ) .

(3.2)

We see that this factorizes into the product of the appropriate single-trace chord diagrams

that appear in the expectation value of a single trace, down by a factor of
(N
p

)−1
(originating

from the constraint I1 = I2).

Each choice of two internal diagrams for the two traces comes from 2k1
2
k2
2 choices of

which two lines go from one trace to the other,13 so we get

Mc(k1, k2)|2 pairings =
k1k2

2

(

N

p

)−1

M(k1)M(k2). (3.3)

In [17] and [23], it was found that having k pairings between the traces results in a

suppression by a factor which is
(N
p

)−k/2
for small k, and becomes a flat exponential sup-

pression of 2−N for large enough k. Thus the dominant contributions come from minimizing

the number of pairings between the traces, at least for early times.

There are actually different ways in which more than two pairings can appear. For

example, we could have four index sets I1, · · · , I4 connecting the two traces, with one

possibility for a non-vanishing contribution being I1 = I2 and I3 = I4.14 Clearly this

diagram is subleading because the I3 = I4 imposes another constraint on the index sets.

But there could also be more complicated situations. A particular case, which we deal with

in section 5, is the case in which three sets I1, I2, I3 are identified between the two traces.

By the non-vanishing trace condition, as before, I3 is fixed to be those indices in I1 and I2

that are not in their intersection. However, since the size of I3 should be p, we must have

in addition that |I1 ∩ I2| = p/2, giving a further suppression. This effect is subleading in

13The factor of 2 comes, when doing the original Wick contraction, from exchanging the endpoints of the

two lines in one of the sides only.
14In general, for four contractions, the constraint on the Ij ’s is less restricting, as we will discuss in the

general case later.
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the partition function, but it is the leading effect for traces with odd numbers of H’s, and

hence can be isolated. But generally, the minimal number of pairings between the traces

dominates the connected component, and hence the leading contribution is equation (3.3).

We note that this is not a new result, and was derived several times before [10, 15, 23].

It will be convenient to organize the corrections that we calculate in terms of the small

parameter

ǫ ≡
(

N

p

)−1

. (3.4)

We can now exponentiate (3.3) to arrive at the leading order contribution to the connected

double trace thermal partition function

Zc(β1, β2) =
ǫ

2
β1
∂Z(β1)

∂β1
β2
∂Z(β2)

∂β2
+ higher order terms. (3.5)

Here Z(β) is the expected thermal partition function of the SYK model. If we consider

the SYK model in the Schwarzian regime then Z(β) is the Schwarzian thermal partition

function [4, 30],

Z(β) = β−3/2e
−βE0+S0+ C

2β , (3.6)

while if we consider the SYK model in the double scaled limit then Z(β) was calculated

in [7, 8]. But, of course, equation (3.5) holds throughout all energy ranges, and for any

length p of the Hamiltonian (as long as the couplings are Gaussian).

We can also compute the connected spectral density function directly from (3.3) to be

ρc(E,E
′) =

ǫ

2

d

dE
(Eρ0(E))

d

dE′
(

E′ρ0(E′)
)

, (3.7)

where ρ0(E) is the averaged spectral density function of the model.

3.2 Multi-trace expectation values and cactus diagrams

Next we would like to see what are the leading contributions for a general number of traces

when considering the connected part after disorder average. We will see that these correc-

tions can be described concisely via sums over 1PI ‘cactus’ diagrams (to be defined below).

We again represent the different possibilities for chords connecting different traces by

diagrams, as described above. In these diagrams, every trace is represented by a vertex,

and the edges are the chords that go between the different traces. The computation in the

previous subsection, for the leading order contribution to the connected double trace, just

corresponds to the diagram in figure 3. Another example, which contributes to the three

traces connected correlator is shown in figure 4. Because of the further suppression when

having more than two external contractions in a trace, as was the case in the double trace,

one could expect that only nodes of degree two will be present at leading order (like the

diagram in figure 4), but this is not the case as we will soon see.

To explain this, we will show that we can consider each diagram as a “Feynman dia-

gram” in the following way. Each index set I represents a momentum, r, valued in ZN2 , so

that ri = 1 if i ∈ I and otherwise ri = 0 (where i = 1, · · · , N). The condition that at a
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Figure 3. The leading diagram contributing to the double trace, where the edges represent the

chords connecting the different traces.

Figure 4. A cyclic diagram for three traces.

given vertex the I’s are such that each index i appears an even number of times (i.e., the

non-vanishing of the trace) is exactly
∑

r(j) = 0 for r(j) being the incoming momenta to

this vertex, and the equations are valued in ZN2 , which is precisely momentum conservation

at the vertices. We see that this is a direct analogy to Feynman diagrams.

The first claim we would like to present is that in the connected average of V traces,

the leading behavior is ǫV−1. To show this, recall that for every chord we have one explicit

factor of ǫ coming just from the normalization of the Hamiltonian, so overall this gives a

scaling of ǫE where E is the number of edges.15 Similarly, each free index set I (that we

sum over) gives something of order at most
∑

I 1 =
(N
p

)

= ǫ−1. The question then is how

many free momenta, i.e., index sets, we have.

Each vertex gives one momentum conservation equation, and of course as usual one

vertex gives just overall momentum conservation of the external lines, that we do not have

here; so it just gives δ(0) and no additional constraints. So we have V − 1 constraints on

the momenta, so long as the graph is connected.16

Now, without further restrictions, all that those constraints would do is to eliminate

precisely V − 1 of the free momenta. However, an important point is that our momenta

are in addition restricted to satisfy |I| = p. If a particular momentum conservation boils

down to be setting the sum of two momenta to be vanishing, this |I| = p restriction does

not change the counting. However, this restriction can give further constraints if more

momenta are involved. For instance, for three momenta I1, I2, I3 incoming to a vertex,

momentum conservation indeed fixed I3 to be I1 ∪ I2 minus their intersection; this is what

was taken into account in this counting. However, because |Ij | = p, not only is I3 fixed,

but moreover I1 and I2 are now restricted to satisfy |I1 ∩ I2| = p/2 in order to have a

solution. As was mentioned, we will see that this still does not mean that at leading order

15We can also ignore all the insertions of H which are contracted within the same trace since after

summing over their index sets they do not contribute factors of ǫ.
16It is important in this argument that each such constraint really fixes one momentum, or one index set

I, and for this it is crucial that we consider connected diagrams, as otherwise we get less than V − 1 such

constraints. For a general graph the number of constraints is V − Nc, where Nc is the number of connected

components.
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Figure 5. Examples of diagrams going as ǫ3 and sub-leading ones.

we can have only vertices of degree two. What it does mean is that taking into account all

the possible momenta conservations, if we cannot express them as setting only sums of two

momenta to be zero at a time, we will obtain a further suppression (that is, the suppression

will be greater than just fixing V − 1 momenta) and the result will be subleading. This

point will be essential below.

With at least V − 1 constraints we get at most E − V + 1 free momenta and thus a

suppression of at least

ǫE
1

ǫE−V+1
= ǫV−1. (3.8)

It is simple to check that the circular diagrams of the form of figure 4 indeed saturate this

bound. This justifies the claim above that this is the leading order connected contribution

for V traces.

To arrive at the main claim of this section, let us use the following graph theory

terminology. A path is a sequence of vertices v1 − v− · · · − v2 connected by edges such that

all vertices (and edges) are distinct. A connected graph is a graph where every two vertices

are connected by a path. A graph cycle is a sequence of vertices v1 − v2 − · · · − vn − v1

connected by edges, such that we do not visit an edge twice, nor a vertex twice except for

the first and the last one.

The graphs saturating the ǫV−1 leading behavior, and so those which contribute at

leading order, are connected 1PI graphs,17 such that any pair of cycles have no edge in

common (equivalently, any two cycles have at most one vertex in common.) In graph

theory, connected graphs in which no pair of cycles share an edge are known as cactus

graphs (or cactus trees) [50]; for examples, see figure 5. The claim is then that the leading

order contribution to the connected moments scales like ǫV−1, and comes only from the

connected 1PI cactus graphs.

The restriction to 1PI diagrams in the claim above is easy to understand using the Feyn-

man diagram structure. To show this, consider a graph that is not 1PI, where e is the edge

that connects two connected components that are otherwise not connected to each other

(see figure 6). Since e is the only external leg of the connected components, by momentum

conservation of each of these components we see that r(e) = 0, which is a contradiction as

|{i : ri(e) = 1}| = p. Thus the diagram’s contribution must vanish identically.

Moreover, we can give a simple characterization of these diagrams that give the dom-

inant contribution. A generic 1PI cactus diagram is just a tree of “bubbles” attached at

vertices. Along the edges, there can be arbitrarily many vertices of degree two (where each

bubble contains at least two vertices). A generic example is shown in figure 7. This fact, as

well as the dominance of 1PI cactus diagrams, are proved in the following two subsections.

17Recall that a graph is 1PI if it is connected and cannot be made disconnected by cutting a single edge.
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e

v1
G1 G2

Figure 6. A non-1PI graph.

Figure 7. A generic 1PI cactus diagram. It is a tree of bubbles, with the nodes between the

bubbles being vertices, and any other vertices of degree 2 can appear on the edges.

3.3 General structure of 1PI cactus diagrams

In order to characterize the general structure of 1PI cactus diagrams, we should concentrate

on vertices of degree greater than 2, since as we saw a vertex of degree two only imposes

that the two incoming momenta are equal (in Z2). Therefore, consider a vertex v of degree

> 2 in a 1PI cactus diagram, with edges e1, e2, · · · .

Consider going from v along e1, denoting the other endpoint by v1 (we denote this by

v
e1− v1). Then necessarily we can complete it to a cycle ending on v. Indeed, erase e1 —

since any non-vanishing graph is 1PI — it is still connected, so we have a path from v1 to v

not going through e1; it necessarily completes to a cycle v
e1−v1 −· · ·−vi

ei−v with ei 6= e1 (it

is indeed a cycle). Now start from some other ej 6= e1, ei and do the same, getting another

cycle ending on ek, with all v1, vi, vj , vk being distinct because no two cycles share the same

edge. Therefore we see that v looks like a flower, with all its edges forming distinct cycles.

In particular the degree of each vertex is even for 1PI cactus graphs (this is not true for a

general cactus graph).

Every node on each of these cycles can be of degree two, or it can be of higher degree.

In the latter case, we saw that it can have further cycles emanating from it. But let us show

that they are only of the form we met, i.e., distinct cycles. Consider the first such vertex

v1 of higher degree on one of the cycles C1 that we found that encircles v; see figure 8. Let

e be an additional edge of v1. Deleting e, since again the graph is 1PI, we can find a path

P ′ from v′ to v. If this path does not share a common edge with C1, then we get the cycles

C1 and P − e− P ′ which have a common edge (where P is the path from v to v1, see the
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path P

e

v1

v
′

C1v

Figure 8. A cycle C1 around v.

P

e

v1

v
′

C1v

C2

Figure 9. The case described in the analysis in the text, where we get two cycles C1 and C2 with

a common edge.

figure), being a contradiction. Otherwise, the path comes to C1. It cannot cross before v1

since v1 is the first higher degree vertex. If it crosses C1 after v1, then we can still get two

cycles C1, and C2 with a common edge, as shown in figure 9.

The only remaining possibility is that the path gets back to v1, meaning it is a cycle.

This is possible, since the analogous construction of C2 would not give a cycle.18 Applying

the entire same argument with v replaced by any other vertex on these cycles, we get that

every such cycle can have more distinct cycles, or ‘bubbles”, emanating from its vertices

(that is, we can attach to any such bubble more bubbles), but these are the only cycles

that we have. In particular, the most general non-vanishing cactus graph (which is 1PI

and all vertex degrees being at least two) takes the form of the example in figure 7. More

precisely, as claimed, it is a tree of bubbles attached at vertices, where any additional

vertices of degree two can appear on edges. There is nothing more than those bubbles;

this is because as we saw, every edge belongs to a cycle necessarily, and we mapped all the

possible cycles.19

18In more detail, C2 defined similarly to before will visit the vertex v1 twice and so does not match the

definition of a cycle.
19Note that in this construction, we can attach a new bubble to any other bubble, but we cannot attach

a new bubble simultaneously to two existing bubbles, resulting in cycles sharing an edge.
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3.4 Dominance of cactus diagrams

We saw that contributions to the connected moments cannot be larger than the scaling

ǫV−1. We will now prove the claim from section 3.2 that a connected graph saturates this

bound if and only if it is a 1PI cactus graph. (As we saw, the contribution of non-1PI

graphs vanishes.)

In order to prove this, let us recall when the bound ǫV−1 was tight. At any vertex,

we have momentum conservation stating that the sum of the incoming momenta vanishes.

However, the important point is that when taking into account momentum conservation

in other vertices as well, we may find out that not only the sum of all momenta vanishes,

but also there are subsets of momenta where the sum of momenta vanishes in each subset

separately.20 After taking all the momentum conservation into account, when reducing

those subsets to be of the smallest size possible, the question is whether there is at least

one subset containing three or more momenta. If that is the case, then we saw that we

will get a larger suppression than ǫV−1. This is because the momentum conservation not

only fixes one momentum (giving the counting that lead to ǫV−1) but also constraints the

others. For example, in the case of a subset of three momenta corresponding to chords

I1,I2,I3, not only that I3 was completely fixed, but |I1 ∩ I2| = p/2 necessarily, which gave

a further suppression. If on the other hand, all momentum conservations lead to subsets

including only pairs of momenta, we will have the ǫV−1 leading behavior.

Let us start with the direction ⇐, showing that all cactus diagrams scale as ǫV−1.

Consider a vertex v of degree > 2 with edges e1, e2, · · · , as in the previous subsection

(if its degree is 2, then necessarily it gives a momentum conservation involving only two

momenta). If we show that any such vertex has no further suppression, then we will get

the minimal ǫV−1.

Given the general structure of cactus diagrams that we found in the previous subsec-

tion, this follows immediately. Indeed, because of the bubble structure found, as we saw

the momentum on e1 equals that on ei (in the notation used in the previous subsection),

the momentum on ej is the same as on ek, and so on. Thus at each vertex we actually

get that the sums of pairs of momenta vanish based on these bubbles, and we have the

minimal ǫV−1 suppression.

In the other direction ⇒, let us show that if we have two cycles with a common edge,

we get a further suppression and so no ǫV−1 behavior. That is, we must show that there is

a minimal subset of momenta satisfying momentum conservation, containing at least three

momenta.

Consider a pair of two such cycles with a common edge. Since they are different, we

can find a vertex v of degree > 2, having edges with momenta r, r1, r2, · · · ; see figure 10.

In order to construct a minimal set of momenta satisfying momentum conservation in a

well defined way, let us apply the following painting procedure:

20For example, a vertex with four edges naively has r1 + · · · + r4 = 0, but taking into account more

vertices may result in r1 + r2 = 0 and r3 + r4 = 0 separately, as in the case of a diagram made out of two

cycles emanating from one vertex.
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v

e r

r2r1

Figure 10. Two cycles with a common edge.

• We go from v in the direction of the common edge e with momentum r, painting the

edge e.

• In each step there are the vertices that were touched by the edges we painted in the

previous step — in the next step we apply momentum conservation, painting all the

rest of the edges of these vertices that are not already painted.

• We apply this painting procedure at each vertex we come across other than v.21

Therefore we will stop (necessarily after a finite number of steps) when there is no

vertex having both painted and unpainted edges, with the only allowed exception

being v.

We should think about this procedure as an equation, where the sum of the momenta

painted in the previous step equals the sum of the newly painted momenta.

We can do this process in any order we would like with the same result. Therefore,

we can just as well go first along the two cycles. We thus get r1 and r2 necessarily. After

we complete all vertices other than v, we may get some additional edges of v. Thus we

found a subset of momenta satisfying r+ r1 + r2 + · · · = 0. By the procedure we did, there

is necessarily no smaller subset containing r that satisfies momentum conservation, while

this subset includes at least three momenta. This means that this diagram is suppressed

more than ǫV−1 as we saw. An example of this construction is shown in figure 11. This

completes the proof showing the dominance of cactus diagrams.

3.5 Partition functions and density of states correlations

With the understanding of which graphs to consider, we move to calculate the leading order

contribution to multi-trace moments and thermal partition functions. Let us first consider

the contribution of each cactus diagram to the connected moments Mc(k1, · · · , kn). Recall

that from the disorder average, we have the contractions that link the different traces, as

21We never get back to a vertex we visited before, since all of its surrounding is already painted.
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r

r1 r2

r3

r4

r5

r6

Figure 11. Applying momentum conservation for a common edge to two cycles. In this case we

get r = r1 + r3 + r4 = r1 + r2. Here the resulting equation includes only r, r1, r2 without r5, r6, but

in other cases we may get more momenta. This diagram scales as ǫ4.

shown in the cactus diagrams, and the remaining contractions will form the usual chord

diagrams in each trace separately. From now on we restrict to only cactus diagrams. For

these, every full multi-trace chord diagram will be multiplied by two factors: (1) a power

of ǫ according to the number of constraints, which as we saw is ǫV−1 for a cactus diagram,

and (2) a combinatorial factor that counts how many multi-trace chord diagrams result in

the same internal chord diagrams for each trace (one such example appears in figure 2);

this contribution is described precisely below. As we sum over the chord diagrams inside

each trace, we get that Mc(k1, · · · , kn) is
∏

iM(ki) times the two factors mentioned above.

All that remains is to describe the combinatorial factor in item (2). For every vertex i

of degree di in a cactus diagram, each of the di/2 inner chords will be contracted to other

vertices. So first we need to choose which chords participate in the multi-trace contraction,

which is
(ki/2
di/2

)

options. Clearly, there are (di/2)! options to choose to which of the chords

in each vertex we contract. Then we need to contract individual J ’s (and not only chords)

between the different traces. So what remains is simply to note that there are two ways

to contract two chords. Similarly, for a cycle made of n vertices of degree 2, there are 2n

options to contract the chords. Therefore we should assign a factor of 2 for every edge in

the multi-trace diagrams. The exceptional case n = 2 is accounted for by recalling that it

has a Z2 symmetry, and we should divide by a symmetry factor Ŝ for each diagram. For a

single such component of n = 2 we have a factor of 2 contribution to Ŝ giving indeed the

correct counting. In these kinds of cactus diagrams where the vertices are labeled, these

Z2 symmetries are actually the only symmetries we have.

To summarize this, we have

Mc(k1, · · · , kV ) = ǫV−1
∑

Cactus diagrams

2E

Ŝ

V
∏

i=1

{

(

di
2

)

!

(

ki/2

di/2

)

M(ki)

}

, (3.9)

where Ŝ is the symmetry factor of each diagram, as described above.
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Now let us consider the connected thermal partition function (remembering from the

beginning of this section that all di are even)

Zc(β1, · · · , βV ) =
∑

k1,··· ,kV

(−β1)k1

k1!
· · · (−βV )kV

kV !
Mc(k1, . . . , kV )

= ǫV−1
∑

k1,··· ,kV

∑

Cactus diagrams

2E

Ŝ

V
∏

i=1







βdi
i

(

∂

∂β2
i

)di/2
(−βi)ki

ki!
M(ki)







.

(3.10)

The cactus diagrams in the last formula are for fixed vertices associated to chosen

k1, · · · , kV (that is, the vertices are labeled). Therefore there is a large degeneracy in this

formula, where we will need to include many different labelings of the same cactus diagram.

Instead, it will be more convenient to have only one cactus diagram of each kind in the

sum, without including permutations of the vertices. We can take care of this degeneracy

by including a factor of V !, and then diving by the symmetry factor related to vertex

permutations, as usual in Feynman diagrams; this symmetry factor will be included as

usual in the symmetry factor S of unlabeled graphs. Therefore we can write this as

Zc(β1, · · · , βV ) = ǫV−1V !
∑

Cactus diagrams

2E

S

V
∏

i=1







βdi
i

(

∂

∂β2
i

)di/2

Z(βi)







. (3.11)

Let us clarify this formula. As mentioned, we want to count each distinct cactus diagram

just once. Then, in this formula, we fix an assignment of the βi’s to the vertices of the

cactus diagram in an arbitrary way. Of course, at the end, we know that the partition

function is symmetric in the βi’s, so the obtained expression in this formula is implicitly

understood as symmetrized in the βi. As mentioned, the over-counting that can happen

in specific diagrams is accounted for as usual by the symmetry factor S (which is now

enlarged with respect to the previous case of Ŝ since the vertices are not labeled, similarly

to the usual internal vertices in a Feynman diagram). We give an example demonstrating

how to use this formula below.

Finally, we can translate this to the joint density of states as well22

ρc(E1, · · · , EV ) = ǫV−1V !
∑

Cactus diagrams

2E

S

V
∏

i=1

(

− ∂

∂Ei

1

2Ei

)di/2
(

Edi
i ρ0(Ei)

)

. (3.12)

We note that all these results hold to leading order in N , or equivalently in ǫ. Further-

more, we again stress that the average density of states ρ0(E), thermal partition function

Z(β), and moments M(k), depend on the scaling and limit one considers the SYK model

in; but the result itself is universal and valid in any large N scaling, either the fixed p or

the double scaling limit.

The formula (3.12) for the connected density of states can be written as a superposition

of integer (positive or vanishing) powers of the dilation operator E ∂
∂E for the various

energies acting on the leading order density of states ρ0.

22Note for this equation, that ρ0 is even.
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k V − 1− k

Figure 12. The only form of connected diagrams with one vertex of degree 4, and the rest of

degree 2. Excluding the vertex of degree 4, there are k vertices on one cycle, and V − 1 − k on the

other.

An example. As an example consider a diagram with V vertices where one vertex is of

degree 4 and the rest have degree 2. It is not hard to see that the only such connected dia-

grams are of the form shown in figure 12 (and they are cactus diagrams). The contribution

to ρc of such a diagram for a fixed number k of degree 2 vertices on one of the circles is

ǫV−1V !
2V+1

4
· 1

V

[

D2(E1)D1(E2) · · ·D1(EV )+

+D1(E1)D2(E2)D1(E3) · · ·D1(EV ) + · · ·
]

∏

i

ρ0(Ei),

(3.13)

where the operator Dk acting on Ei is

Dk(Ei) =

(

− ∂

∂Ei

1

2Ei

)k

E2k
i . (3.14)

The symmetry factor is just 4 because each cycle has a Z2 symmetry.23 We wrote the result

explicitly, but it is simpler to write it in the symmetrized form as instructed in (3.12). This

means that we can simply forget the superscripts and just write this as

ǫV−1V !
2V+1

4
D2D

V−1
1

∏

i

ρ0(Ei). (3.15)

Again, this formula is understood by distributing arbitrarily the V energies in the V factors

of Dk, and understanding the expression as symmetrized in the energies.

3.6 Time scales and comparison to RMT fluctuations

We have written the leading contributions to connected multi-trace correlators using di-

latation operators acting on the spectrum. Actually this is the first out of a whole series

of transformations on the spectrum (we discuss the next term in section 5.1 and comment

on the others in section 6.1). Each of them has an amplitude, and may become important

in a different range of energies, or time scales. In this section we make some comments on

the time scales associated with the leading operator, and compare to numerical data.24

23Note that when V is odd and k = (V − 1)/2, there is an additional symmetry factor of 2 for exchanging

the two cycles.
24We would like to thank the authors of [17] for sharing their data with us.
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It is a well known empirical fact that the statistics of the nearest neighbor eigenvalue

spacing in the SYK model is the same as that of a random matrix ensemble (RMT). The

exact ensemble (GOE, GUE, or GSE) depends on the particle hole symmetry class, leading

to a complete classification of the RMT ensemble based on the values of N mod 8 and

p mod 4 [9, 17–19]. This universal level spacing statistics is given by an exponentially

suppressed term in the double trace spectral density, ρ(E,E′), which dominates at energy

separations of the typical eigenvalue separation E−E′ ∼ 2−N/2 (the first term on the r.h.s.

of equation (3.16)). The perturbative moment method we used does not allow us to find

this universal term as it is non-perturbative or exponentially suppressed in N .25

The range of accessible moments implicitly determines the scale of energy separation

that we can probe. If we can reliably compute moments up to the k’th moment, then we

can resolve energies (and energy separations) up to 1/k of the energy range. However,

the approach above does not necessitate the explicit evaluation (or approximation) of any

moment — rather we write the connected part as a dilation operator acting on the moments,

for which we can take the exact value at each k. So the bottleneck question is up to what

order is the operator reliable (in amplitude or in energy range).

Generally, explicit evaluation and re-summation of moments is reliable for finite k (in

the limit of N → ∞). But since we can act with our operator on the exact partition

functions we are not limited by this. We can therefore hope that the leading contributions

to the connected double trace spectral density are valid down to perhaps polynomially small

energy separation of order E−E′ ∼ N−#p. Actually there are arguments that in this case

the situation is considerably better, and that the connected double trace spectral density

computed by the moment method is correct up to exponentially small energy separation

(but still much larger than the typical level spacing of 2−N/2).

The authors in [22] used a sigma model to compute the double trace spectral density

and argued that at small separations ω = E −E′ ∼ 2−N/2 this spectral density consists of

a random matrix part plus a one loop correction. The one loop correction can be written

as a sum over massive modes which are suppressed by a power law in N :

ρ2(E + ω,E − ω) = [ρ(E)]2



ρGUE2 (ω) + 2∆2ℜ
∑

k≥0,even

(

N

k

)

1

(iω + ǫ(k))2



 , (3.16)

where ρGUE2 (ω) is the contribution from random matrix theory, ∆ = 2−N/2 is the average

energy spacing in the bulk of the spectrum, and ǫ(k) = T−1
k −1 are the masses of the massive

modes with Tk =
(N
p

)−1∑p
j=1(−1)j

(k
j

)(N−k
p−j

)

. These massive modes become important at

level spacing of the order ω ∼ N#2−N/2, which are still exponentially suppressed but much

larger than the RMT scale. Furthermore, a calculation in [23] showed that the leading term

in the massive modes agrees with the leading term moment calculation, while a two loop

calculation in the sigma model scales like the next leading term in the moment expansion.

Thus there is some evidence that we should be able to trust the perturbative moment

25There may be a way to find this term in the moment expansion by re-summming some of the contribu-

tions from a large number of connections between the moments, as was alluded to in [17], though we have

not been able to preform such a re-summation.
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series up to energy separations that are exponentially small in N , and not just suppressed

in powers of N .

(A caveat to this is that we were not been able to precisely match (3.16) to our formulas.

There are two related reasons for this — the first is that (3.16) smears over the average

energy, and the second is that it is more reliable at the center of the distribution, where

the σ-model is defined. If we use our formula there, around the point E = 0, then the

leading correction is just a scaling
(

1 + 1
2ǫ

∂
∂EE

)

ρ(E) |E=0=
(

1 + 1
2ǫ
)

ρ(E) |E=0, which

matches [23].)

We can translate the energy separation to a time scale by considering the spectral form

factor [51–53]

g(t;β) =
Z(β + it, β − it)

[Z(β)]2
. (3.17)

The late time behavior of the spectral form factor contains a ramp and a plateau [17, 34],

which is described by the appropriate β-ensemble. This ramp dominates the spectral

form factor at exponential times which was approximated in [17] as tdip ∼ eS0/2, where

S0 ∝ N is the zero temperature entropy in the large N limit (we will see in (3.20) that tdip

gets modified when including the effects of the global modes). Thus we expect that the

perturbative moment expansion is relevant up to these exponential times.

To be a little more precise, we mentioned before that the leading correction to the multi-

trace correlator, which we computed so far, is only the first of an infinite (in the large N

limit) set of corrections. When we say that the moment expansion is relevant up to the time

scales above, we mean the sum of these terms. However, for the purposes of comparisons

at finite p and N , which we do next, we use only the leading term computed above.

From our double trace moments we can approximate the known contributions to the

spectral form factor as

Z(β + it, β − it) ≈ |Z(β + it)|2 +
ǫ

2

(

β2 + t2
)

∣

∣

∣

∣

∂Z(β′)
∂(β′)

∣

∣

∣

∣

2

β′=β+it

+

∫

dE e−2βE min

{

N2
d

t

2π
,Ndρ(E)

}

,

(3.18)

where the first and third terms are from [17] — the first term is the disconnected contri-

bution and the third term is the RMT contribution given in equation (42) there.26 The

second term is the leading order contribution calculated in (3.5). Nd is a symmetry fac-

tor counting the degeneracy of each energy level (for even N this factor is Nd = 2 for

N mod 8 6= 0, and 1 for N mod 8 = 0). The normalized spectral form factor g (given

in (3.17)) can similarly be written as g ≈ gd + g2 + gRMT , where gd is the disconnected

part, g2 is the leading order correction and gRMT is the random matrix theory contribu-

tion. In figure 13 we present a plot of the approximate spectral form factor and its three

contributions, which seems to match numerical computations of g and the connected part

gc based on data from [17]. See appendix A for more details on how this comparison was

done, as well as further comparisons for N = 28, 30, and 32.

26Note that this term is correct only for the GUE universality class, or when N mod 8 = 2, 6. For

the GSE and GOE universality classes the ramp behavior is different, and this term is more complicated.

See [52] for a recent overview of the spectral form factor in each RMT universality class.
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Figure 13. The approximate spectral form factor as a function of time for N = 34 and p = 4.

g = gd + g2 + gRMT is the full spectral form factor, gd is the disconnected portion given by the first

term in (3.18), g2 is the leading connected portion given by the second term in (3.18), and gRMT is

the universal random matrix contribution given by the last term in (3.18). The connected spectral

form factor gc = g − gd is also shown. These are matched to the numerical computation of g and

gc from [17].

A more careful comparison of our gc and the numerical gc shows that they match with

a typical deviation of less than 10%. The maximal deviation is around 35%. This is also to

be expected — jumping ahead, the size of the first subleading correction is given in (5.2). If

we plug in p = 4, N = 34, and compute the ratio between (5.2) and the leading correction

we obtain a deviation of 33%, so this is the best that we can hope to do for this value of N .

In the holographic Schwarzian regime, using (3.6), we can approximate the second

moment contribution to the spectral form factor as

g2 ≈ ǫE2
0β

3

2
√

β2 + t2
e

− C
β . (3.19)

This term at late times decays as g2 ∼ t−1, which is slower than the disconnected term

gd ∼ t−3. Thus we expect there to be some intermediate time frame where this term is

the leading contribution to the spectral form factor, with a crossover time tc ≈
√

2/(ǫE2
0).

This crossover region is not seen for N = 34, p = 4, as the crossover time is very similar

to the dip time, however for larger N this intermediate region should exist. We present

an example of such crossover region in figure 14, where we plot the expected spectral form

factor for N = 60. Numerical verification of such crossover region may be within reach

with the recent advances in numerical techniques that have been used to calculate certain

correlation functions numerically for N = 60 [54].

This slower decay of g2 compared to the disconnected spectral form factor also implies

that the dip time (defined as the time of transition from the decay to the ramp) will be

larger. As mentioned above, the dip time as inferred from the disconnected contribution
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Figure 14. The approximate spectral form factor as a function of time for N = 60 and p = 4.

There is a clear crossover region around t ∼ 103 to t ∼ 104 where the spectral form factor is

dominated by g2.

behaves as tdip ∼ eS0/2 [17]. Taking into account the correction from g2 and finding the

time where it crosses the ramp behavior, we get

t
(2)
dip ∼ √

ǫE0e
S0 (3.20)

(where we show the scaling, dropping overall constant and β factors). This is a much later

time compared to tdip. In fact, its exponential entropy dependent term is the same as that

of the plateau time tp ∼ e
S0+ C

2β found in [17]. They are still exponentially separated in N ,

in a temperature dependent way, owing to the C/(2β) term (as C is linear in N).

4 Dual vector model

In this section we will take the Feynman rules that gave us cactus diagrams as the leading

order contribution to the moments of the Hamiltonian, and show that they are equivalent

to a zero dimensional vector field theory. We then show that this dual theory is in fact

closely related to a theory for the random couplings, which allows us to extend this analysis

to non-Gaussian distributions for the random couplings.

To obtain the vector model, we first go over the Feynman rules we found for evaluating

a cactus diagram, and extend them to any Feynman diagram such that only cacti remain

to leading order. The general rules for cactus diagrams are as follows:

1. Each vertex represents a single trace, with k Hamiltonian insertions.

2. Each line connecting vertices is a propagator with the scaling of ǫ.

3. Each closed loop comes with a value of 1/ǫ from the sum over index sets.

Under these rules, a cactus diagram with n vertices is of order ǫn−1.
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Figure 15. An example of a pair of chord diagrams translated into the vector model. Edges in both

graphs correspond to index sets, with different index sets colored differently. Each trace became a

vertex with k/2 pairs of index sets coming out, some of which are contracted to each other.

These rules are the same as for a large M = 1/ǫ 0-dimensional vector model. We can

think of each trace as a vertex, and associate to each index set I a dual scalar vector field

φI . Specifically a trace with k insertions becomes a single vertex with a value

M(k)

(

∑

I

φ2
I

)k/2

. (4.1)

Furthermore, we take the propagator for φI to be Gaussian, with

〈φIφJ〉 = ǫ δIJ . (4.2)

In this large 1/ǫ vector model we see that propagators come with a factor of ǫ, as desired,

and closed index loops indicate a summation over all indices and thus give a 1/ǫ.

It is simple to check that the leading order term of any number of traces in this theory

will be 1, which is achieved by contracting all pairs of identical index sets φI from the same

trace with each other. This corresponds to the leading order disconnected moment, and

indeed it has the right value of 1 (times the disconnected contribution). The leading order

connected piece is indeed cactus diagrams, as before, and the combinatorial factor it gives

is identical to the one above as the counting of the number of diagrams is exactly the same.

We can also translate the multi-trace chord diagrams to this large 1/ǫ vector model,

by simply thinking of each chord as a φ propagator and each trace as a vertex. An example

of this procedure can be seen in figure 15.

The complete joint moments (to leading orders) can be calculated using this dual

model as

M(k1, . . . , kn) = C−1
∫

dφI e
−
∑

I
φ2

I/(2ǫ)
n
∏

i=1







M(ki)

(

∑

I

φ2
I

)ki/2






(4.3)
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where C is the normalization C ≡ ∫

dφI e
−
∑

I
φ2

I/(2ǫ). We will denote the expectation in

this vector model by

〈O(φ)〉φ = C−1
∫

dφI e
−
∑

I
φ2

I/(2ǫ)O(φ), (4.4)

so that 〈1〉φ = 1. Then the connected expectation is defined recursively as in (1.6), only

now with respect to the expectation over the dual fields φI . This dual vector model gives

the correct leading order behavior of the connected moments.

We can also exponentiate the moments (4.3) to get the joint thermal partition function

as an expectation in this vector model

Z(β1, . . . , βn) =

〈

n
∏

i=1

Z


βi

√

∑

I

φ2
I





〉

φ

. (4.5)

To calculate the leading order connected contribution we consider only the connected parts,

or joint cumulants, on both sides of (4.5) with respect to the expectation over the φI ’s.

4.1 The vector model as a theory for the couplings

Already in the dual model results for the moments and the thermal partition function,

equations (4.3) and (4.5), it is apparent that the expectation over φI ’s is similar to the

expectation over the random couplings JI . Not only do they correspond to the same index

sets I, but they also have the same Gaussian distribution (once we re-scale the ǫ1/2 factor in

the Hamiltonian). In this subsection we will make this equivalence exact. As a consequence

of this, we can extend our results to non-Gaussian random couplings.

Throughout this subsection we will assume that the random couplings are independent

identically distributed (i.i.d) with zero mean, unit variance (by their definition, with J
extracted), and bounded moments (but not necessarily Gaussian). We can also easily

extend to other cases as we comment below. Under these assumptions the SYK model is

self averaging and independent of the exact distribution of the random couplings in the

large N limit [10, 16].27 As we will see, multi-trace connected expectations do however

depend on the exact distribution of the couplings [55], and so we should consider different

distributions for the couplings when computing connected multi-trace expectations. We

will further assume in what follows that the distribution is even to make the computations

simpler, though this is not strictly required.

The idea is that at the leading orders we can perform the trace first, before the expec-

tation over the random couplings, and what remains is a theory for the couplings. We can

do it perturbatively around a Gaussian model.

This is done as follows. Consider a particular contraction of JI ’s in the averaged

multi-trace. The argument here is valid only for the contractions that are leading in N

for a given connected component with an even number of insertions. As derived above, at

leading order in N all the JI ’s in a given trace will eventually come in pairs. As a result

27Single trace expectations are independent of the exact distribution of the couplings, while the multi-

trace expectations factorize to single trace expectations at leading order.
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we can first evaluate each trace as a chord diagram, giving us a factor of the disconnected

moment. There are various different contractions of the couplings that will give the same

internal chord diagrams. At leading order in N , the same set of contractions is obtained by

considering the expectation value of product of terms of the form JI1JI2 · · · JI1 · · · JI2 · · · for

every trace, with ordering according to the chord diagram in this trace. (That is, we impose

the ordering of the chord diagrams using large N .) But this means the coefficients coming

from the J ’s of all chord diagrams are the same, and are just 〈(∑I J
2
I )k1/2 · · · (

∑

I J
2
I )kV /2〉J .

Note that in the traces over the fermions there are constraints on the indices, which just

give the overall suppression by a power of ǫ, as explained before.

For clarity, let us give a simple example where we show this explicitly. We can do the

following sequence of equalities for the particular contraction shown here, with an implied

summation over index sets:

tr
(

JI1ΨI1JI2ΨI2JI3ΨI3JI4ΨI4

)

tr
(

JI′
1
ΨI′

1
JI′

2
ΨI′

2
JI′

3
ΨI′

3
JI′

4
ΨI′

4

)

=

= tr
(

JI1ΨI1JI2ΨI2JI1ΨI1JI2ΨI2

)

tr
(

JI′
1
ΨI′

1
JI′

2
ΨI′

2
JI′

1
ΨI′

1
JI′

2
ΨI′

2

)

=

=
(

JI1JI2JI1JI2

)(

JI′
1
JI′

2
JI′

1
JI′

2

)

· ǫ3 · tr
(

ΨK1ΨK2ΨK1ΨK2

)

tr
(

ΨK1ΨL2ΨK1ΨL2

)

=

=
(

JI1JI2JI1JI2

)(

JI′
1
JI′

2
JI′

1
JI′

2

)

· (Chord diagram 1) · (Chord diagram 2).

(4.6)

Let us repeat the steps. In the first equality, we used the fact that in the leading order in

N contractions, the JI ’s come in pairs. This is the crucial step from which the argument

already follows. But to be explicit about the chord diagrams we can continue with the

evaluation. In the second equality we separated the indices of the JI ’s and the fermions

ΨI ’s, and it results in the explicit binomial coefficient (the variances from the contractions

are the same in the second and third lines). In the third equality we used once again the

argument in (3.2) by which we can make the indices in the traces independent, with the

appropriate binomial suppression.

Therefore, we see that

〈

trHk1 · · · trHkn

〉

J
=

〈

n
∏

i=1







(

ǫ
∑

I

J2
I

)ki/2

M(ki)







〉

J

. (4.7)

We note that (4.7) only holds at leading order in N for each connected component. As (4.7)

matches the expression for the moments from the dual vector model, (4.3), it follows that

the φI ’s of the vector model are really the random couplings JI , up to a normalization

of ǫ−1/2.

The distribution of the couplings JI could include higher moments (independent of ǫ)

and the perturbative analysis goes through, with the result (4.7), where the average over

J given with the corresponding distribution. We analyze a simple example below. We
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u

Figure 16. Leading contributions to the double-trace in a non-Gaussian distribution.

could just as well consider couplings that are not independent, and the result remains the

same. The difference is that the scaling with ǫ of the higher moments should be taken

appropriately, and it can be chosen so as not to affect the single trace moments.

4.1.1 An example of non-Gaussian couplings

As a simple example of such a computation with a non Gaussian distribution, consider

adding a 4-point interaction term
∑

I
u
4!J

4
I to the distribution of the couplings. This adds

a new vertex with 4 identical φI fields to the vector model. Notice that all the moments of

JI for fixed I are independent of N and uniformly bounded (in the large N limit), so we

have universality of the single trace quantities, in the sense that they are independent of

u. For example, Z(β) does not depend on u in the large N limit but Zc(β1, β2) does.

Consider the double-trace moments, and let us consider them as a perturbation theory

in u at leading order in ǫ (or at each order in ǫ). At leading order, we have the diagrams

shown in figure 16, where the notation is as before, and in addition by non-filled squares

we denote the perturbations (recall that the filled ones stand for the traces). The first

diagram is the only one we had before, and gave us something of the order ǫ. The second

diagram goes as ǫ2 1
ǫu and so is also proportional to ǫ.28 We see it affects the (connected)

double trace at the leading order in ǫ. Its effect on the disconnected part is subleading.

Thus the double-trace moments up to order u (in the convention above) is

Mc(k1, k2) = M(k1)M(k2) · ǫk1k2

2

(

1 +
u

2
+ · · ·

)

. (4.8)

We can continue in perturbation theory in the standard way to find higher order

corrections in u, or add additional interaction vertices for the couplings which can also be

taken into account in a similar manner. Thus the vector model is a powerful tool to find

the leading order multi-trace correlates for arbitrary distributions of the coupling.29

We would like to emphasize the point that M(k) does not depend on u, but M(k1, k2)

does. I.e., single trace quantities are universal, while connected multi-trace quantities are

not, and even the leading corrections change as the distribution changes. This means

that at the level of a single trace there is a single gravity description (independent of

the distribution of the couplings) but the gravity description of the theory with several

boundaries is not universal at the time scales that we are interested in.
28The first factor of ǫ2 comes from the insertions, and the 1/ǫ is from the sum over the free index I. Note

that we do not allow self contractions of the interaction vertex.
29So long as the distribution satisfies the standard requirements of being bounded with a normalized

variance, so that the single trace expectations are universal and self averaging.
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4.2 The h2 fluctuation parameter, and the gravitational description of the

leading global mode

We would like to interpret the results above in the gravitational dual theory (going back

to the Gaussian distribution for the couplings). In equation (4.3) we wrote (to leading

order) the connected multi-trace correlator as a simple integral, where in the integrand

we have the single trace quantities after the ensemble average. Therefore, to obtain the

gravitational interpretation we just need to rewrite each trace in terms of the gravity dual,

interpret the result, and we are done.

The only twist comes in the interpretation stage. The integral that we carry out is

over
(N
p

)

quantities, and these do not necessarily have a meaning in gravity, which is the

effective theory of the averaged quantities (in the SYK context). We would therefore like to

replace this integral by a “compressed” version. In other words, we would like to find a set

of “minimal” modifications to the gravity action that produces the full cactus expansion

for any number of traces. We therefore begin by “minimizing” the vector model to the

smallest possible set of degrees of freedom, which is just the fluctuation of h2 =
√

∑

φ2
I .

This is similar to a single instance of the average over α states discussed in [24, 56].

This is straightforward. Starting from equation (4.5), we can go to radial coordinates

for the φI ’s with h2 ≡
√

∑

I φ
2
I , and integrate the

(N
p

)− 1 dimensional sphere. Then we see

that the joint thermal partition function is simply

Z(β1, . . . , βn) = A−1
∫ ∞

0
dh2 h

1/ǫ−1
2 e−h2

2/(2ǫ)
n
∏

i=1

Z (h2βi) =

∫ ∞

0
dh2Ph2(h2)

n
∏

i=1

Z (h2βi) ,

(4.9)

where A ≡ ∫∞
0 dh2 h

1/ǫ−1
2 e−h2

2/(2ǫ), and Ph2(h2)dh2 (implicitly defined by the equality) is

a probability measure on the fluctuation parameter h2.

From here we can do a simple saddle point calculation of this integral. The large 1/ǫ

action for h2 has a saddle point at h2 = 1 and expanding around this saddle point gives

the cactus diagrams we saw before. For example, the leading order connected two trace

thermal partition function is obtained by setting h2 = 1 +
√
ǫρ, and expanding the integral

for small ǫ.

The important point is that Z is already the ensemble averaged single trace partition

function. That is,

Z (h2βi) = 〈tr(e−h2βiH(J))〉J,〈J2〉=1 = 〈tr(e−βiH(J))〉J,〈J2〉=h2
2

(4.10)

and the non-trivial connected multi-trace correlator is induced only by the fluctuation

parameter h2. In the 2nd equality we emphasize that it is also the partition function in an

ensemble where the average size of the couplings is rescaled by h2.

The main point now is that if the ensemble averaged theory has a gravitational descrip-

tion, then we can replace each Z in (4.9) by the gravity expression for the quantity, i.e.,

Z(β1, . . . , βn) =

∫

dh2 Ph2(h2)
n
∏

i=1

Zgrav (h2βi) . (4.11)
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In the SYK model that we are discussing, this can be concretely one of the following

• Hgrav = HSchwarzian in the low energy limit. For example we can take30 HSchwarzian =

HLiouville (as in [57, 58]).

• The full large p SYK partition function [2–4].

• Hgrav = Tdouble scaled where the latter is the transfer matrix of the double-scaled SYK

model (as in [7]).

In any case, if we think about (4.11) as coming from some Euclidean path integral over

some geometry, then each space is multiplied by a fluctuating parameter which rescales the

entire action.

Another way of phrasing this is to define an effective Hamiltonian and an effective

partition function

Heff = h2H, Zeff =
〈

tr
(

e−βHeff

)〉

J
. (4.12)

Equation (4.11) is perhaps familiar from the discussion of wormholes [21, 24, 25, 44, 56,

59–64]. There too, wormholes are equivalent to fluctuations in parameters in the theory.

There are, however, some differences.

The first is that there are no wormholes. In fact, this effect is considerably larger than

anything that can be obtained by a smooth 2D surface with multiple boundaries. Smooth

surfaces will introduce a connected component which scales like

connected from wormhole ∼ exp(−κN) (4.13)

where κ is a finite number which depends on the topology of the surface (and N is the

number of fermions). Here the size of the effect is

Connected ∼ ǫ =

(

N

p

)−1

∼ N−p, for finite p; (4.14)

or

Connected ∼ ǫ =

(

N

p

)−1

∼


e

√

N

λ





−
√
λN

(λN)1/4 e− λ
2 , λ = p2/N, (4.15)

for the double scaled SYK model. In particular, it is a perturbative effect for finite p, which

is perhaps an irrationally large value. This is of course just the power of N in which we

will expect to see the effects of replicas.

The other difference is that Z in equation (4.10) is still an ensemble averaged quantity,

and not the partition function for a fixed value of the parameters. This, however, can be

fixed at a small cost. We can consider a different averaged partition function, which is the

ensemble average conditioned on the value of
∑

J2
I

mk|h2
=

∫

dNJIe
−
∑

I
J2

I /2δ(ǫ
∑

J2
I − h2

2)tr(Hk)
∫

dNJIe
−
∑

I
J2

I /2δ(ǫ
∑

I J
2
I − h2

2)
(4.16)

30With an additional constraint on the initial and final state.
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where h2 is slightly off 1. We can then use the fact that

(h2
2)k/2mk = mk|h2

(1 + O(ǫk2)). (4.17)

So to leading order we can replace each Z by the conditioned partition function.

Life in a given realization. Consider now taking (4.17), and resumming it to the

partition function, to obtain

Z(β1, . . . , βn) =

∫

dh2 Ph2(h2)
n
∏

i=1

Zgrav

(

βi|ǫ
∑

J2
I = h2

2

)

(4.18)

then we can discuss the dual of a given realization. In a given realization of the theory

has a specific h2
2 value which slightly differs from 1. This is the leading piece of infor-

mation about the specific realization. It seems that, to the order that we are discussing,

correlation function in this specific realization are the same as correlation functions in a

universe obtained by integrating over all the couplings with the conditional distribution

(i.e. constrained by ǫ
∑

J2
I = h2

2). So on the one hand we are provided with the leading

information about the distribution, and on the other hand we are still averaging on almost

the same number of random coupling, giving rise to a gravitational dual (as in the standard

coupling-averaged SYK duality).

This is at the leading level of precision. More and more detailed information about the

specific realization appears in higher and higher order corrections, and we turn to these in

the next section.

5 New fluctuation parameters

The multi-trace diagrams that are not of the cactus type give higher order corrections

in N . However, if one of the k’s in Mc(k1, · · · , kV ) is odd, there are no contributing

cactus diagrams and a non-zero answer comes from these higher order terms. Higher order

contributions of this type are therefore both easy to isolate, and provide a useful example

of how generic higher order corrections work in general.

We will start in section 5.1 by analyzing in detail the case of two traces Mc(k1, k2) for

k1, k2 odd, and find its leading behavior. Then in section 5.2 we will generalize this to other

multi-trace moments, and in section 5.3 we show how to change the effective Hamiltonian

to generate such connected terms. In particular we will show that if we require locality of

the effective Hamiltonian, then not only would there be new fluctuations parameters, but

we necessarily have to introduce new fields into the theory with specific couplings. We will

occasionally refer to them as fluctuation fields.

5.1 The odd moments of the double trace

As we found before, the leading contributions to the double trace partition function come

from the minimal number of couplings connecting the two traces. Thus the next order

correction to the double trace partition function comes from connecting three couplings
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I1

tr H
k1 tr H

k2

I2

I3

Figure 17. An example of a diagram contributing to the odd double trace with k1 = k2 = 9. Here

we show the full multi-trace chord diagram, including the internal chords within each trace.

between the traces,31 which contributes to the connected odd moments Mc(k1, k2). An

example is shown in figure 17.

We shall start by computing the lowest of these moments, Mc(3, 3), and then generalize

to other k1, k2. We must fully connect the Hamiltonians between the two traces for this

contribution to be non-vanishing, and additionally all fermionic indices must appear exactly

twice within each trace. As mentioned, this immediately tells us that every one of the three

ΨIj ’s in each trace must share half of their indices with the other two ΨI ’s.
32

Mc(3, 3) is now straightforward to compute. Having balanced the fermions in each

trace as was just mentioned, ensemble average over the couplings implies that we have

the same index sets in the two traces. The only thing that can change between the two

traces is the ordering of the fermions inside them. Since the trace is cyclic we only have

two possible such configurations, and since we are summing over all configurations we are

bound to receive contributions from both. This gives us

Mc(3, 3) = 3

(

N

p

)−3
∑

|I1|=|I2|=|I3|=p/2
Ii∩Ij=∅, i 6=j

(

tr(ΨI1ΨI2ΨI2ΨI3ΨI3ΨI1)tr(ΨI1ΨI2ΨI2ΨI3ΨI3ΨI1)

+ tr(ΨI1ΨI2ΨI2ΨI3ΨI3ΨI1)tr(ΨI1ΨI2ΨI3ΨI1ΨI2ΨI3)

)

(5.1)

where we have implicitly rearranged the ordering of the indices in each index set relative

to the previous convention. This, however, does not introduce any additional signs since

we rearrange the index set in the two traces simultaneously. We see that in the first line

the traces have the same ordering, and in the second line we have switched (ΨI2ΨI3) ↔
(ΨI3ΨI1). Since we know that ΨIa ∩ ΨIb

= 0 for a 6= b, we have ΨIaΨIb
= (−1)p/2ΨIb

ΨIa ,

31Recall that when we connect a single coupling between the two traces we get zero in each trace.
32We have such a single solution for the intersections size only in this case. This is another distinguishing

feature of this first subleading correction. In section 6.1 we will discuss the situation where four or more

index sets are correlated, in which case there is a large number of possibilities for partial overlaps.
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so that if p/2 is odd the two contributions in (5.1) cancel each other, while if p/2 is even

they add up. We can take the sum over all possible index sets explicitly in this case, and

find that

Mc(3, 3) =

{

6
(N
p

)−3( N
3p/2

)(3p/2
p

)( p
p/2

)

, 4 | p,
0, 4 ∤ p.

(5.2)

For the rest of the section we will assume p is divisible by 4 and so this contribution does

not vanish.

Now let us consider arbitrary k1, k2. We should go over all possibilities of choosing,

in each trace, which three Hamiltonian insertions participate in the triple contraction as

above. When we draw the chord diagrams it is convenient to cut the diagram (or start the

trace) at one of those three insertions, which we can think of as the “first” one. Since the

trace is cyclic, we need to divide each trace by 3, as any of them will be counted once as

the “first” one. The distances between those three insertions can be arbitrary, hence we

should sum over them. Each trace therefore contributes

Wk ≡
(

N

p/2

)−3
∑

|I1|=|I2|=|I3|=p/2
k1+k2+k3=k

〈

tr
(

ΨI1ΨI2H
k1ΨI2ΨI3H

k2ΨI3ΨI1H
k3

)〉

J
=

=

(

N

p/2

)−3
∑

|I1|=|I2|=|I3|=p/2
k1+k2+k3=k

〈

tr
(

ΨI2H
k1ΨI2ΨI3H

k2ΨI3ΨI1H
k3ΨI1

)〉

J
.

(5.3)

Note that we dropped the constraint that I1, I2, I3 are distinct, which is justified at large

N .33 The normalization factor is chosen in correspondence which will be useful when

handling Wk as a 6-pt function later on.

With this definition, the full double-trace connected moment for odd k1, k2 is given by

Mc(k1, k2) =
k1k2

9
Mc(3, 3)Wk1−3Wk2−3 + higher order terms (5.4)

(as mentioned, we choose for each trace the first element, giving a factor of k, and divide

by 3 for overcounting).

We see that the computation reduces to a calculation of a certain (ordered) 6-point

function. In fact, up to a numerical value, we could consider a generic 6-point function

(where every pair of operators are next to each other), and allow all possible contractions

of those operators, except for neighboring ones (as in normal ordering). For p/2 even, this

is just what we have here. We will see such a computation explicitly in subsection 5.3.

Computing this 6-point function depends on the precise large N limit considered, and

can be done in the scaling in which p is independent of N using [65]. Here we will perform

this calculation explicitly in the double-scaled limit. But it is important to emphasize that

for any scaling the result is a product of two 6-point functions, one in each space.

33When viewed as chord diagrams, we do not assign a value to the intersections of the corresponding

chords, but rather only to an intersection of a Hamiltonian chord with one of the Ij chords. Since at large

N we have no elements in common to three such sets of size of order p, we can drop the empty intersection

condition. The calculation can also be done without this assumption with the same large N result.
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k1 k2 k3

Figure 18. A demonstration of the 6-point function that is needed for the calculation of odd

moments.

The 6-point function of interest, (5.3), is demonstrated in figure 18. It can be calculated

similarly to what is done in [7], which we closely follow. The idea is that the intersections

with the first and third dashed chords are easily accounted for, since any open chord that we

have in the regions between the dashed chords, necessary crosses them. This is accounted

for by the operator S that gives a factor of q1/2 for every open chord (since here the dashed

chords correspond to operators of size p/2). All that remains is to account for intersections

with the dashed chord in the middle. Propagation along such a contracted pair is explained

in section 3.1 of [7]. Denoting an operator of size p/2 by M̂ , and using notations as in [7],34

Wk is given by

Wk =
∑

k1+k2+k3=k

〈

0
∣

∣

∣T k1qN̂/2M̂T k2M̂qN̂/2T k3

∣

∣

∣ 0
〉

=
∑

k1+k2+k3=k

∞
∑

n,m=0

m
∑

i=0

P
(m)
i

〈

0
∣

∣

∣T k1

∣

∣

∣n
〉

qn/2
〈

n
∣

∣

∣DiST k2SU i
∣

∣

∣m
〉

qm/2
〈

m
∣

∣

∣T k3

∣

∣

∣ 0
〉

=
∑

k1+k2+k3=k

∞
∑

n,m,i=0

qn+m+i

(q; q)n(q, q)m

∫ π

0

3
∏

j=1

{

dθj
2π

(

q, e±2θj ; q
)

∞

(

2 cos θj√
1 − q

)kj
}

×Hn+i(cos θ1|q)Hn(cos θ2|q)Hm(cos θ2|q)Hm+i(cos θ3|q). (5.5)

This can be simplified, written in terms of Al Salam-Chihara polynomials Qi (defined in

equation (B.14) of [7])

Wk =
∑

k1+k2+k3=k

∞
∑

i=0

qi
∫ π

0

3
∏

j=1

{

dθj
2π

(

q, e±2θj ; q
)

∞

(

2 cos θj√
1 − q

)kj
}

×
(

q2; q
)2

∞
(

qei(±θ1±θ2); q
)

∞
(

qei(±θ3±θ2); q
)

∞ (q2; q)2
i

Qi
(

cos θ1|qe∓iθ2 ; q
)

Qi
(

cos θ3|qe∓iθ2 ; q
)

.

(5.6)

This expression for Wk completes the result for the double-trace connected odd moments.

34T is the transfer matrix that represents the Hamiltonian in chord space. U (D) are matrices with 1’s

one diagonal above (below) the main diagonal, and P
(m)
i is defined there, with q̃ =

√
q. N̂ counts the

number of chords at the point where this operator appears. The state |n〉 stands for the state with n open

chords. (a; q)n are the Pochhammer symbols and Hn(x|q) are the q-Hermite polynomials.
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Figure 19. A demonstration of the general diagrams contributing to leading order in the case of

two vertices of odd degree, which are made of cactus diagrams built on top of the basic diagram.

5.2 Multi-trace correlators

In the previous subsection we discussed the case of two traces, with odd powers of H. It is

easy to generalize it to the case of a general number of vertices V , where two of them are

of odd degree. In this case, the general diagrams that contribute to the connected moment

are cactus diagrams built on top of the basic diagram of the previous subsection. A generic

diagram of this sort is demonstrated in figure 19.

In order to represent these contributions in the theory for the couplings J (as in

section 4), we use, as before, that whenever three index sets are paired the trace forces

those three indices I1, I2, I3 to satisfy |I1 ∩ I2| = p/2 and then I3 = I1 ⊕ I2 (where ⊕
stands here for the XOR operation). Then, the vertices with odd degree k correspond to

the operator

Ok =
k

3
Wk−3



ǫ3/2
∑

|I1∩I2|=p/2

JI1JI2JI1⊕I2





(

ǫ
∑

I

J2
I

)(k−3)/2

, (k odd). (5.7)

This allows for the leading order case of having a single constraint involving three paired

chords, with the rest being of the form of cactus diagrams.

Just as before, the propagator is still normalized to 1 as it simply comes from the value

assigned to each chord (that is, a contraction of two J ’s)

〈JI1JI2〉 = δI1,I2 . (5.8)

The traces of even degree are just as before

Ok = mk

(

ǫ
∑

I

J2
I

)k/2

, (k even). (5.9)
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Figure 20. Two different diagrams contributing to four traces with odd degree. Note that addi-

tionally there is a diagram looking like a tetrahedron, contributing at the same order as the diagram

shown on the l.h.s.

The generalization to further higher orders should now be clear. Any vertex corre-

sponds to a sum of terms of the form

JI1 · · · JIk
(5.10)

such that every SYK site appears an even number of times among the Ij ’s, or, more con-

cisely,
∑k
j=1 rj = 0 where rj is the set Ij represented in ZN2 , multiplied by the appropriate

amplitude. This is simply the trace constraint. For every given structure of indices, the

trace translates to a certain form of a chord diagram (that is not just a contraction of

pairs), and the value of the diagram (with the appropriate combinatorial factor) is the

amplitude. The expressions above, equations (5.7) and (5.9), give the leading contribution

in this sum, for odd and even degrees respectively.

5.2.1 More than two vertices of odd degree

We saw what happens exactly at leading order when we have two vertices of odd degree.

Now we would like to discuss the general case. To be concrete, suppose that there are

non-zero diagrams contributing when we use (5.7) for the odd degree vertices, and (5.9)

for the even degree vertices. Are there other possibilities that may give a result that is of

lower order (i.e., more dominant)? As we will show here, the short answer to this question

is “no”, namely that a non-vanishing result with the vertices (5.7) and (5.9) will be the

leading order. For example consider the case of four traces with all nodes having an odd

degree. Two of the diagrams contributing to this case are shown in figure 20. While all

vertices are of the form (5.7) in the diagram on the left, there is one vertex not of this form

for the diagram on the right (requiring three invariants, each consisting of three J ’s). In

these cases it can be checked that the order of the first diagram is ǫ4, while the second one

is ǫ9/2 which is subleading.

In order to show the statement above, first note that if we use basic invariants of the

J ’s that are higher than the JI1JI2JI1⊕I2 and J2
I appearing in (5.7) and (5.9), then clearly

the result will be of higher order. What is not clear is what happens when the vertices are

made of one or more of these dominant quadratic and cubic invariants (as we have in the

example on the right hand side of figure 20).35 In all these cases, we can represent them

by the familiar double line notation. Namely, we split all index sets of size p, and consider

35Which scales as a disconnected diagram.
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now index sets of size p/2. The random couplings are then of the form JI1I2 and the cubic

invariant is JI1I2JI2I3JI1I3 .

Suppose then that we have a Feynman diagram with Vn vertices of degree n (for

n = 2, 3, · · · ), E (double line) propagators and L loops (of single lines). Then as we saw

each propagator gives ǫ, while each loop gives an order of ǫ−1/2 (since the sets are of size

p/2). Then each diagram is of the order (using χ = V + L− E and E =
∑

n
nVn

2 )

ǫE−L/2 = ǫ−
χ
2

+
∑

n( 1
2

+ n
4 )Vn . (5.11)

As expected, increasing the degree of vertices can only lead to a smaller result. Indeed, for

the first diagram in figure 20 we have χ = 2, V3 = 4 giving ǫ4. In the second diagram, we

are connecting three times the basic diagram (of two vertices connected by three edges)

each one having V3 = 2 (and χ = 2) giving in total (ǫ3/2)3. Each such addition of a diagram

can lower the degree by ǫ−χ/2, that is at most by ǫ−1, however, if we compare diagrams

with the same number of vertices, it has an extra vertex giving ǫ
1
2

+ n
4 , which suppresses by

at least ǫ5/4. Therefore, it can only lead to higher order results. Note that for n = 2 we

have ǫ
1
2

+ n
4 = ǫ, and this is why we found many diagrams of the same order in the even

degree case, which are the cactus diagrams.

5.3 The effective Hamiltonian of the h3 fluctuation

In subsection 5.1 we wrote the connected odd correlation function in equation (5.4). In

the double scaling limit, an exact expression for Wk is given in (5.5) but an inspection of

figure 18 reveals that it is related to a 6-point function for any value of p. In subsection 5.2

we showed how to incorporate this in the theory for the couplings. However, in the latter,

we had to explicitly use Wk as a new object in the vertex. Here we show another way to

represent the correction to the double-trace of odd moments that automatically generates

this Wk correction via a relatively simple modification of the single trace Hamiltonian.

The ideology is similar to the one we used before in section 4.2. There we rewrote the

connected part of the multi-trace correlator, induced by fluctuations of h2, as

Zc(β1, · · · , βn) =

∫

conn
dh2P (h2)Z(h2β1) · · ·Z(h2βn) (5.12)

where the Z’s on the r.h.s. are the single trace partition functions after averaging over the

couplings or, equivalently but more interesting for us, the gravitational partition functions.

The fluctuation parameter h2 is just h2
2 = ǫ

∑

I J
2
I .

Here, we would like to write the odd double-trace contribution in a similar form. The

fluctuation parameter that we need to include is h3
3 = ǫ3/2∑

|I1∩I2|=p/2 JI1JI2JI1⊕I2 . But

for now let us not commit to using h3 and denote it as a general parameter α

Zc(β1, · · · , βn) ∼
∫

conn
dαdh2P (α, h2)Z(β1, h2, α) · · ·Z(βn, h2, α) (5.13)

where h2 is the random variable which encodes the h2 fluctuation, and α is a new ran-

dom variable (or a set of a few variables) which reproduces the h3 fluctuation parameter.

P (h2, α) is their joint probability measure.
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The reason for using α is that we will present two possible options of implement-

ing (5.13). The first uses a general α not related to h3, but we currently have it working

only for the double trace. The second uses h3, and it works more generally, but it entails

another peculiar ingredient to be discussed below.

The Z’s are modified single trace “partition functions” computed separately for each

trace, for which we can find a gravitational dual (for every relevant value of α). These new

“partition functions” are approximately the familiar single trace partition functions (after

ensemble average, or equivalently written in the gravitational language), modified by small

α dependent terms.

The key requirement that goes into constructing the Z’s is the requirement that the

α-dependent modifications will be “minimal” when interpreted gravitationally. By this

we mean, for example, that the modification will be local and will include a minimal

set of particles and interactions, and with a “reasonable” (in some loose sense) gravity

interpretation.

In the first realization, the form of the modification will be the following. At step one,

we consider a random operator36 O of length p/2 (or a corresponding field in the bulk),

and change the Hamiltonian into

Ĥ = H + α : O2 : , (5.15)

and then

Z(β, α) = 〈e−βĤ〉J,O. (5.16)

Here H is the original Hamiltonian and we are averaging over the random coefficients in H

and in O. By the normal ordering of O2 we meant that we do not allow self contractions.

In step 2, we replace the r.h.s. of (5.16) by the suitable gravitational dual. Each such

Z has such a dual gravitational interpretation, since we are doing a small double-trace (in

the sense that we deform the theory by O2) deformation of a background which has a good

gravitational dual [47–49]. The net result will be a deformation of the original gravitational

action by a small double-trace deformation with a random coefficient (which is correlated

across different universes).

Basically, we will simply verify explicitly that (5.15), with an appropriate P (α), gen-

erates the correct fluctuation for two traces. Still, it is instructive to first argue why we

modify the Hamiltonian by an O2 term. The original expression that we are interested in

can be written as

〈tr(e−β1H)tr(e−β2H)〉J =

=

〈

tr

[(

1 − β1

L1
H

)

· · ·
(

1 − β1

L1
H

)]

tr

[(

1 − β2

L2
H

)

· · ·
(

1 − β2

L2
H

)]〉

J

(5.17)

36As a reminder, a random operator O of length p′ is of the form

O = ip′/2

(

N

p′

)−1/2
∑

L

J̃LΨL (5.14)

where L are index sets of length p′, and the J̃ are Gaussian independent random variables normalized such

that 〈J̃LJ̃L′ 〉 = δL,L′ .
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where there are L1 (L2) products in the first (second) trace and L1, L2 → ∞. To get

the desired odd moments, we go over all possibilities of choosing three Hamiltonian terms

out of the first trace in (5.17), as well as three Hamiltonian terms in the second one. We

would like to correlate them in such a way as to generate (5.4), or more precisely figure 18.

The diagram in that figure corresponds to a 6-point function, where each Hamiltonian is

replaced by a pair of operators. Effectively we replace the 3 Hamiltonian insertions (that

we chose in each trace) by

(

1− β1

L1
H

)A1
(

1− β1

L1
H−α

β1

L1
O1O2

)(

1− β1

L1
H

)A2
(

1− β1

L1
H−α

β1

L1
O2O3

)

×

×
(

1− β1

L1
H

)A3
(

1− β1

L1
H−α

β1

L1
O3O1

)(

1− β1

L1
H

)A4

,

(5.18)

where A1 +A2 +A3 +A4 = L1 − 3, and α is a small parameter proportional to Mc(3, 3)1/3.

It will shortly be promoted to a random variable. The subindex in Oj indicates the identi-

fication of the operators. This reproduces both the original α0 partition function and the

α3 WL1−3 terms. The net result seems to involve adding OiOj terms to the Hamiltonian

with a coefficient proportional to α.

Changing the Hamiltonian into H+α
∑

i6=j,i,j=1,2,3OiOj is still cumbersome, since they

are all operators with the same dimension (1/2) and the same propagators. In fact, we can

do with a modification of the form

[

1 − β1

L1

(

H + α : O2 :
)

]L1

(5.19)

if we focus on the α3 term in each trace. So choosing 3 H’s in the trace and replacing them

by the 6-point function is correctly captured just by changing the effective Hamiltonian.

In this replacement we of course generate additional terms that we do not want.

So there are several consistency conditions that we should impose on the Hamiltonian

modification:

• It should not modify, at leading order in N , the single trace partition function.

• Since we can bring down also 2 interaction terms in each trace, it might give us

cactus-like contributions — we need to verify that this is not the case, at least in

leading order.

• It should reproduce the odd double-trace leading order result.

Let us verify that (5.15) satisfies these constraints, with an appropriate P (α). The

last condition is given in terms of moments as the requirement that

Mc(k1, k2) = 〈Meff(k1)Meff(k2)〉conn,α (5.20)

where

Meff(k) = 〈trĤk〉J,O (5.21)

is the effective moment after tracing over the microscopic operators and couplings.
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As above, α is a small parameter in which we expand. Explicitly, it should go as
(N
p

)−1/4
in order to give the N dependence of the odd double trace. (This is because we

will see that the leading contribution will come from six insertions of α, and we saw that

the odd double trace scales like
(N
p

)−3/2
.) We should specify a probability distribution for

α that reproduces the 6-point function contribution that we saw above. Let us take

P (α) =
1

2
(δ(α− κ) + δ(α+ κ)) ; (5.22)

we will specify κ in a moment. Note that this distribution satisfies

〈αn1αn2〉 − 〈αn1〉〈αn2〉 =







κn1+n2 if n1, n2 are odd

0 otherwise
. (5.23)

Since : O2 : is normal ordered, the effective trace vanishes at first order in α. Working up

to sixth order in α, the only contribution to the connected double trace is

〈Meff(k1)Meff(k2)〉conn,α ≈ κ6k1

3

∑

i1+i2+i3=k1−3

〈tr : O2 : H i1 : O2 : H i2 : O2 : H i3〉

× k2

3

∑

j1+j2+j3=k2−3

〈tr : O2 : Hj1 : O2 : Hj2 : O2 : Hj3〉,
(5.24)

where we have used cyclicity to start the trace before one of the operator insertions, just

as before. We have not included various lower powers of κ which correct the disconnected

moments (i.e., correct each moment separately), since we consider the connected moment.

Each averaged trace is what we have in the definition of Wk.
37 These are non-vanishing

only for k1, k2 odd. So, choosing

κ =
1

1 + q1/4
Mc(3, 3)1/6 (5.25)

we get indeed Mc(k1, k2) as in (5.4), establishing (5.20).

This effective Hamiltonian has been constructed in order to reproduce the connected

piece in the two trace correlator. One can ask whether, for example, it reproduces correctly

all the diagrams in figure 19. The answer is no — it actually does generate all the correct

diagrams for a multi-trace correlator with odd vertices, but it does not give the correct

combinatorial factors. So one can either try and complicate the model, or re-start in a

more systematic way (which will entail some additional twists).

Perhaps the most “natural” choice is to replace α in (5.15) by

h3 =



ǫ3/2
∑

|I1∩I2|=p/2

JI1JI2JI1⊕I2





1/3

, (5.26)

37To determine the proportionality constant, note that each averaged trace contains 8 different contrac-

tions of the O’s, where each one is just the trace in the definition of Wk, times some power of q1/4 from

the intersections of the O chords [7]. So each of the two traces equals Wk times a simple constant factor of

(1 + q1/4)3 (since every pair in O2 can be exchanged).
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and then to consider the vector model of the couplings derived in section 5.2. This is in

analogy to the definition of h2 as h2 =
(

ǫ
∑

I J
2
I

)1/2
. This choice also has a “natural”

probability distribution P (h2, h3) derived directly from the probability distribution of the

couplings (or dual vector model.)

Replacing α by h3 has the advantage of automatically satisfying the first and last

conditions from the list above, however it does modify the even terms. Additionally there

is some ambiguity as to which root to pick out of the possible three (if we allow phases).

Unlike previously where taking h2 to be the positive or negative square-root gives the

same result, in this case the different roots do not give the same answer. Indeed the

different choices of h3 “interfere” with each other, and in particular if we sum over all three

possibilities only the desired contributions with three h3 terms remain.

This observation tells us how to modify the Hamiltonian in a consistent way: simply

sum over all different choices of the cube-root in each trace separately. This is done by

correcting the : O2 : term using a new “random” variable χ which is to be drawn from the

discrete measure over the complex plane with equal support at the points 1, e2iπ/3, and

e−2iπ/3. This new effective Hamiltonian now also satisfies the second condition, and allows

us to write the effective action in a compact form

Heff = h2H + h3χ : O2 : , (5.27)

and

Zeff(β, h2, h3) = 〈tr
(

e−βHeff

)

〉J,O,χ. (5.28)

The probability measure P (h2, h3) for Gaussian couplings is given by integrating over

the dual vector field with the defining constraints:

P (h2,h3) =

∫

DJIe
− 1

2

∑

I
J2

I δ



h2−
√

ǫ
∑

I

J2
I



δ






h3−



ǫ3/2
∑

|I1∩I2|=p/2

JI1JI2JI1⊕I2





1/3





.

(5.29)

It is worth noting several points. The first is that the χ variable is local to each universe.

I.e. in each Z we sum over its own χ variable independently of the other universes. The

only information which carries between universes is h2 and h3 as expected.

Averaging over χ for each universe, in and of itself, is not a problem. It just means

that the theory splits into sectors, labelled by χ, and the full theory is the sum over these

sectors. In each sector, the Hamiltonian is slightly different.

There is one fly in the ointment which is that the effective Hamiltonian (5.27) is no

longer Hermitian as χ is complex, though the final result in the multi-trace correlator is

always real due to the sum over complex conjugate values of χ. We are not sure how to

interpret this from a gravitational standpoint, and if the loss of Hermiticity has any grav-

itational consequences, especially since the underlying microscopic Hamiltonian is always

Hermitian.
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6 Fluctuation parameters, fixed realization and wormholes

6.1 General fluctuation parameters

We discussed until now the connected contribution of multi-trace correlators induced by

fluctuations of h2 =
(

ǫ
∑

J2
I

)1/2
and h3 =

(

ǫ3/2∑

I1+I2+I3=0 JI1JI2JI3

)1/3
. These terms

were easier to handle because they were the leading contribution to appropriate moments

(they are also unique in that they are “isolated” in a sense that we will discuss below).

These, however, are just the first out of an infinite (in the large N limit) number of

fluctuation parameters. We will focus on the latter and briefly discuss their contribution

to the connected two-trace correlator.

One estimate for the size of contributions from higher fluctuation parameters is given

in [17, 23]. For the case of 〈tr(Hk)tr(Hk)〉, when the random coefficients are all paired

between the traces in their order along the circle, then

Mc,ladder(k, k)|
k pairings

=

(

N

p

)−k
2−N

N
∑

m=0

(

N

m

)





p
∑

j=0

(−1)j
(

m

j

)(

N −m

p− j

)





k

. (6.1)

This is of the order of
(N
p

)−k/2
for small k, and of the order 2−N at large k.

This clumps many fluctuation parameters together, but we can be more specific about

the strength of each one separately. Consider the case that we want to contract n Hamil-

tonians between the two traces.38 The requirement that each Majorana fermion appears

twice means that we need to split the n multi-fermions index sets into smaller index sets,

such that each of the latter appears in two of the n Hamiltonians. More specifically, we

split the multi-index sets of the Majoranas in groups as

Ψ1 = Ψ1,1 · · · Ψ1,n

Ψ2 = Ψ2,1 · · · Ψ2,n

...

Ψn = Ψn,1 · · · Ψn,n ,

(6.2)

with the constraint that 1) Ψi,j = Ψj,i, 2) Ψi,i = ∅, 3) the intersection of Ψi,j1 and Ψi,j2

is empty for all 1 ≤ i ≤ n, j1 6= j2, and 4) that the total length in each row is p. Notice

that these four conditions are equivalent to contracting the ΨI ’s in an O(N) invariant

way, and hence we are really just enumerating the possible O(N) invariant combinations

of n couplings.

If we denote |Ψi,j | = nij , then the nij ’s satisfy

nij = nji,
∑

j

nij = p, nii = 0, nij ∈ N ∪ {0}. (6.3)

The associated chord diagram is the same as in figure 17 except with n insertions correlated

between the two traces.

38The two traces can have k1, k2 ≥ n insertions in total.
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Each fluctuation parameter corresponds to a different set of nij ’s that satisfy the

constraints (6.3). For a fixed set of nij ’s the contribution of such a fluctuation parameter

is determined by the number of random parameters J such that their index sets satisfy

the four constraints listed above. In the limit N ≫ p, nij , this fluctuation parameter

contributes to the double trace correlator with strength

Npn/2/
∏

i<j nij !

Nnp/(p!)n
= N−np/2(p!)n/2

∏

i

(

p

ni1 . . . nin

)1/2

(6.4)

where the numerator comes from the number of indices which satisfy the decomposi-

tion (6.2), and the denominators comes from the normalization of the J ’s and the fact

that we have 2n of them participating in this term (n in each trace).39 In the double

scaling limit, we rearrange the expression above to be (
√
λ/e)pn

∏

i<j 1/nij !.

We can carry out a saddle point estimate of the strength of this contribution in the

large N, p, nij limit. We define

A = (2π)n(n−1)/4 (2πp)n/2
(

λ

e

)np/2

, (6.5)

and nij = pxij . Then we can evaluate the following integral

Apn(n−1)/2−n
∫ 1

0
dn(n−1)/2xije

−p
[

∑

i<j

(

xij+ 1
2p

)

ln(pxij)

]

n
∏

i=1

δ





∑

j

xij − 1



 , (6.6)

for which there is a saddle point at xij = 1/(n− 1). This is of course just the range where

each of the Ψi overlaps with the others to a similar extent. Evaluating the width around

the saddle point, we obtain that the contribution for (N, p, n) is

(2π)n(n−1)/2 p−n(n+2p−3)/4

√

1

2(n− 1)(n− 2)n−1

(

λ

e

)np/2 (n− 1

2
(2p− n+ 1)

)−n(n−3)/4

,

(6.7)

for λ = p2/N .

In the limit p ≫ n ≫ 1 this becomes

2n
2/4p−n2−np/2n−n2/4−n/2

(

λ

e

)np/2

. (6.8)

This regime is relevant for the double scaled limit, when we take the fluctuation parameters

to be smaller than p (which is taken to infinity). We see that there is no divergence

associated with the increasing n.

In the case of finite p and n large, most of the nij ’s are zero and the analysis above

needs to be modified. We will not do this analysis here.

39The corrections to this formula go like 1/N in the fixed p limit, or a function of λ = p2/N in the double

scaled limit.
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6.2 Fluctuation parameters and the dual of a single realization

We would like here to briefly suggest a possible solution to the question of what is the dual

of a given realization of the couplings JI , and how it differs from the ensemble average. In

the discussion, we will focus on lessons that can be drawn from the two-trace correlator.

The phrasing of the question will actually be different from “what is the dual of. . . ” but

rather it would be: suppose we are provided information about the couplings J up to a

certain precision, what is the gravitational dual which captures all the observables up to

that set precision?

The advantage of this phrasing is that it is naturally compatible with the grading in

the strength of the fluctuation parameters, and it is also more operational in the sense

that it sets a benchmark precision. Its main advantage though is that, at any finite order

in precision, we still do an average over a very large set of random couplings, making a

gravitational dual perhaps more reasonable. Of course, the precision can always be further

increased.

We have really discussed it before in sections 4.2, 5.3 and 6.1, but here we summarize

the structure. There were several ingredients in the computation of the connected two-

trace correlator, which we summarize right below. We have argued for the first four in

general, and have shown the last item for the h2 and h3 fluctuation parameters. The

sequence of ingredients leads to a natural suggestion to what is effectively the dual of a

given realization.

• In each trace, correlate sets of H’s according to (6.2) in general. Each such splitting

is associated with a fluctuation parameter, h2 and h3 being the simplest ones.

• The expectation values of the fluctuation parameters is zero (except h2). However,

their variance contributes to the two-trace correlator.

• In each trace the contribution is similar to a n(n − 1) functions, made out (in the

generic case) of n(n− 1)/2 insertions of pairs of the same operator. Each operator is

made out of nij = nji fundamental fermions as in the previous subsection. We will

refer to these operators as Oij (Oij = Oji, Oii = 1).

• We label by h{nij} the fluctuation parameter that corresponds to the set {nij , i < j}
as in the previous subsection. Then these n(n − 1) functions are among the ones

generated by the substitution

Heff = H + h{nij}
∑

î

∏

ĵ

Oîĵ . (6.9)

We emphasize that this generates the required contribution, but in general it gener-

ates much more, and we have not explored whether they can be cancelled in general

by a suitable choice of the h’s joint distribution. To do this one might have to extend

the set of fluctuation parameters.

• If we are able to cancel all the unwanted contributions that originate from equa-

tion (6.9) (by a suitable probability measure of the fluctuation parameter) as we
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have seen for h2 and h3, then the multi-trace connected correlation function is given

by a substitution
∫

dLh P ({h})
∏

i

tr [exp(−βiHeff({h}))] (6.10)

where {h} is the set of L leading fluctuation parameters, and L is fixed by the degree

of precision that we want to obtain. P is the probability measure on the space of

fluctuation parameters.

Our proposal is therefore the following. If we have the theory in a given realization,

we still need to specify the precision to which we are working. This amounts to specifying

a limited set of fluctuation parameters which take the values prescribed by the given real-

ization. We can then take the ensemble average, conditional on the values of these small

number of fluctuation parameters. The dual of this is described by adding the additional

operators (field in the bulk) {On} and using the Hamiltonian Heff.

For a slightly more “operational” perspective, consider the case that we have some

higher dimensional theory, which we will call the UV theory, which flows in the IR to

some AdS2 × M near horizon. Suppose also that the latter (the IR theory) is effectively

described by some SYK like theory, or a set of weakly coupled SYK models, for which the

rules above apply. We would like to consider the experience of an observer outside the IR

SYK-like region.

This outside observer probes the near horizon IR region and the black-hole with the

set of fields at her/his disposal. The set of allowed fields is really determined by the theory

outside the black-hole — actually all the way to the boundary of space. As they are defined

using the UV degrees of freedom, they are not necessarily easily defined in terms of the IR

degrees of freedom. An operator in the UV theory flows to some operator in the IR SYK

model, but they do not need to span or coincide with any set of preconceived operators

in the latter. Since the Hamiltonian, in terms of the UV degrees of freedom, flows to a

random operator in terms of the IR SYK degrees of freedom, we will assume that this is

true for all UV operators. So we are probing the black-hole with random operators of the

class that we discussed before. The outside observer throws quanta of the corresponding

fields, and measures the response of the black-hole by measuring the outgoing quanta, i.e.

by measuring a correlation function of random operators in the IR SYK model.

Let us go back to the Hamiltonian. Given a specific UV theory we flow to a specific

realization of the SYK Hamiltonian in the IR. Under the suggestion above we are instructed

to add the set of random operators with all values of n < p. In the conformal limit it means

that there is a spectrum of low mass virtual particles (that correspond to dimensions smaller

than 1, and a continuum of such particles in the double scaled limit). Time evolution using

the Hamiltonian Ĥ now means that quanta of these fields generate, bubble and decay as

part of the time evolution. The details of the realization are encoded in their couplings.

It’s important to emphasize that none of these fields need to exist in the UV theory.

They are suggested only for the internal consistency of the near horizon, when trying to

discuss the theory in a given realization. It does mean, however, that this consistency

implies a very large amount of sort of “quantum hair”, confined to the near horizon area.
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6.3 The relation to geometric wormholes

Since we are discussing connected multi-trace correlators, a natural question is whether

there is any relation to the wormholes studied in [25] for JT gravity, or more generally

in [24, 56, 59–61, 63]. It seems that the answer is no. This can be seen from several points

of view:

1. The strength of correlation that we are discussing is much larger. In this work we have

seen that for the SYK model, the leading connected contribution to the spectral form

factor 〈Z(β1)Z(β2)〉c,SYK ∝ (N
p

)−1 p is finite−−−−−→ N−p. Note that this is of the same strength

as a perturbative process (in the sense that it is a power of N−1). In the double scaling

limit (λ = p2/N), the spectral form factor scales like exp(−1
2

√
λN log(N)).

In contrast, following [25], we know that the first connected contribution to the spectral

form factor in JT comes from a connected topology, which is reduced by a factor of e−κN ,

where there N represents the ground state entropy of JT theory (and κ is some coefficient

of order 1). This is a non-perturbative result, and the two corrections obviously do not

match. This is a consequence of the fact that JT itself, which is a radical truncation of

the full SYK model, is dual to an RMT model with a sinh(
√
E) envelope, but otherwise

has standard β-ensemble level statistics, unlike the full SYK model.

We might ask if there’s some local deformation we can apply to JT gravity, namely —

some W (φ) term we can add to the Lagrangian that will reproduce the results we see

in this work. In [66] it was shown that any deformation of this type still results in a

matrix model. As such, the first connected component will scale like e−κN , and will not

match the one computed here.

2. Relevant time scales. The standard e−κN JT wormholes build the ramp and the

plateau [34]. These are very late time phenomena. In contrast, the corrections we find

here are early time corrections (as evident in figure 23), and tend to zero at late times.

3. Bulk vs. boundary corrections. Finally, we would like to highlight again one point, which

is that the gravitational implementation of the connected correlator (with the exception

of the h2 contribution) is done via an analogue of a multi-trace deformation of the

theory [47–49]. After all, we are (schematically) deforming the Lagrangian by a local

term L → L +
∑

C1···kO1 · · ·Ok where the O’s are operators whose dimension sums

to 1, and C are fluctuation parameters. This is rather different from the wormholes

of [25, 59, 60], in which wormholes connect the two spaces via the interior.40

Note, however, that the necessity of a large number of fluctuating fields is certainly

a statement about the bulk and may affect its internal dynamics (for example, when dis-

cussing the stability of bulk configurations). Furthermore, double trace deformations can

drive a change in the bulk by their effect on the quantization of the fields as in [67, 68].

40Of course, it could be that a more refined study will identify a modification of the action also in the bulk.
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7 Multi-trace operator correlations

The simplest generalization of the multi-trace thermal partition function is to consider

multi-trace correlation functions of random operators. We will look at random operators

of the form

A = ip̃/2

(

N

p̃

)−1/2
∑

|I|=p̃
J̃IΨI , (7.1)

where the couplings J̃I are independent Gaussian variables with zero mean and unit vari-

ance, as already defined in (5.14). We will further take the disorder average over these

couplings. These are the same type of operators considered in [7, 8]. If we are working in

the double-scaled limit then we require these operators to have a well defined double-scaled

limit, p̃2/N fixed, as in [7]; though our results also hold in the usual large N limit.

There are several arguments as to why this class of operators is interesting to consider,

and we refer the reader to [8, 69] for further details. The only argument that we will repeat

is in the spirit of section 6.2: if we are given some UV theory which flows to an IR of

the form AdS2 × M , which is approximately described by an SYK model (or an array of

such models), then the probes at our disposal are determined by the theory away from

the near horizon region, which knows little about the SYK regime. The only expectation

that we can have about such operators is that they are statistically similar to the local

energy-momentum tensor, which is one of these probes.

We can also motivate this choice by noting that these correlation functions reduce

to the standard SYK correlation functions after taking the disorder average over J̃I . For

example the 2-point function of A is really

〈tr(A(t)A(0))〉J,J̃ = ip̃
(

N

p̃

)−1
∑

|I|=p̃
〈ΨI(t)ΨI(0)〉J , (7.2)

which is the class of 2-point functions that are computed in the large N limit of the SYK

model, say in [4, 5]. The higher point functions after disorder averaging are also identical to

the regular correlation functions computed, say in [65]. As such, they seem like a reasonable

choice of operators to consider. These operators are also reminiscent of end-of-the-world

branes [59] as they have some internal degrees of freedom, p̃, and they can be correlated

between different traces as the Hamiltonian.

7.1 Multi-trace 2-point functions

We will start by computing the connected two point functions where we insert two operators

on each side of the trace, and subtract the disconnected part. We will denote the regular

thermal 2-point function by

G(2)(β1, β2; p̃) ≡
〈

tr
(

e−β1HAe−β2HA
)〉

J,J̃
. (7.3)

The exact expression of these correlation functions is not important for what follows,

though we note that such functions were computed in [7, 8] in the double scaled limit,
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Figure 21. The two different contractions that may contribute to the connected 2-point function

G(2,2). Connection via A chords, as in the top diagram, is dominant when p̃ < p. Connection via

H chords is dominant when p < p̃.

and in [4, 5, 65] for the large N finite p limit. Furthermore, one can take β1 = β + τ and

β2 = −τ to get the thermal Euclidean 2-point function, though we found the β1,2 variables

to be more convenient for this specific computation.

We will be interested in the connected two point functions

G(2,2)
c (β1, β2, β

′
1, β

′
2; p̃) ≡

〈

tr
(

e−β1HAe−β2HA
)

tr
(

e−β′
1HAe−β′

2HA
)〉

J,J̃

−G(2)(β1, β2; p̃)G(2)(β′
1, β

′
2; p̃).

(7.4)

The leading order contribution to these functions will again be minimally connected, as

was the case in the thermal partition function in (3.5). In this case, however, there are two

different diagrams that may dominate, depending on the ratio of p, p̃, and they are given

in figure 21.

The first diagram in figure 21 is simply contracting the four A operators. There are

two ways to do this, and each is suppressed by a factor of
(N
p̃

)−1
, which together give a

contribution that we denote by I1, with

I1 = 2

(

N

p̃

)−1

G(2)(β1, β
′
1; p̃)G(2)(β2, β

′
2; p̃). (7.5)

The second diagram in figure 21 can be computed in the same manner as was done

for the double trace moments. Its moments are identical to those of (3.3), only with

ki = k̃1 + k̃2, where k̃i’s are the moments in the expansion of e−βiH . We can immediately
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switch k̃i with derivatives βi∂βi
, resulting in a value of

I2 =
1

2

(

N

p

)−1

(β1∂β1 + β2∂β2)G(2)(β1, β2; p̃)
(

β′
1∂β′

1
+ β′

2∂β′
2

)

G(2)(β′
1, β

′
2; p̃). (7.6)

The full connected correlation function is the sum of I1 and I2.

The leading order behavior of G
(2,2)
c is

G(2,2)
c (β1, β2, β

′
1, β

′
2; p̃) ∼







(N
p̃

)−1
p̃ < p,

(N
p

)−1
p̃ > p.

(7.7)

If we had n such traces the leading order behavior would be

G(2,...,2)
c (β

(1)
1 , β

(1)
2 , . . . , β

(n)
1 , β

(n)
2 ; p̃) ∼







(N
p̃

)n−1
p̃ < p,

(N
p

)n−1
p̃ > p.

(7.8)

If p̃ > p then the exact result of the n trace function will be a sum of cactus diagrams with

derivative operators, as in (3.11). If p̃ < p then the leading order behavior will just be a

constant multiplying the disconnected result, similar to (7.5).

Of course, the correlation induced by A in diagram I in figure 21 is a new effect on top

of figure II, and as such we can trust it (there is also a clear regime where it is larger than

subleading fluctuation parameters associated with H). It is associated with a fluctuation

parameter derived from A:
∑

I A
2
I . Correspondingly, the vector model we find for A is in

the same spirit as the one we found for h2.

7.2 The associated vector model for operators

In the case where p̃ 6= p we can construct a dual vector model for each random operator

which captures the leading order behavior, similar to the one we found for the Hamiltonian

in section 4. This time the 0-dimensional vector field represents the random couplings of

the operator in addition to the Hamiltonian.

Starting from the operator A defined in (7.1), we consider the zero dimensional fields

φ
(A)
I taking an index I from 1 to ǫ−1

A ≡ (N
pA

)

, the number of index sets, or random couplings,

in the operator A. Similar to the Hamiltonian case, the joint generating functional of A is41

〈

n
∏

i=1

tr

[

exp

(

−βiH +

∫

dτSi(τ)A(τ)

)]

〉

J,J̃

=

=

∫

DφI Dφ
(A)
I e

−
∑

|I|=p̃
(φ

(A)
I )2/(2ǫA)−

∑

|I|=p
φ2

I/(2ǫ)

×
n
∏

i=1

〈

tr



exp



−
√

∑

|I|=p
φ2
I βiH +

√

∑

|I|=p̃
(φ

(A)
I )2

∫

dτSi(τ)A(τ)









〉

J,J̃

.

(7.9)

As before, we can take only the connected part of both sides if we so desire. Additionally

we can then go to the variables φ2
I and (φ

(A)
I )2 and reduce the integration to these two

41We take the couplings of A to be Gaussian. If the couplings of A obeyed a different distribution, then

that distribution should be used instead, as was in the Hamiltonian case.
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fluctuation parameters. Since the integration on these two variables is after we do the

average over J, J̃ , then we can replace 〈.〉J,J̃ by their GR expression and obtain the GR

description of these two fluctuation parameters.

We stress that this vector model is only accurate at leading order in ǫA or ǫ, and for

all values of p, p̃, as long as p 6= p̃. This means that any correlation functions whose leading

order scaling is smaller cannot be computed using this dual vector model. In particular

the correlations functions involving an odd number of A insertions in some traces is more

suppressed in ǫA, similarly to an odd number of Hamiltonian insertions considered in

section 5, and so cannot be computed using this vector model. To compute these odd

correlation functions we must add additional terms to the effective action, similarly to

what was done for the Hamiltonian in section 5.3. Another interesting correlation function

that cannot be computed using this vector model is the correlations of single operator

insertions. Both these cases will be discussed in the next subsection.

7.3 1-point functions and an odd number of operator insertions

A slightly more complicated observable is the fluctuation (across the ensemble) of the 1-

point function of the operator A. This will teach us about the expectation value of the

operator A in a specific realization. Thus we want to find the leading order behavior of

the connected thermal 1-point function

G(1,1)(β1, β2; p̃) ≡
〈

tr
(

e−β1HA
)

tr
(

e−β2HA
)〉

J,J̃
, (7.10)

or its moments

mp̃(k1, k2) ≡
〈

tr
(

Hk1A
)

tr
(

Hk2A
)〉

J,J̃
. (7.11)

For the expectation value to not vanish, we must have that the two A’s are contracted,

and that each fermion in the A chain must have a pair in one of the H operators that are

contracted between the traces. As before, only minimally connected diagrams contribute

at leading order, so the number of H’s contracted between the sides will be n = ⌈p̃/p⌉,

except for p̃ < p when n = 2. In the following we will discuss a couple of simpler cases:

Case 1: p̃ = p. If p̃ = p then we can have all the fermions in A be in a single H which

is contracted between the traces. All the other H’s on each side will be paired, so the

leading order moments will be odd, and their contribution will be similar to the double

trace moments

mp(2k1 − 1, 2k2 − 1) =

(

N

p

)−1

m2k1m2k2 . (7.12)

This is one way of writing the result. Another way is arrange, in each trace, the insertions

of H along a circle, along with one insertion of A. The trace is non-zero if the ΨI from

one of the H is the same as one of the ΨI′ from one of the Hamiltonians, and each of the

2k − 1 Hamiltonians can each participate in this overlap. Then write m2k1−1,2k2−1 as 2-pt

function of an operator of dimension 1 in each of the traces. This case is shown in figure 22.
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A

H

A

H

Figure 22. Double-trace of one-point functions of operators with Hamiltonian size.

The thermal two point function in this case will be

G(1,1)(β1, β2; p) =

(

N

p

)−1
∑

k1,k2≥1

(−β1)2k1−1(−β2)2k2−1

(2k1 − 1)!(2k2 − 1)!
m2k1m2k2

=

(

N

p

)−1
dZ(β1)

dβ1

dZ(β2)

dβ2
.

(7.13)

In the same spirit as in section 5.3 and section 6.1 we would like to find a “minimal”

description of this connected correlator, after we do the ensemble average. This can be

implemented using the substitution

H̃ = H + αA (7.14)

where A is the operator above and α is a random variable with

〈α〉 = 0, 〈α2〉 =

(

N

p

)−1

. (7.15)

In gravity, the interpretation is the following. A marginal operator corresponds to a mass-

less field, and adding αA to the Hamiltonian corresponds to shifting the VEV of the field

in the bulk. In the theory in which we carry out an ensemble average over the coefficients

of A, α is averaged over. In the language above, α encodes the fluctuation parameter
∑

I JI J̃I . We interpret the case of a fixed realization as having a fixed α.

The ansatz is arranged such that we reproduce the correlator (7.13). At the level of a

single trace correlator it (1) does not introduce a 1-pt function for A since we take 〈α〉 = 0,

and (2) introduces a correction to the partition function at order ǫ, which is small compared

to terms we are neglecting. At the level of connected multi-trace correlation function, it

introduces corrections which are subleading to the fluctuation parameter h2 (which is the

fluctuating parameter in front of H). For example, in the connected part of 2 traces it will

introduce a term proportional to 〈α4〉 − 〈α2〉2, but this is of order ǫ2, whereas the cactus

diagrams that we discussed in section 3.2 give a contribution of order ǫ.

Finally we would like to point out that we could also think of A not as a random

operator but rather as a fixed operator, and this same computation would yield the variance
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of the thermal expectation value of A. For example we can take A = ΨI for a fixed index

set I and using this chord diagram formalism calculate the probability distribution of

the thermal expectation value of ΨI .
42 As this computation shows, the operators with

the largest expectation value, on average, would be operators of the same length as the

Hamiltonian. Thus living in a given realization of the couplings, the first operators whose

expectations deviate from the average value are the ones of length p, and their typical

deviation is of order ǫ1/2 ∼ N−p/2.43 This also measures the extent of the breaking of

the O(N) symmetry: at large N it looks like the theory has an O(N) symmetry, just like

averaged model has, but really the exact realization of the couplings breaks this symmetry

by a small amount of order ǫ1/2.

Case 2: p 6= p̃ ≤ 2p. In this case we must pair the fermions in A with those in at least

two insertions of H in each trace. The random coefficients of the H’s are then contracted

between the two sides. We must give half of the fermions in A to one of the H’s, and

the other half to the other H. The rest of the fermions in the two H’s are paired. This

contribution is similar to the one discussed on section 5.1. For example we can think of

figure 17, where now two of the nodes that connect the different traces are H nodes, and

one is an A node. The moments will once again factorize in a similar way to the odd double

trace moments (see section 5.1)

mp̃(k1, k2) = mp̃(2, 2)Wp̃(k1 − 2)Wp̃(k2 − 2). (7.16)

The combinatorial factor is

mp̃(2, 2) = 2

(

N

p

)−2(
N

p− p̃/2

)(

p̃

p̃/2

)

, (7.17)

so the order of this will be ǫ2 ≤ mp̃(2, 2) < ǫ. We note that this contribution only happens

if p̃ mod 4 ≡ 0, as otherwise the two possible contractions anti-commute and thus cancel

each other, similar to the argument as to why the contributions to the odd moments vanish

if p mod 4 ≡ 2 in section 5.1.

The function Wp̃(k) is also very similar to W (k) from equation (5.3) — only the size

of the index set of the three chords is no longer p/2, but rather two of them have length

p̃/2, and the third has length p − p̃/2. Explicitly, in the large N limit, it is given by the

three point function

Wp̃(k) ≡
(

N

p̃/2

)−2(
N

p− p̃/2

)−1
∑

|I1|=|I2|=p̃/2
|I3|=p−p̃/2
k1+k2+k3=k

〈

tr
(

ΨI1ΨI2H
k1ΨI2ΨI3H

k2ΨI3ΨI1H
k3

)〉

J
.

(7.18)

We can write these contributions as a correction to the vector model coming from a

matrix model type interaction, similar to section 5.2. The idea is to add an additional term

42Of course the thermal expectation value of ΨI must vanish on average, but it’s variance is non-zero.
43Note that G(1,1) measures the variance, which is the square of the standard deviation.
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to the effective Hamiltonian, and correct the operator A accordingly, in order to allow for

an index contraction of (H,H,A). In order to not change the leading order result of an even

number of insertions of A,H, we need to make sure that these new terms are subdominant

with respect to the previous corrections. The Hamiltonian is then

Heff = h2H + β : Op̃/2Op−p̃/2 :, (7.19)

where the distribution of h2 is given in (4.9). The operator A is corrected by the random

operator

Aeff = hAA+ α : Op̃/2Op̃/2 :, (7.20)

where by normal ordering we mean that we don’t allow self contractions for the random

operator (if the two operators are of the same length). We have introduced the Gaussian

variables α, β, with zero mean and variances to be specified later, and the variable hA with

mean 1 and variance
(N
p̃

)−1
. Now we can compute the operator moment

Mp̃,c(k1, k2) = 〈Mp̃,eff(k1)Mp̃,eff(k2)〉α,β,h2,hA,conn , Mp̃,eff(k) =
〈

trHk
effAeff

〉

J,J̃,O
. (7.21)

To pick up the relevant contribution, we go to the β2 contribution from Heff in each trace.

The effective moment then gives

Mp̃,eff(k) = hk−2
2 αβ2

∑

i1+i2+i3=k−2

〈

trH i1 : Op̃/2Op−p̃/2 : H i2 : Op̃/2Op−p̃/2 : H i3 : O2
p̃/2 :

〉

= hk−2
2 αβ2(1 + qp̃

2/(4p2))

(

N

p̃/2

)2(
N

p− p̃/2

)

Wp̃(k − 2), (7.22)

where q = e−2p2/N , and the factor (1 + qp̃
2/(4p2)) comes from different possible contractions

of the fluctuation fields. This means that

Mp̃,c(k1,k2) =
〈

hk1+k2−4
2

〉〈

α2
〉〈

β4
〉(

1+qp̃
2/(4p2)

)2
(

N

p̃/2

)4(
N

p−p̃/2

)2

Wp̃(k1−2)Wp̃(k2−2).

(7.23)

This matches (7.16) if we require

〈

α2
〉〈

β4
〉

=
mp̃(2, 2)

( N
p̃/2

)4( N
p−p̃/2

)2
(1 + qp̃2/(4p2))2

= 2

(

p̃

p̃/2

)(

N

p

)−2(
N

p̃/2

)−4(
N

p− p̃/2

)−1

(1 + qp̃
2/(4p2))−2.

(7.24)

Next we need to verify that we have not introduced any large corrections to observables

that include an even number of both A,H insertions, in all traces. This motivates us to

require that both the α and β contractions need to be subleading w.r.t. the A and H

contractions. That is
〈

α4
〉 ≪ 〈

h2
A

〉

=
(N
p̃

)−1
, and

〈

β4
〉 ≪ 〈

h2
2

〉

=
(N
p

)−2
, which we can

easily satisfy, if we define

〈

α2
〉

= 2

(

p̃

p̃/2

)(

N

p̃/2

)−4

,
〈

β4
〉

=

(

N

p

)−2(
N

p− p̃/2

)−1
(

1 + qp̃
2/(4p2)

)−2
. (7.25)
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As before, we interpret the operators Op̃/2 and Op−p̃/2 as new operators in the theory

(or new fields in the bulk), whose existence is required in order to explain, in gravity, this

two-trace correlator. Before we saw this happening for the Hamiltonian, but it is actually

a feature associated with any operator observable in the theory.

Case 3: p̃ > 2p. These will look like the deformations of high order corrections to the

double trace moments. In general they will involve higher point functions, a sum over all

the possible ways to distribute p̃ among the various H’s, and a sum over all the ways to

distribute the remaining indices in the H’s among themselves. This function will have a

discontinuity every time p̃ = np for some integer n, as the leading order moments will

change parity, from even moments to odd moments, or vice versa. We have not carried out

a full analysis of these cases.

8 Multi-trace correlations from the replica path integral

Computations of SYK model are typically done in the path integral formulation of the

theory, as in [4, 5, 11]. As the resulting action is a large N action, the theory can be solved in

the large N limit by finding the saddle points and looking at the fluctuations around them.

Similarly, multi-trace expectations have previously been computed in the path integral

formulation using replicas [17, 34–37, 59]. The main object of interest in these computations

is the spectral form factor, which is an analytic continuation of the double trace thermal

partition function. The main focus of these computations is finding non-diagonal saddle

points of the two replica path integral that generate the RMT contribution to the multi-

trace expectations [34]. These additional saddle points are not the source of the global

fluctuations, as they are related to connected topologies in the gravity dual. Rather, we

will demonstrate how to calculate the leading order contributions to the connected thermal

expectation function as a perturbative expansion around the disconnected saddle.

We shall start out by looking at the fermionic path integral and show how the global

modes arise in this description. Then we use this intuition to derive a formulation of the two

replica action in terms of the bi-local fields G and Σ. This action is found via an expansion

followed by a resummation of the interacting part, and has a completely different form

(and saddle point equations) than the naive action derived in [34]. Finally we show how

the global modes naturally arise from a perturbative expansion around the disconnected

saddle of this action.

8.1 The path integral derivation

The thermal partition function of the SYK model is given by the path integral44

Z(β) =

∫

Dψie
−S[ψ], (8.1)

with the Euclidean action given by

S[ψ] =

∫ 1

0
dτ







N
∑

i=1

ψi∂τψi + βip/2

(

N

p

)−1/2
∑

|I|=p
JIΨI







, (8.2)

44This is the partition function before disorder averaging.
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where τ is the normalized Euclidean time and we set J = 1. The expectation value of the

thermal partition function is computed through the path integral

Z(β) =

〈

∫ N
∏

i=1

Dψi e
−S[ψ]

〉

J

. (8.3)

Taking the integral over JI ’s leaves us with the following expression for the thermal partition

function:

Z(β) =

∫ N
∏

i=1

Dψi exp







−
N
∑

i=1

∫

dτ ψi(τ)∂τψi(τ)+
1

2
(−1)p/2β2ǫ

∑

|I|=p

∫

dτ dτ ′ ΨI(τ)ΨI(τ
′)







,

(8.4)

with ǫ =
(N
p

)−1
as before. We will call the action in the path integral above S0[ψ], and it

is nothing but the standard single trace action.

We can now compute the leading connected double trace thermal expectation value

using this same path integral formulation of the model. Notice that

Z(β1, β2) =

〈

∫ N
∏

i=1

Dψ
(1)
i Dψ

(2)
i e−S[ψ(1)](β1)−S[ψ(2)](β2)

〉

J

=

∫ N
∏

i=1

Dψ
(1)
i Dψ

(2)
i exp

{

−S0[ψ(1)] − S0[ψ(2)] + Sint[ψ
(1), ψ(2)]

}

,

(8.5)

with the interaction term

Sint[ψ
(1), ψ(2)] = (−1)p/2ǫβ1β2

∑

I

∫

dτ dτ ′Ψ(1)
I (τ)Ψ

(2)
I (τ ′). (8.6)

We can treat this extra term as a small interaction term, and expand the exponent in

a Taylor series, as is typically done in perturbation theory. The zeroth order term in the

series is just the disconnected component. The first term in the series vanishes as each free

action S0[ψ] has a Z2 symmetry of ψ(i) → −ψ(i), but the interaction term is odd under this

symmetry. Thus the leading order of the connected component will be the second order

term, and will give the contribution

Zc(β1,β2) =
1

2
ǫ2β2

1β
2
2

∫ N
∏

i=1

Dψ
(1)
i Dψ

(2)
i

∫ 4
∏

j=1

dτj
∑

|I|=|J |=p
Ψ

(1)
J (τ1)Ψ

(2)
J (τ2)Ψ

(1)
I (τ3)Ψ

(2)
I (τ4)

×e−S0[ψ(1)]−S0[ψ(2)]. (8.7)

The path integral will vanish because of the aforementioned Z2×Z2 symmetry if J 6= I,

in which case we can write the connected thermal partition function as

Zc(β1, β2) =
1

2
ǫ2β2

1β
2
2

∫ N
∏

i=1

Dψ
(1)
i Dψ

(2)
i

∫ 4
∏

j=1

dτj
∑

|I|=p
Ψ

(1)
I (τ1)Ψ

(2)
I (τ2)Ψ

(1)
I (τ3)Ψ

(2)
I (τ4)

× e−S0[ψ(1)]−S0[ψ(2)]

= 2ǫβ2
1β

2
2

d

d(β2
1)

Z(β1)
d

d(β2
2)

Z(β2), (8.8)
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which is identical to (3.5) computed using the moment method.

If we want to calculate n trace thermal partition functions then the computation is

similar. The “free” part of the action will consist of n averaged actions, one for each of the

n replicas (or traces). Additionally we will have an interaction term of the form

Sint = (−1)p/2ǫ
n
∑

i6=j=1

βiβj

∫

dτdτ ′ ∑

|I|=p
Ψ

(i)
I (τ)Ψ

(j)
I (τ ′). (8.9)

Expanding the interaction term order by order in ǫ will again give us only cactus diagrams

as the leading order contribution to the connected thermal expectation function.

8.2 Path integral in terms of G and Σ

Up to now we have worked with the action for the original fermions to compute the con-

nected thermal expectation functions. However the path integral formulation is much more

elegant as we can express it in terms of bi-local fields G and Σ rather than the original N

fermions. Furthermore, in these variables (with the correct scaling) the action becomes a

large N action, and thus a saddle point approximation is valid (see for example [11] for

details). We would like to reproduce the above computation when considering these bilocal

fields, both for completeness and to be able to relate this work to others, such as [34].

We will define the bi-local fields as

Gi(τ1, τ2) ≡ 1

N

N
∑

j=1

ψ
(i)
j (τ1)ψ

(i)
j (τ2), Gii′(τ1, τ2) ≡ 1√

N

N
∑

j=1

ψ
(i)
j (τ1)ψ

(i′)
j (τ2). (8.10)

We use a slightly different normalization for the Gii′ field, the reason for which will become

apparent in the analysis. Furthermore we shall concentrate on the double trace thermal

partition function for brevity, though similar calculations can be preformed for high trace

expectations.

We introduce Lagrange multipliers Σi and Σ12 to enforce the definitions of G, as is

typically done in the replica path integral (see for example [34]). After substituting in the

definitions for G, and taking the integral over the couplings, we arrive at the following

expression for the thermal partition function

Z(β1, β2) =

∫

∏

j=[1,2],i=[1,N ]

Dψ
(j)
i DG1 DG2 DG12 DΣ1 DΣ2 DΣ12

exp







−
∫

dτ
∑

j=[1,2],i=[1,N ]

ψ
(j)
i dτψ

(j)
i −N

∫

dτ1dτ2

[

Σ1(τ1, τ2)G1(τ1, τ2)

+ Σ2(τ1, τ2)G2(τ1, τ2) −
√
ǫβ1β2

N
√
p!
Gp12(τ1, τ2) − β2

1

2N
Gp1(τ1, τ2)

− β2
2

2N
Gp2(τ1, τ2) − 1

N

∑

j=[1,2],i=[1,N ]

Σj(τ1, τ2)ψ
(j)
i (τ1)ψ

(j)
i (τ2)

]

−
∫

dτ1dτ2Σ12(τ1, τ2)



G12(τ1, τ2) − 1√
N

∑

i=[1,N ]

ψ
(1)
i (τ1)ψ

(2)
i (τ2)











.

(8.11)
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Typically at this stage the fermions are immediately integrated out, leaving the well

known G–Σ action [34], however we will take another route. We will expand the expo-

nential of the last term (the one involving fermions) in the above path integral action and

consider the path integral over the fermions order by order. As the fermions are Grassmann

variables, the integral over them will vanish unless they exactly come in pairs. This already

tells us that all the odd terms in this expansion will vanish. The zero term is just a one,

so the first nontrivial term is the second term which will be

I2 =

∫ 4
∏

k=1

dτk
1

2N

∑

i,j

Σ12(τ1, τ2)Σ12(τ3, τ4)ψ
(1)
i (τ1)ψ

(2)
i (τ2)ψ

(1)
j (τ3)ψ

(2)
j (τ4), (8.12)

which will vanish for all i 6= j, by Grassmann integration arguments. This leaves us with

the term

I2 = −
∫ 4
∏

k=1

dτk
1

2N

∑

i

Σ12(τ1, τ2)Σ12(τ3, τ4)ψ
(1)
i (τ1)ψ

(1)
i (τ3)ψ

(2)
i (τ2)ψ

(2)
i (τ4)

= −1

2

∫ 4
∏

k=1

dτk Σ12(τ1, τ2)Σ12(τ3, τ4)G1(τ1, τ3)G2(τ2, τ4),

(8.13)

where in the last line we substituted the definitions of the two point functions.

In general, all higher expansion will reduce to index pairings of the fermions from

Grassmann integration arguments, allowing us to substitute in the two point functions.

This leads to Wick contractions of Σ12’s. We note that we neglect corrections arising from

the case where more than two fermions share the same index as these are suppressed by

higher order powers in 1/N .45

The numerical factor multiplying the Wick contraction of k contraction is (−1)k from

anti-commuting the fermions times 1/(2k)! from expanding the exponent times (2k − 1)!!

which is the number of Wick contractions. Overall this gives a factor of (−1/2)k/k!,

allowing us to re-sum the exponent, and rewrite the partition function as

Z(β1, β2) =

∫

∏

j=[1,2],i=[1,N ]

Dψ
(j)
i DG1 DG2 DG12 DΣ1 DΣ2 DΣ12

exp







−
∫

dτ
∑

j=[1,2],i=[1,N ]

ψ
(j)
i dτψ

(j)
i −N

∫

dτ1dτ2

[

Σ1(τ1, τ2)G1(τ1, τ2)

+ Σ2(τ1, τ2)G2(τ1, τ2) +
1

N
Σ12(τ1, τ2)G12(τ1, τ2) −

√
ǫβ1β2

N
√
p!
Gp12(τ1, τ2)

− β2
1

2N
Gp1(τ1, τ2) − β2

2

2N
Gp2(τ1, τ2) − 1

N

∑

j=[1,2],i=[1,N ]

Σj(τ1, τ2)ψ
(j)
i (τ1)ψ

(j)
i (τ2)

]

− 1

2

∫ 4
∏

k=1

dτk Σ12(τ1, τ2)Σ12(τ3, τ4)G1(τ1, τ3)G2(τ2, τ4)







. (8.14)

45Similar corrections have already been neglected in the path integral derivation when we substituted

Gp(τ, τ ′) for
∑

I
ΨI(τ)ΨI(τ ′).
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Now we are ready to integrate out the fermions, leaving us with the large N action

S =N
∑

i=1,2

{

−1

2
log [det (Σi−∂τ )]+

∫

dτ dτ ′
(

Σi(τ, τ
′)Gi(τ, τ ′)− β2

i

2N
Gpi (τ, τ

′)

)}

+

∫

dτ dτ ′
[

Σ12(τ, τ ′)G12(τ, τ ′)−
√
ǫβ1β2√
p!

Gp12(τ, τ ′)

]

+
1

2

∫ 4
∏

k=1

dτk Σ12(τ1, τ2)Σ12(τ3, τ4)G1(τ1, τ3)G2(τ2, τ4).

(8.15)

The first term in the action (8.15) is the sum of the original actions for the replica diagonal

fields. To this we add an action for the replica off-diagonal fields, along with a quadratic

interaction term between the diagonal and off-diagonal fields.

We can see that the contributions order by order in ǫ match up with the previous results

if we integrate out Σ12, which involves completing the square.46 This gives a quadratic

piece to G12, and the final action

S =N
∑

i=1,2

{

−1

2
log [det (Σi−∂τ )]+

∫

dτ dτ ′
(

Σi(τ, τ
′)Gi(τ, τ ′)− β2

i

2N
Gpi (τ, τ

′)

)}

−
∫

dτ dτ ′
√
ǫβ1β2√
p!

Gp12(τ, τ ′)− 1

2

∫ 4
∏

k=1

dτk
G12(τ1, τ2)G12(τ3, τ4)

G1(τ1, τ3)G2(τ2, τ4)
.

(8.16)

The final step is expanding this action order by order perturbatively in
√
ǫ, after which the

quadratic action for G12 leads to Wick contractions of the form

G12(τ1, τ2)G12(τ3, τ4) = −G1(τ1, τ3)G2(τ2, τ4). (8.17)

This transforms the calculation of the two replica thermal partition function to a sum of

correlation functions of G1 and G2 in the original theory.

For concreteness let us analyze the first few terms in this expansion, and compare

them to the previous results. It is clear that the zeroth order term gives the disconnected

contribution, while the term of order
√
ǫ vanishes as self contractions vanish due to the

anti-symmetry of Gi (namely Gi(t, t) = Gi(0) = 0 by construction.)

The first non-trivial term is the one of order ǫ, which is

ǫ
1

2p!
β2

1β
2
2

∫

dτ1 . . . dτ4G
p(τ12)Gp(τ34). (8.18)

There is only one way to do the Wick contractions for this term, and the resulting contri-

bution is

ǫ
1

2
β2

1β
2
2

〈∫

dτ1dτ3 G
p
1(τ13)

〉〈∫

dτ2dτ4 G
p
2(τ24)

〉

=
ǫ

2
β1

∂

∂β1
Z0(β1)β2

∂

∂β2
Z0(β1), (8.19)

46Note that we normalized
∫

dτ = 1, so there are no divergences and integrating out Σ12 is formally

exact. Furthermore note that we are integrating Σ12 along the imaginary axis.
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where the expectations are with respect to the standard SYK action for each replica.47

This leading order connected contribution is identical to the previously obtained results in

equations (3.5) and (8.8), as should be expected.

The next correction comes from taking down three interaction terms, and it reads

ǫ3/2 1

6(p!)3/2
β3

1β
3
2

∫

dτ1 . . . dτ6G
p(τ12)Gp(τ34)Gp(τ56) (8.20)

Here too there is only a single way to do the Wick contractions (as we do not allow

self contractions,) and that is to pair half of each Gp12 with half of a different Gp12. All the

different choices for these contractions give the same contribution, so we only need to count

how many different choices there are. There are
( p
p/2

)3
[(p/2)!]3 = [p!/(p/2)!]3 different Wick

contraction (that all give the same result,) the
( p
p/2

)

factor has to do with choosing which

G12’s in each group contract with a different G12, while the (p/2)! counts the different

ways to contract the G12’s after choosing the overall pairings. At the end this contribution

reduces to the product of two six point functions

(

ǫ

(

p

p/2

))3/2
β3

1β
3
2

6

〈∫

dτ1dτ2dτ3 G
p/2
1 (τ12)G

p/2
1 (τ23)G

p/2
1 (τ13)

〉2

. (8.21)

This resulting term is very similar to the next leading order term, which was shown

to be a 6-point function in section 5.1. Not only does it have the correct power of ǫ, the

combinatorics of p agree as well because at finite p the factor in (5.2) reduces to

(

N

p

)−3(
N

3p/2

)(

3p/2

p

)(

p

p/2

)

≈ N−3pN3p/2(3p/2)!p!

(p!)−3(3p/2)!p![(p/2)!]3
=

(

ǫ

(

p

p/2

))3/2

. (8.22)

The factorization form and the lengths of the operators in the correlation functions is also

the same as in section 5.1. Indeed this is the same correlation function as in (5.4) only

from the path integral approach.

Higher order terms in this pertubrative expansion have the same form as the ones

studied in section 6.1. This is because the counting of all possible Wick contraction at

order n is equivalent to counting how many ways there are to split n multi-fermions into

groups such that each group appears twice, and so the suppression factors in this expansion

will be identical to the ones computed in section 6.1.

Finally, we note that this calculation is a perturbative expansion around the discon-

nected saddle of (8.16), namely the solution where G12 = 0. One can also consider con-

nected saddle points of (8.16), similar to [34], which are related to a connected geometry

in the bulk; though that is beyond the scope of this paper.

47Note that the p! cancels as there are p! equivalent ways of doing the Wick contraction.

– 60 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
6

9 Discussion

In this paper we analyzed the leading order contributions to connected multi-trace expec-

tation values in the SYK model. We showed that at early times the contributions can be

organized into a well defined perturbative expansion in powers of ǫ =
(N
p

)−1 ∼ N−p. The

lowest order contributions arise from connected cactus diagrams, as derived in section 3,

or equivalently using a large M =
(N
p

)

vector model for the random couplings which was

described in section 4. They are associated with a specific fluctuation parameter ǫ
∑

I J
2
I .

This is actually the first of an infinite set of fluctuation parameters, which give higher

order corrections to the moments, with decreasing strength. The next term in this ex-

pansion, which is the first correction of the odd moments, was systematically studied in

section 5; while the general structure of this expansion was further examined in section 6.1.

The puzzling aspect of this expansion is its gravitational interpretation. Our analysis

is valid at any energy range (captured by the moment method), and if we are studying

the SYK model in a low temperature regime, albeit in early times, we expect there to be

a clear gravitational dual. As these are connected contributions, one might expect them

to arise from connected geometries between two disconnected boundaries in the sum over

geometries implied by the gravitational path integral. However such contributions are

topologically different and so are suppressed by factors of e−S0 ∼ e−N [25], rather than

the polynomial suppression in N that we observe. Thus the gravitational path integral

of the dual theory must contain an additional non-geometric way to couple disconnected

boundaries. Based on the leading order contributions studied in section 4.2, it seems

like these contributions correspond to a global mode that collectively re-scales the AdS

radius of the dual theory. The rest of the perturbative expansion can also be seen as

additional fluctuation fields connecting the different copies of the boundary theory via the

coefficient of their interaction terms without resorting to wormholes. Actually, the form of

the interaction suggests that the between-universe correlations are only given by boundary

terms. However, once we have identified the need for more fluctuation fields, then the rules

of the AdS/CFT correspondence tell us that they propagate in the bulk.

It would be interesting to precisely specify the gravitational theory where such non-

geometric fluctuations naturally arise from the path integral, perhaps by some deformation

of JT gravity like [66, 70], with the additional light fields that we discussed here. These non-

geometric wormholes may also exist in recent stringy constructions of the SYK model [71],

and so may be related to certain constructions in string theory. A more ambitious goal

would be to understand under what more general circumstances these non-geometric global

fluctuations arise in a theory of quantum gravity. For example, we might expect them to

be there in any black holes with an AdS2 near horizon limit.

One may speculate that perhaps these global fluctuations, and the corresponding bulk

fields, are a generic feature of a UV complete theory of quantum gravity, at least when

the background is associated with high entropy configurations. The only piece of evidence

that we can provide is to consider the case in which there are no global modes at all,

in the sense above. This is just a standard RMT model for the Hamiltonian and the

various observables in the theory. I.e. H, or any other operator, is drawn from an ensemble
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dH exp(−N Tr(V (H))) where N is the dimension of the Hilbert space. This is not the case

for the SYK model, but JT gravity alone falls into this class [25]. The problem is that it is

difficult to have weakly coupled fields, i.e, familiar matter, propagating in any bulk dual.

Consider two such fields, corresponding to operators O1,2 in the field theory. If the statistics

of these operators is RMT, i.e., independent of each other and of the Hamiltonian, then the

correlator 〈O1(t1)O2(t2)O1(t3)O2(t4)〉 will be exponentially suppressed (i.e. a suppression

of the order 1/N ∼ e−S0),48 which does not correspond to weakly coupled gravity. But if

there are strong correlations between matrix elements, these imply global modes (although

perhaps not as simple as the ones we discussed here).

Generally, it is unclear if the correct gravitational picture is that of a single dual theory

to the whole SYK ensemble, as suggested by [24, 62], or perhaps that there is a gravitational

dual to each realization of random couplings. In the second case the effective gravitational

picture arises from measuring coarse-grained observables which only weakly depend on the

exact values of the couplings, similar to [44, 72, 73]. In both cases, it is not quite clear what

is the dual of a single realization if no coarse-graining is done. In this note, we are adding

the option that there is actually a range of intermediate possibilities. We actually need to

specify first the precision in which we plan to carry out our experiment, i.e., how much

information about the specific couplings we want to obtain. If we increase the precision, we

need to use a gravitational description which includes more fields, more couplings and more

fluctuation parameters. This is not unreasonable since GR is an effective theory and we

may have to use more features to describe effects with higher and higher precision. We can

perhaps think about all these fields and couplings as already existing in the background,

but averaged over if we carry out an experiment with low precision. They are still low

mass fields, not to be integrated out by a Wilsonian argument, but we can ignore them

at low precision experiments. This is tantamount to saying that coarse grained observable

is given by GR. As we increase the level of precision we need to add more of these fields

and couplings. When we reach high precision measurements — as we try and nail down

what is the precise realization — we need to include many such fields, which might change

the behaviour of the background altogether. For example, it might lead to disconnecting

universes, and, simultaneously, introducing many new objects in the bulk, beyond GR.

Clearly, more work is needed to elaborate this point of view.

Another interesting endeavor would be to analyze the global fluctuations in the charged

SYK model [74, 75], or the supersymmetric SYK models [76, 77]. This can be done using the

same chord diagram methodology which has been previously used to study these models [69,

78]. Especially interesting would be to analyze how the existence of a large number of exact

ground states in the N = 2 theory, observed in [18, 78], affects these global fluctuations.

Finally we note that two replica action derived in the path integral analysis of the

global fluctuations (in section 8) is different than the standard action for the two-replica

bi-local fields G and Σ derived in [34].49 It may be simpler to study the connected saddle

points of this new action, perhaps even finding the exact contributions that lead to the

universal RMT structure of the ramp and plateau in the spectral form factor.

48This scaling follows directly from the eigenvalue thermalization hypothesis [42–44].
49Though they are mathematically equivalent.

– 62 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
6

Acknowledgments

It is a pleasure to thank O. Aharony, A. Altland, D. Bagrets, M. Isachenkov, A. Kamenev,

P. Narayan, M. Rangamani, M. Rozali, S. Shenker, J. Sonner, R. Speicher, D. Stanford,

J. Verbaarschot and H. Verlinde for useful discussions. We would like to thank the authors

of [17] for sharing their data with us.

The work of MB and NB is supported by an ISF center of excellence 2289/18. MB

is the incumbent of Charles and David Wolfson Professorial Chair of Theoretical Physics.

The work of AR was supported, in part, by a grant from the Simons Foundation (Grant

651440, AK).

A The spectrum at finite N and p, and numerical comparisons

The spectrum of the SYK model at finite N and p is extremely well approximated by a

q-Gaussian distribution [27, 28], and this is exact in the double scaled limit [8, 10, 16].

This spectrum is given by

ρ(θ) =
1

2π

(

q, e±2iθ; q
)

∞
, (A.1)

where (a; q)n is the q-Pochammer symbol

(a; q)n =
n−1
∏

k=0

(

1 − aqk
)

, (A.2)

with the shorthand notation (a, b; q)n ≡ (a; q)n(b; q)n. Here the energies are given by

E(θ) =
2J cos(θ)√

1 − q
, (A.3)

and in the double scaled limit q is simply q = e−2p2/N . At finite N and p we can find an

exact expression for q given by (see [27] for details)

q =

(

N

p

)−1 p
∑

k=0

(−1)k
(

p

k

)(

N − p

p− k

)

. (A.4)

Using this spectral density we can calculate Z(β) and the first contribution to the

connected 2-point thermal partition function (given by (3.5)) via simple numerical integra-

tion. However the scaling we choose for the normalization of H is different than the choice

in [17], namely we choose to normalize 2−N/2
〈

tr(H2)
〉

= 1, while they choose to have it

proportional to N to get a well defined large N action. Thus to compare to their numerical

results we need to set (see [23] for details)

J 2 =

(

N

p

)

(p− 1)!

2pNp−1
. (A.5)
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Figure 23. A comparison of the leading order correction to the spectral form factor for N =

28, 30, 32 to the numerical results from [17].

Then we can compare these results to the numerical results in [17] using simple numer-

ical integration of the spectral density. Apart from the comparison in the text for N = 34,

we also compared the leading term to the numerical results from [17] for N = 28, 30, 32,

which are given in figure 23. We note that the slope-plateau transition is not exactly

matched as we use the GUE approximation from (3.18) rather than the GOE or GSE

forms of the ramp, which are the correct universality classes for N = 32 and N = 28

respectively.
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