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Abstract Multi-train modeling and simulation plays a

vital role in railway electrification during operation and

planning phase. Study of peak power demand and energy

consumed by each traction substation needs to be deter-

mined to verify that electrical energy flowing in its railway

power feeding system is appropriate or not. Gauss–Seidel,

conventional Newton–Raphson, and current injection

methods are well-known and widely accepted as a tool for

electrical power network solver in DC railway power

supply study. In this paper, a simplified Newton–Raphson

method has been proposed. The proposed method employs

a set of current-balance equations at each electrical node

instead of the conventional power-balance equation used in

the conventional Newton–Raphson method. This concept

can remarkably reduce execution time and computing

complexity for multi-train simulation. To evaluate its use,

Sukhumvit line of Bangkok transit system (BTS) of Thai-

land with 21.6-km line length and 22 passenger stopping

stations is set as a test system. The multi-train simulation

integrated with the proposed power network solver is

developed to simulate 1-h operation service of selected

5-min headway. From the obtained results, the proposed

method is more efficient with approximately 18 % faster

than the conventional Newton–Raphson method and just

over 6 % faster than the current injection method.

Keywords Newton–Raphson method � Gauss–Seidel
method � Current-balance equation � Current injection

method � Multi-train simulation � Power supply study

1 Introduction

In the recent decades, demand growth in public transport

systems has increased rapidly. Several cities across the

world have planned to develop their own urban mass transit

systems or to extend their existing routes to cover every

street corner. Most urban metro systems require DC trac-

tion power supply to energize their rail vehicles [1–3]. The

third rail conductor in DC power feeding systems is typi-

cally used for urban metros with the standard DC supply

voltage of 750 V. At higher voltage level, 1500 VDC or

3000 VDC, the overhead catenary feeding configuration is

more appropriate. It is necessary to characterize electrical

performance and power loading at traction substations for

planning, designing, and operation of mass rapid transit.

Multi-train system simulation [4–7] integrated with a

power network solver is a potential tool to exhibit power

supply performances.

DC railway power flow calculation has been continually

developed. Some may consider that DC railway power flow

is a reduced version of AC power flow. As AC power flow,

Gauss–Seidel and Newton–Raphson methods [8–10] are

both well-known and widely accepted. In DC railway

power systems, these two methods have been commonly

employed in case of non-linear traction power load. The

nature of DC railway power system is as simple as DC

linear circuits unless traction power load model is taken

into account. From the literature [11–14] and also proof by

simulation experiences, the current injection method or

alternatively current-vector iterative method (CIM) is more
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efficient than any others. However, for a large-scale DC

power network, several hundred nodes or up to a thousand

nodes, incomplete Cholesky conjugate gradient (ICCG)

method [15] to handle large sparse matrices is preferred.

In this paper, the well-known Newton–Raphson power

flow method has been revised and therefore simplified. A set

of current-balanced equations governing each node is selected

instead of a set of conventional power-balanced equations.

According to [16], the simplified Newton–Raphson method

for AC power flow calculation has been proposed. With good

performance and its simplicity, it is expected to have advan-

tages over the above-mentioned methods.

This paper is organized into seven sections. Section 2

gives a brief in train movement and performance calcula-

tions. Section 3 is a review of DC railway power systems

and its power flow solution methods. Section 4 describes

Newton–Raphson methods for DC railway power systems

in both power and current expressions. Section 5 illustrates

multi-train system simulation integrated with power net-

work solvers. Simulation results and conclusion remarks

are in Sects. 6 and 7, respectively.

2 Train movement and performance calculation

The key dynamic variables of train movement are position,

velocity, and acceleration rate. During single train motion,

the relationships among these variables are only subject to

the straightforward kinematic equation according to New-

ton’s second law of motion [17–19]. Considering Fig. 1, a

train vehicle is moving up on an inclined rail surface. This

motion can be expressed mathematically by using the free

body diagram describing all the forces acting on the train as

shown in Eq. 1.

FT � FR ¼ Meffa; ð1Þ

FR ¼ FRR þ Fdyna þ Fgrad; ð2Þ

where FT denotes the tractive effort of the train, FR denotes

the resistance force of the train, FRR denotes the rolling

resistance force of the train, Fdyna denotes the aerodynamic

drag force of the train, Fgrad denotes the gradient force of

the train, Meff denotes the total effective mass of the train,

and a denotes the train acceleration.

There are resistance forces, FR, opposing the train

motion. The resistance forces can be categorized into three

types: frictional forces, commonly called ‘‘rolling resis-

tance’’, air resistance or dynamic drag forces, and gravi-

tational or gradient forces as described in Eq. 2.

2.1 Rolling resistance

The rolling resistance is the resistance to motion of rotating

parts. It is mainly caused by frictional torques (bearing

torques, gear teeth friction, brake pads). Equation 3 is the

mathematical representation of the rolling resistance.

FRR ¼ fRW � f0 þ f1vð ÞW ; ð3Þ

where W is the axle load, fR is the rolling resistance

coefficient, f0 and f1 are two arbitrary constants, and v is the

train velocity.

2.2 Aerodynamic drag resistance

The motion of a train takes place in the air and the force

exerted by air on the train will influence the motion. The

aerodynamic resistance force results from three basic

effects: (i) the pressure difference in front and behind the

train due to the separation of the air flow and the vortex

creation behind the vehicle, (ii) skin friction representing

the surface roughness of the vehicle body, and (iii) internal

flow of air entering the internal parts of the vehicle. It is

common to express the aerodynamic drag force in the basic

form as Eq. 4:

Fdrag ¼
1

2
qairCdAFv

2
air; ð4Þ

where qair is air density (kg/m3), Cd is an aerodynamic drag

coefficient, AF is the projected frontal area of the train, and

vair is the speed of air relative to the train body.

2.3 Gradient force

The gradient force on a slope will act in the opposite

direction of the train for uphill. The positive and negative

signs are for the downhill and uphill motions, respectively.

The gradient force is a constant force as long as the slope is

constant. Equation 5 is the mathematical representation of

the gradient force.

Fgrad ¼ �Meffg sin h; ð5Þ

whereg is the gravitational constant (9.81 m/s2);h is the

slope angle.

The train’s aerodynamic and rolling resistance forces are

the properties of each train vehicle. They can only vary

with the train speed and can be separated from the gradient

force for convenient use. The combination of these two

resistance forces is called the drag force. DifferentFig. 1 Free body diagram of the train movement
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operators have their own favorite equation to fit the train’s

drag-force resistance. The quadratic form of Davis equa-

tion [20] is commonly used in Eq. 6.

Fdrag ¼ aþ bvþ cv2; ð6Þ

where a, b, and c are drag-force coefficients. It is common

to use different values for open or tunnel situations.

Trains and their movements can be modeled mathe-

matically. When the simulation starts, the first train is

released on the track. It is in the powering mode to

accelerate the train to reach the maximum train travel

speed. When the maximum speed is reached, the train is

switched to operate in many different ways due to the

travel purpose e.g., energy saving operation. However,

most of the train operating mode before the braking is

always the coasting mode. The train’s power can be

computed by multiplying the tractive effort and the train

speed. The tractive effort can be calculated by using the

Newton’s second law of motion which considers impacts of

dynamic drag, gradient force, train’s mass, and acceleration

or deceleration as described previously.

3 Railway power supply study

The railway traction power supply system has several

configuration features different to a normal power system,

which are summarized as follows.

3.1 DC railway power supply system

The commonly used voltages for DC railways are 600 V,

750 V, and 1.5 kV for urban, interurban metros, and

regional system, respectively [1–3]. Overhead catenary is

typically used for light rail system at 600–800 V and for

conventional interurban or regional systems at 1.5 or 3 kV.

Because of the large currents involved compared to high-

voltage AC system, the DC copper contact wire is made

from heavier gage material. DC railway power supply

system has several configuration features different from a

normal DC power system. However, there are some sim-

plifications of the power network modeling. DC feeding

system feature includes a three-phase bridged silicon rec-

tifier for conversion from alternating to direct current.

Figure 2 is an example showing the structure of a DC

feeding circuit connected to the nearest rectifier substation.

The DC railway power supply system is not a simple DC

linear circuit due to two causes of non-linearity. The first is

the rectifier substation that does not allow the current

flowing in the negative direction. The second is the traction

power of the train. The equivalent circuit of DC railway

power supply systems is summarized in Fig. 3. The need

for efficient DC railway power flow calculation is that

although the total number of trains during service hours

and the number of rectifier substations in DC mass transit

systems can be up to a hundred nodes, it is computational

burden when multi-train system simulation is considered.

For a typical metro train service between 6.00 a.m. and

10.00 p.m. (16 h), the simulator with a time step of 0.5 s

needs to recall the DC power flow solver for

2 9 16 9 3,600 = 115,200 times.

As shown in Fig. 3, the rectifier substation is modeled

by Norton’s equivalent source [13, 14] in which Iss and Rss

represent the Norton’s short-circuit current and the Nor-

ton’s resistance, respectively; RU1 and RU2 are the con-

ductor resistances of the up-track sections; RD1 and RD2 are

the conductor resistances of the down-track sections; PU1

and PD1 are the power consumptions of the running trains

on the up-track and the down-track. The diode placed at the

substation terminal is used to prevent any negative current

flowing into the substation. The train model is represented

by a controlled current model, IT = PT/VT. Hence, the DC

power flow equation at bus k can be described as follows:

VkISS;k � PT;k ¼ Vk

X

N

i¼1

Gk;iVi; ð7Þ

Fig. 2 Circuit diagram of a typical DC railway power system
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where Vk is the voltage at bus k, ISS,k is the short-circuit

capacity of the substation at bus k, Pk is the power load of

the train connected at bus k, Gk,i is an element k,i of the bus

conductance matrix.

It should be noted that the bus conductance matrix G can

be formulated as it is for the bus admittance matrix Y in

complex power system analysis [8–10].

3.2 Gauss–Seidel DC railway power flow solution

The power flow equations as shown in Eq. 7 can be re-

arranged in order to obtain the updated voltage equation at

a given bus k. This updated equation of iteration h ? 1 as

expressed in Eq. 8 needs to be re-calculated bus-by-bus at

each iteration. To accelerate the solution convergence, the

accelerating factor, af, can be applied. This is similar to that

of AC power flow [8–10] as shown in Eq. 9.

V
hþ1ð Þ

k ¼
1

Gk;k

ISS;k �
PT;k

V
hð Þ

k

�
X

k�1

i¼1

Gk;iV
hþ1ð Þ

i �
X

N

j¼kþ1

Gk;jV
hð Þ

j

( )

;

ð8Þ

V
hþ1ð Þ

k;acc ¼ V
hð Þ

k;acc þ af V
hþ1ð Þ
k � V

hð Þ
k;acc

� �

: ð9Þ

3.3 Conventional Newton–Raphson DC railway

power flow solution

Similar to AC power flow calculation [8–10], the updated

voltage is calculated using Taylor series expansion of the

power mismatches, as shown in Eq. 10. With first-order

derivatives of Eq. 10, the Jacobian matrix, [J] = [qDP/qV],

can be formulated. For DC railway power system, Eqs. 11

and 12 (for diagonal and off-diagonal elements, respec-

tively) are used to compute elements of the Jacobian

matrix. Therefore, the updated voltage at bus k of the h ? 1

iteration can be found in Eq. 13.

DPk ¼ VkISS;k � PT;k � Vk

X

N

i¼1

Gk;iVi; ð10Þ

o

oVk

DPk ¼ ISS;k � 2VkGk;k �
X

N

i¼1
i6¼k

Gk;iVi; ð11Þ

o

oVj

DPk ¼ �VkGk;j; ð12Þ

V½ � hþ1ð Þ¼ V½ � hð Þ�
o

oV
DP

� ��1

DP½ �: ð13Þ

3.4 Current injection method for DC railway power

flow solution

This method is based on the current-balance equation at

each bus rather than the power-balanced equation [8–10].

From Eq. 7, it can be re-written into the current form as

shown in Eq. 14. Although the power of trains and the

rectifier property are non-linear, Eq. 14 can be transformed

into a linear equation at each iteration when the initial or

previously known voltage of all buses is assumed. This

implies that PT,k/Vk is iteratively arbitrary.

ISS;k �
PT;k

Vk

¼
X

N

i¼1

Gk;iVi; ð14Þ

Rss Rss
Iss

Iss

RU1
RU2

RD1 RD2

PU1

PD1

Up-track

Down-track

Fig. 3 Equivalent circuit of a typical DC railway power system
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G½ � V½ � ¼ I½ �: ð15Þ

3.5 Current injection method for DC railway power

flow solution

The simplified Newton–Raphson AC power flow method

has been proposed in [16]. With its remarkable features,

this technique can also be applied to solve DC railway

power flow problems. It is based on the current-balance

equations. Starting with Eq. 14 as the CIM, the updated

voltage is considered by using Taylor series expansion of

the current mismatches as shown in Eq. 16.

DIk ¼ ISS;k �
PT;k

Vk

�
X

N

i¼1

Gk;iVi: ð16Þ

With first-order derivatives of Eq. 16, the simplified

Jacobian matrix, [J] = [qDI/qV], can be formulated. The

updated voltage equation in this case is given in Eq. 17. To

compute elements of the Jacobian matrix, Eqs. 18 and 19

are acquired from Eq. 16 for diagonal and off-diagonal

elements, respectively.

V½ � hþ1ð Þ¼ V½ � hð Þ�
o

oV
DI

� ��1

DI½ �: ð17Þ

o

oVk

DIk ¼
PT;k

Vk

� Gk;k: ð18Þ

o

oVj

DIk ¼ �Gk;j: ð19Þ

In comparison with the conventional Newton–Raphson

method, Eq. 18 is simpler than Eq. 11. There is no loop

(summation form) to compute the diagonal elements. In

addition, Eq. 19 to compute the off-diagonal elements is

constant throughout the calculation (voltage independent).

It is computed only once before the iterative process is

started. The Jacobian matrix of the simplified Newton–

Raphson method needs to re-compute only the diagonal

elements while Eq. 12 is voltage-dependent. All elements

of the Jacobian matrix of the conventional Newton–

Raphson method must be re-calculated at each iteration

which causes slow execution times.

4 Multi-train system simulation

The multi-train system simulator (MTS) with discrete time

update is used as the main simulation core. It can be pro-

grammed in various programming software, e.g., FOR-

TRAN, C/C??, JAVA, MATLAB, etc. The metro train

service can be implemented by using MTS. The interaction

between MTS and power network solvers can be demon-

strated as follows.

In Fig. 4, there are four main blocks: (i) System data, (ii)

Multi-train simulator (main program), (iii) Network cap-

ture, and (iv) Power network solver. At each discrete time

Multi-train system simulator (main program)

Train movement & performance calculation

Call the Network Capture

Call the Power Network Solver 

Power network solver

Perform the power flow calculation

- Gauss-Seidel method (GSM)

- Conventional Newton-Raphson method (CNR)

- Current Injection method (CIM)

- Simplified Newton-Raphson method (SNR)

Calculate bus voltages, power losses, etc 

Network capture

Define power network configuration  

Bus numbering

Create bus data and line data 
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Fig. 4 Program structure of the multi-train system simulation
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update, the multi-train simulator (main program) is used to

simulate position and power consumption of all trains. The

change in train positions and powers causes voltage vari-

ation in the power feeding system. The network capture

will be called every time update to prepare bus data and

line data for the power network solver, signal (a). After

receiving signal (b) the multi-train simulator (main pro-

gram) calls the power network solver, and signal (c) for

power flow calculation. The power network solver sends

signal (d) to the network capture in order to receive bus

data and line data. After receiving the necessary data from

the network capture, signal (e), the power network solver

can perform the power flow calculation using the selected

method. The voltage solution obtained by the power net-

work solver is sent back to the multi-train simulator (main

program), signal (f) and can be used to evaluate the train

performances for the next time update (if required). This

repetitive process will be performed until the stop time is

reached.

To clarify the idea of MTS incorporating the network

capture and power network solver, a system snapshot taken

at a particular time step is depicted and illustrated in Fig. 5

to exhibit how the processes of MTS works.

5 Simulation results and discussion

5.1 Test system

A dense metro train service with a 5-minute headway is

modeled for the simulation tests as shown in Fig. 6. It is

Sukhumvit line (light green line) of Bangkok Transit

System, so-called BTS Sky Train [21]. It consists of 22

passenger platforms and 10 rectifier substations. The trains

receive electrical power from the 3rd conductor at 750 V.

The rectifier substations are operated by BTS operator at

no-load rectifier substation voltage of 900 V. The technical

data [22] of BTS’s EMUs (electric multiple units) are

described in Fig. 7. The trains were all assumed to be

identical. Figure 8 shows the distance–time curves from

these tests using the multi-train system simulator described

in the previous section. It exhibits the BTS service for one-

hour operation from the beginning, 6.00 a.m.. For more

details, the speed-time trajectory for the first train, on the

up-track is selected and shown in Fig. 9.

The test system is the BTS—Sukhumvit line of 21.6 km

long. The test-case scenario is an hour operation starting

from 6.00 a.m. having uniform 5-minute headway. The

train’s acceleration rate is set as 1.0 m/s2. The travel time

of a one-way running train is 30 min and 36.5 s. The speed

limit is assumed at 80 km/h for the entire route.

5.2 Simulation results

The test is concerned with DC metro train service. The

system is examined by the multi-train system simulation

coded in the MATLAB programming environment devel-

oped by the School of Electrical Engineering, Suranaree

University of Technology, Thailand, to study the BTS—

Sukhumvit line’s train service, with uniform 5-minute

headway. The effectiveness of SNR (simplified Newton–

Raphson power flow method) compared with CNR (con-

ventional Newton–Raphson power flow method), GSM

(Gauss–Seidel power flow method), GSA (accelerated

Gauss–Seidel power flow method), and CIM (current

injection method) has been examined.

This test was performed on a Mac-book pro (Intel Core

i5-2.8 GHz, DDR3 1600 MHz–4 GB) with MATLAB 7.

Fig. 5 Example of an MTS snapshot at a particular time

246 T. Kulworawanichpong

123 J. Mod. Transport. (2015) 23(4):241–251



With 1 9 10-4 p.u. equally applied to the relative termi-

nation criterion (maximum power mismatch for the CNR,

maximum current mismatch for the SNR, and maximum

voltage error for the GSM, the GSA, and the CIM), their

power flow solutions are compared. It reveals that the

results obtained by the four power flow methods are

exactly the same, but the total number of iterations required

and execution times are different depending on their indi-

vidual performances. Figure 10 shows the voltage profiles

of the first train and the first rectifier substation. The power

drawn from the first rectifier substation can be depicted in

Fig. 11. It presents almost 3-MW of the peak power drawn

from the first rectifier substation.

The convergence of the power flow methods for each

test system is an essential indication to examine how the

solution sequence moves toward the true solution and to

show that the generated sequence is bounded. This roughly

describes the rate of error reduction only and cannot be

used to judge the computational speed of the calculation.

Thus, the execution times need to be observed carefully

and also to be compared. In addition, the execution times

for the four power flow methods applied to the test system

are recorded and presented in Table 1.

The test was performed repeatedly for 30 trials per

method. This can evaluate the effectiveness of each

method. On the assessment of the overall execution time, it

is perceived that the SNR is the fastest method while the

CIM is the second and the GSM comes last. The average

execution times are 8.19, 7.17, 6.72, 11.46, and 8.75 s for

the CNR, CIM, SNR, GSM, and GSA, respectively. The

optimal accelerating factor of the GSA is 1.37. This factor

was obtained by varying the value between 1.0 and 1.6.

Figure 12 summarizes the optimal tuning of the acceler-

ating factor. However, with the optimal accelerating factor,

the GSA leads to 8.75 s for the average execution time, it is

2.03 s slower than the best (SNR).

The complication of this study is due to the change in a

total number of buses in the DC railway power supply
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Fig. 6 BTS sky train—Sukhumvit line, Bangkok, Thailand
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system. The BTS—Sukhumvit line has 10 rectifier sub-

stations. This implies that the minimum number of buses in

the entire system is 10. After starting the service, the total

bus number increases as the number of running trains

increases. Figure 13 describes the total number of buses in

the entire system at each particular time step.

The test result shows that the total number of buses can

be varied in between 10 and 24. The maximum number of

total buses is 24. This situation occurs when there is a total

of 14 running trains in service. As can be seen in Fig. 13, in

the steady train service, the total bus number of the entire

system is in between 21 and 24.

5.3 Discussion

To exhibit the convergence rate of each power flow

method, comparisons among convergence curves at a

selected time, 2,500.0 s, of the four methods are shown in

Figs. 14 and 15. The convergence curves describe their

own convergence property. As can be seen, the quadratic

convergence can be found in both Newton–Raphson power

Fig. 7 Technical data of BTS’s EMUs
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flow methods while the others have the linear convergence

property. Although the CIM has the linear convergence, its

execution time is faster than the CNR of the quadratic

convergence. Unlike the well-known Newton–Raphson

power flow methods, the CIM employs the simplest

equation according to Ohm’s law for its updating equation,

[V] = [G]-1[I]. Only [I] is re-calculated at each iteration

while [G] or [G]-1 is constant and calculated before

starting the first iteration. Therefore, it can be used

repeatedly without any update. The best performance

among the four methods is the proposed SNR. It converges

quadratically within 3 iterations while the CNR spends 5

iterations.

The execution time of the proposed algorithm is faster

than that of the conventional Newton–Raphson method.

This execution time depends mainly on the amount of

floating-point operations (FLOP) if these two methods are

assumed to be performed in the same software on the same

computing machine. It assumes that the other steps of these

two Newton–Raphson methods are exactly the same,

therefore, the Jacobian updating step dominates the overall

execution time. The Jacobian updating formulae for the
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Fig. 11 Power loading of the first substation
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conventional Newton–Raphson methods are described in

Eqs. 11 and 12. It has a loop in Eq. 11 and its FLOP per

iteration is N (total number of buses). In contrast, Eqs. 18

and 19 give the updating equations for the proposed

method. Remarkably, there is no loop in both equations.

Equation 18 may spend a few FLOP per iteration only and

is independent from the total bus number. This is the main

support of the proposed method to gain faster execution

times compared to the conventional method.

Table 1 Comparison of execution times consumed (30 trials)

Trial CNR CIM SNR GSM GSA

1 8.1680 7.1162 6.6909 11.4789 8.7072

2 8.1170 7.0942 6.8248 11.4848 8.8859

3 8.1442 7.1190 6.7157 11.4152 8.7331

4 8.2702 7.2698 6.7039 11.4003 8.7259

5 8.3029 7.1770 6.6685 11.5186 8.7905

6 8.2026 7.2108 6.6950 11.3977 8.7028

7 8.3126 7.1755 6.7507 11.4191 8.7567

8 8.1782 7.1354 6.7078 11.4991 8.8570

9 8.1901 7.1670 6.7515 11.4193 8.6968

10 8.2232 7.2107 6.7497 11.4356 8.8019

11 8.2032 7.1924 6.7197 11.4543 8.7064

12 8.1496 7.1267 6.7549 11.4305 8.7718

13 8.2334 7.1544 6.7440 11.4385 8.7250

14 8.1899 7.1434 6.7288 11.4189 8.8040

15 8.1982 7.1827 6.7770 11.4722 8.7486

16 8.1722 7.1744 6.7595 11.4779 8.7049

17 8.1915 7.1966 6.7020 11.4011 8.6752

18 8.1161 7.2610 6.7357 11.4440 8.7336

19 8.2779 7.1319 6.7198 11.3867 8.7686

20 8.1659 7.2606 6.7241 11.4095 8.7058

21 8.2215 7.1777 6.7258 11.4290 8.7046

22 8.1716 7.1578 6.7204 11.5767 8.7839

23 8.1506 7.2701 6.6914 11.5815 8.7389

24 8.1707 7.1540 6.6851 11.4421 8.7136

25 8.2059 7.1330 6.7125 11.5772 8.7762

26 8.1353 7.1603 6.6960 11.4462 8.7578

27 8.1502 7.1014 6.6874 11.3862 8.8896

28 8.0986 7.1426 6.7071 11.5480 8.7239

29 8.1728 7.0973 6.6939 11.5038 8.7578

30 8.1369 7.1102 6.7224 11.5639 8.7598

Min 8.0986 7.0942 6.6685 11.3862 8.6752

Mean 8.1874 7.1668 6.7222 11.4619 8.7536

Max 8.3126 7.2701 6.8248 11.5815 8.8896

SD 0.0528 0.0505 0.0322 0.0598 0.0537
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Fig. 12 Optimal tuning of the accelerating factor for the GSA
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6 Conclusion

Power network solver for DC railway power supply is one

of the most essential parts in the multi-train simulation in

order to analyze, simulate, design, and control the steady-

state train service. Although there exist several powerful

power flow solvers based on the conventional Newton–

Raphson method, their problem formulation gives com-

plication due to the need to calculate derivatives in the

Jacobian matrix. The simplified Newton–Raphson method

uses non-linear current mismatch equations instead of the

commonly used power mismatches to simplify overall

equation complexity. In addition, a total number of mul-

tiplication operations required by the conventional method

is linearly proportional to the size of the Jacobian matrix,

while that of the proposed method is nearly constant. This

means that the calculation time of the conventional method

increases more rapidly as the total bus number increases

than that of the proposed method does. This can lead to

improvement of multi-train simulation software develop-

ment in fast computational speed and less memory usage.

To investigate the effectiveness of the proposed method,

BTS—Sukhumvit line in Bangkok, Thailand is selected as

the test system. It consists of 22 passenger stopping sta-

tions, 10 rectifier substation, and the total line length is

21.6-km. The rated voltage of the power feeding system is

750 VDC. The test-case scenario is assumed at the speed

limit of 80 km/h with the 5-minute headway. The simula-

tion is conducted with one-hour service operation. The

train service with the given headway spends just over

30 min to reach the steady train service operation. The

result shows that the total bus number of the entire system

can vary in between 21 and 24 at the steady train service.

As a result, the SNR shows the best performance among

the four methods in the execution time. It is about 18 %

and 6 % faster than the CNR and the CIM, respectively.
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