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Maize inflorescence is a complex phenotype that involves

the physical and developmental interplay of multiple traits.

Given the evidence that genes could pleiotropically contrib-

ute to several of these traits, we used publicly available

maize data to assess the ability of multivariate genome-

wide association study (GWAS) approaches to identify

pleiotropic quantitative trait loci (pQTL). Our analysis of

23 publicly available inflorescence and leaf-related traits in

a diversity panel of n¼ 281 maize lines genotyped with

376,336 markers revealed that the two multivariate GWAS

approaches we tested were capable of identifying pQTL in

genomic regions coinciding with similar associations found

in previous studies. We then conducted a parallel simulation

study on the same individuals, where it was shown that

multivariate GWAS approaches yielded a higher true-

positive quantitative trait nucleotide (QTN) detection rate

than comparable univariate approaches for all evaluated

simulation settings except for when the correlated simu-

lated traits had a heritability of 0.9. We therefore conclude

that the implementation of state-of-the-art multivariate

GWAS approaches is a useful tool for dissecting pleiotropy

and their more widespread implementation could facilitate

the discovery of genes and other biological mechanisms

underlying maize inflorescence.

Keywords: GWAS • Inflorescence • Maize • Multivariate •

Pleiotropy • Simulations.

Introduction

Complex biological phenotypes in plants result from the input

and interactions of multiple phenotypic traits. Inflorescence in

maize (Zea mays L.), for instance, reflects the interplay between

tassel, ear and vegetative traits (Bonnett 1954). To be successful,

modern maize breeding requires optimal inflorescence, specif-

ically the temporal syncing of pollen shedding and receptive

silks. Such a relationship is highly adapted to local environmen-

tal conditions and dependent upon the vegetative structure of

the plant (Bouchet et al. 2013). In conjunction with this, mod-

ern agriculture is pushing for unprecedented levels of planting

density (Shi et al. 2016) and a more upright leaf angle will allow

for better circulation in an open pollination field. To date, sev-

eral quantitative trait loci (QTL) have been identified that

contribute to optimal maize inflorescence and plant leaf archi-

tecture (Buckler et al. 2009, Brown et al. 2011, Tian et al. 2011, Li

et al. 2015, Calder�on et al. 2016, Wu et al. 2016, Pan et al. 2017).

Some genetic components underlying these QTL might con-

tribute to two or more of these traits, a phenomenon called

pleiotropy (Stearns 2010). This theory is supported by QTL

regions identified for both tassel (Brown et al. 2011, Wu et al.

2016) and leaf traits (Tian et al. 2011) near the liguleless (lg)

genes. Liguleless1 (lg1) particularly has strong evidence for a

pleiotropic relationship to maize leaf and inflorescence traits

(Foster et al. 2004, Lewis et al. 2014). This and other lg gene

mutants (i.e. lg2, 3 and 4) alter leaf angle by removing the ligule

while simultaneously affecting tassel branch initiation. In add-

ition, genes expressed at the initiating ligules are co-expressed in

tassel branches (Johnston et al. 2014). It is because of this evi-

dence, and their relationship for successful pollination and seed

set, that more pleiotropic QTL (pQTL) for maize inflorescence

and leaf traits are hypothesized to exist.

One common practice for addressing pleiotropy is to com-

pare results across univariate studies, where results frommultiple

single-trait genome-wide association studies (GWASs) are com-

bined to identify statistically significant marker–trait associations

(Wei and Johnson 1985). The procedure consists of performing a

separate GWAS for each trait. Ideally, pQTL would then manifest

themselves as one of the peak marker–trait associations across

multiple single-trait GWASs (Visscher and Yang 2016, Chai et al.

2018). Alternatively, post hoc procedures could be implemented

to compile univariate GWAS information (i.e. effect estimates, P-

values) for each marker and then make pleiotropic inferences

(Huang et al. 2011, O’Reilly et al. 2012, Sluis et al. 2013).

When multiple traits are collected on the same individuals

within a study, more formal multivariate statistical methods are

available to detect pQTL and are generally categorized into two

different approaches (Solovieff 2013, Galesloot et al. 2014). The

first uses a mixed linear model (MLM) with a matrix of corre-

lated traits as the response variable. Such multivariate MLMs

(mvMLMs) are commonly applied in plants (Carlson et al.

2019), where it includes covariates to reduce false positives

that arise from population structure and kinship (Zhou and

Stephens 2014). The second approach utilizes data reduction

methods to create composite traits (Klei et al. 2008). One such

method converts t traits into t linearly uncorrelated principal

components (PCs; Hotelling 1933). Each of these PCs can then
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be used in univariate GWAS to identify genomic regions with

peak-associated markers. Genomic marker data associated with

these PCs are hypothesized to be jointly linked to the traits of

interest (Zhang et al. 2018). All PCs, including those explaining

even a small amount of variation, could be useful for identifying

pQTL (Avery et al. 2011, Liu et al. 2012, Aschard et al. 2014). Any

detected pQTL can then rely on the loadings, which explain

each trait’s contribution to the total variation in a given PC, for

biological interpretation.

To ensure that the biology underlying inflorescence is under-

stood and utilized as effectively as possible in maize breeding,

the advantages and disadvantages of these pQTL approaches

need to be rigorously assessed using maize data. Therefore, we

performed univariate, multivariate, and PC-based GWASs using

publicly available maize leaf and inflorescence data. In addition,

we used maize genotypic data to conduct a simulation study to

compare the true- and false-positive detection rates of simu-

lated quantitative trait nucleotides (QTNs) using these

approaches. We hypothesized that the resulting peak-

associated single-nucleotide polymorphisms (SNPs) using real

data are linked to loci that simultaneously contribute to the

variability of maize leaf and inflorescence traits.

Results

A total of 23 traits related tomaize inflorescence organs and leaf

architecture were analyzed. The genetic correlation between 21

nonflowering time traits closely resembled the phenotypic cor-

relation (Fig. 1). Themultivariate analysis of these publicly avail-

able maize traits detected multiple peak-associated SNPs that

were consistent with those identified in the previous studies

(Table 1). In addition, the simulation study revealed that multi-

variate approaches yielded higher true-positive detection rates

relative to univariate approaches, particularly in cases where the

simulated trait heritabilities were medium and/or low. The en-

tire list of marker P-values for all publicly available trait analyses

can be accessed at https://github.com/lipka-lab/Multi-Trait-

GWAS-Methods-Reveal-Loci-Associated-with-Maize-Infl

orescence-and-Leaf-Architecture.

Univariate GWAS

To aid in distinguishing between trait-specific and pleiotropic

genomic signals, univariate GWAS was performed on each trait

independently (Table 1). These univariate analyses identified

significant peak associations present on chromosomes 1, 2, 3

and 8 for growing degree days (GDD) to silk and GDD to tassel

resemble similar published associations for flowering time

(Buckler et al. 2009, Peiffer et al. 2014). Two SNPs on chromo-

some 2 were declared significant for both tassel primary

branches [TPBs; at 1% false discovery rate (FDR)] and main

spikelet length (MSL; at 5% FDR). These SNPs were within

2Mb from a QTL region found by Wu et al. (2016) for tassel

branch number (TBN) and tassel length (TL). Finally, an SNP on

chromosome 9 was declared significant at 10% FDR for ear

diameter (ED). No associations for any maize ear-related traits

have been previously identified in the surrounding region; how-

ever, this SNP was 66 kb from a QTN found to be significant for

TL by Wu et al. (2016). For all these SNPs, it is expected that the

distance to previously published peaks may change depending

on which version of the maize reference genome the authors

used. Nevertheless, the univariate results demonstrated that

our methods can replicate similar findings of more statistically

powerful univariate studies.

Multivariate GWAS

Multivariate mixed-model GWASwas performed on TPB, upper

leaf angle (ULA) and ear row number (ERN). Both GDD to silk

and tassel were still included as covariates to prevent spurious

associations due to flowering time. Interestingly, themodel with
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Fig. 1 Trait correlations. (A) Pearson correlations of the BLUPs of 21 inflorescences and leaf-related traits. (B) Pearson correlations of the estimated

additive marker effects from the univariate GWAS conducted on each of these 21 traits.
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the optimal BIC was one that included no fixed-effect covariates

controlling for population structure.

One SNP was statistically significantly associated with these

traits at 5% FDR, and an additional two SNPs were statistically

significant at 10% FDR (Fig. 2). The most significant of these is

located in a region on chromosome 6 similar to QTLs reported

for TL byWu et al. (2016) and Brown et al. (2011). The others are

located 34 bp apart from one another on chromosome 3 and

were also significantly associated with TPB and MSL in the

univariate GWAS (Table 1). These SNPs were the only results

found significant in more than one of the tested GWAS

approaches. Because the alternative hypothesis for the multi-

variate model states that at least two traits have a nonzero

additive association with a genomic marker, these results pro-

vide evidence that these traits are associated with at least two of

the traits.

PC GWAS

PC GWAS using the unified MLM was conducted for 18 of a

possible 21 PCs of maize ear-, tassel- and leaf-related traits.

There were no reasonable overlaps between significant SNPs

in PC GWAS and mvGWAS. Overall, a single SNP on chromo-

some 2 was declared significant (at 10% FDR) for PC5 (Fig. 3).

The variability in PC5 is mainly contributed to the variation in

tassel, ear and leaf traits (Fig. 3B). Interestingly, this SNP was

within 0.695 and 0.17Mb of two SNPs found significant for TL

and TBN (Wu et al. 2016), respectively. No other SNPs for PC

GWAS were declared significant at 5% or 10% of FDR; however,

if the FDR threshold was relaxed to 20%, associations on

chromosome 1 and chromosome 8 were identified for PC11

(Fig. 4). Visual evaluation for PC11 shows that these marker P-

values diverge from the expected distribution of P-values under

the null hypothesis of no marker–trait association (Fig. 4A).

Evaluation of the loadings of PC11 revealed that secondary

branch number and kernel weight made the strongest positive

contributions to PC11, while cob weight and cob diameter

made the strongest negative contributions (Fig. 4B). These

results give credence for follow-up studies to investigate

these signals.

Simulation study

To evaluate the false-positive rate of these methods, a set of

three simulated traits with a narrow-sense heritability of h2¼ 0

and no underlying QTNs were replicated 1,000 times (Fig. 5). As

expected, the Bonferroni threshold had a lower false-positive

rate than an FDR approach, as it is commonly known to be

excessively conservative at a high number of tests (Frane 2015).

Multivariate mixed-model GWAS had the highest proportion

of false positives. Nonetheless, the observed false-positive rates

are at or below the theoretical values, suggesting that all

approaches adequately adjusted for false positives.

Multivariate mixed-model GWAS and GWAS on PC1

(abbreviated PC1 GWAS) consistently had the highest true-

positive rate across all settings (Fig. 6). However, when all her-

itabilities were 0.9, GWAS on the individual traits detected

pleiotropic QTN as well as multivariate approaches. In contrast,

for medium- or low-trait heritabilities (0.5 and 0.2, respectively),

the multivariate methods consistently had higher true-positive

rates than univariate analyses. Across the multi-trait methods,

mvGWAS had a slightly higher true-positive detection rate than

the PC1 GWASwhen all of the simulated trait heritabilities were

either 0.9 or 0.5. In the settings where the heritabilities simu-

lated were identical across all traits, the true-positive detection

rate of PC3 GWAS was lowest among the multivariate

approaches. In contrast, when a mixture of heritabilities was

simulated (e.g. 0.2, 0.5 and 0.9), PC3 GWAS tended to yield a

Table 1 List of peak-associated single-nucleotide polymorphisms

Chromosome AGPv4 position Analysisa P-valuesb MAF

1 20,835,743 PC11 2.39 � 10�6 0.2046

1 277,120,730 GDD to silk 2.63 � 10�6 0.0961

2 18,185,025 GDD to silk 2.65 � 10�6 0.0996

2 179,171,874 PC5 8.90 � 10�7 0.1428

2 29,749,088 PC5 3.04 � 10�7 0.4517

3 161,013,215 GDD to silk 4.88 � 10�7 0.3736

3 161,013,240 GDD to silk 1.22 � 10�6 0.3772

3 161,013,249 GDD to silk 4.88 � 10�7 0.3736

3 161,013,251 GDD to silk 1.22 � 10�6 0.3772

3 161,168,101 GDD to silk 1.02 � 10�6 0.2669

3 200,352,075 TPB, MSL, MV 4.05 � 10�8, 2.30 � 10�7, 6.52� 10�7 0.3381

3 200,352,109 TPB, MSL, MV 4.05 � 10�8, 2.30 � 10�7, 6.52� 10�7 0.3381

6 142,569,704 MV 6.46 � 10�8 0.068

8 134,706,486 GDD to silk 1.80 � 10�6 0.1619

8 1,351,014,06 GDD to tassel, GDD to silk 4.87 � 10�9, 1.27 � 10�9 0.2028

9 103,121,862 ED 2.26 � 10�7 0.0818

aRefer to Supplementary Table S1 for abbreviations of trait names.
bFor single-nucleotide polymorphisms significant in more than one analysis, unadjusted P-values are listed in the same order as their respective analysis.
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higher true-positive detection rate than PC1 or PC2 GWAS.

Finally, similar results were obtained whether or not the simu-

lated traits consisted of purely of pleiotropic QTNs. However,

the traits with only pleiotropic QTNs had higher observed true-

positive detection rates than their equivalent settings that

included both pleiotropic and non-pleiotropic QTNs.

Discussion

We used simulated and publicly available maize traits related to

inflorescence to test the ability of several univariate and multi-

variate GWAS approaches to identify pQTL. Our results suggest

that each of these approaches was capable of identifying such

signals, albeit with varying levels of success. That is, each of the

univariate and multivariate GWAS approaches identified gen-

omic signals for inflorescence-related traits that were consistent

with those found in previous studies. The simulation studies

demonstrated the advantage of multivariate approaches when

traits with low-to-moderate heritabilities or traits with a mix-

ture of low-to-high heritabilities were analyzed in one multi-

variate model. Collectively, our analyses of real and simulated

traits demonstrate that these tested GWAS approaches can

facilitate the elucidation of genomic regions likely to contain

causal mutations underlying multiple traits and this could sub-

stantially assist follow-up biological studies dedicated to dis-

secting pleiotropy.

Advantages and disadvantages of each approach

The identification of pleiotropy is important because marker-

assisted selection on favorable alleles of pleiotropic loci could

lead to a simultaneous change in multiple agronomically im-

portant traits (Chai et al. 2018). Although the analyses explored

in this work are statistical approaches and therefore not capable

of illuminating the biological function of putatively pleiotropic

causal mutations, we nevertheless illustrated their usefulness.

Moreover, each of the analyses we considered had advantages

that contributed unique insight into the characterization of

pleiotropy. For example, the univariate GWAS approaches

were capable of identifying associations for traits that were

previously identified for other traits [e.g. a signal we identified

for ED was physically close to an association for TL reported in

Wu et al. (2016)]. Similarly, the PC GWAS approach also iden-

tified signals that collectively contributed to tassel, ear and leaf

traits. Finally, multivariate GWAS complemented univariate PC

GWAS by identifying an additional signal on chromosome 6

associated with TPB, ULA and ERN. Thus, our recommendation

A B C

D

Fig. 2 Multivariate genome-wide association results for TPBs, ULA and ERN. (A) Distribution of observed vs. expected �log10 P-values from the

multivariateGWASconducted onTPB,ULA and ERN. (B)�log10 P-values (y-axis) for a peak-associatedmarker (located on chromosome6, base pair

position 142,569,704) obtained for each of the univariate GWAS conducted individually on the 21 studied traits (x-axis). (C)�log10 P-values (y-axis)

for a peak-associated marker (located on chromosome 3, base pair position 200,352,075) obtained for each of the univariate GWAS conducted

individually on the 21 studied traits (x-axis). (D)Manhattan plotwhere the�log10 P-values (y-axis) from themultivariateGWAS conducted onTBN,

ULA and ERN. All marker coordinates correspond to B73 RefGen_v4.
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for future association studies is to use all of these GWAS

approaches so that as complete of a picture of the pleiotropic

landscape as possible can be ascertained.

Despite the potential for biological insight into putative pQTL

provided by the approaches we explored, each of these GWAS

approaches had their drawbacks. By design, univariate GWAS is

technically not a multivariate method and thus can only account

for the variation inmultiple traits if they are included as covariates

in the GWAS model. Even though PC GWAS can easily accom-

modate a large number of traits, the biological interpretation of

each PCmight be difficult. Moreover, if a genomic signal was to be

identified as associated with a PC, there is some ambiguity as to

whether the association holds for one or more of the traits con-

tributing the most to that PC (i.e. the traits with the largest ab-

solute values of the loadings) and to any insight this identified

signal can provide for the genetic architecture of these traits.

The most practical drawback of the multivariate GWAS ap-

proach is that it becomes extremely computationally intensive

when a large number of traits are analyzed (Zhou and Stephens

2014). Based on the findings from our study, we agree with Zhou

and Stephens (2014) that analyzing a maximum of three to five

traits ensures that the computational time required does not be-

come cumbersome. Our multivariate GWAS took approximately

12min to complete on a 64-GB RAM machine. On this same

machine, an attempt to analyze 10 traits was aborted after it

was estimated to take 6 weeks to complete. In contrast, a PC

GWAS that included all available traits required the same com-

putational resources as equivalent univariate GWAS. Another

drawback with multivariate GWAS is similar to one noted for

PC GWAS in that the identification of a multivariate genomic

signal will not necessarily mean that all of the evaluated traits

have causal mutations in the genomic region surrounding the

identified pQTL. Lastly, we tentatively recommend using the leave

one chromosome out (LOCO) approach for multivariate GWAS

(Fatumo et al. 2019), as we expect the same advantages noted for

using LOCO in univariate GWAS [reported in Rincent et al. (2014),

Chen and Lipka (2016)] to be observed. Beforewe can recommend

this LOCO approach in plants without hesitation, we suggest that

follow-up studies thoroughly compare LOCO multivariate GWAS

to non-LOCO multivariate GWAS.

Simulation study suggests that multivariate
approaches outperform univariate approaches
in maize

Our simulation compared the ability of two multi-trait GWAS

approaches to detect pleiotropic QTN but was not exhaustive.
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Fig. 3 Genome-wide association results for PC5. (A) Distribution of observed vs. expected�log10 P-values from the GWAS conducted on PC5. (B)

Observed loadings from PC5 (y-axis) for each trait (x-axis). (C) �log10 P-values (y-axis) for the peak marker associated with PC5 (located on

chromosome 2, base pair position 29,749,088) for each univariate GWAS conducted on the traits contributing to PC5 (x-axis). (D) Manhattan plot

where the �log10 P-values (y-axis) from the GWAS conducted on PC5 are plotted for each marker according to its base pair and chromosome

position. All marker coordinates correspond to B73 RefGen_v4.
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The simulation was limited in scope to the population

structure and linkage disequilibrium (LD) decay present in

this specific maize diversity panel. Under these constraints,

there was no indication that mvMLM or PC GWAS had

inflated false-positive rates. When considering the range of

situations tested, both approaches had comparable true-

positive rates. However, as expected due to added variation,

the true-positive rate decreased when non-pleiotropic QTNs

were introduced. Of particular interest was the finding that

multivariate models appeared to have an advantage over uni-

variate ones when a range of high- to low-heritable traits was

analyzed. This is supported by similar findings from multi-trait

genomic selection studies (Jia and Jannink 2012, Fernandes

et al. 2018).

Settings were chosen to blueprint simple cases of pleio-

tropic traits where only a few casual mutations controlled

the majority of variation. Narrow-sense heritabilities for

simulated traits followed the same range of those of the

real traits (Table 2 and Supplementary Table S1). The

narrow-sense heritabilities of traits chosen for mvMLM (i.e.

TPB, ULA and ERN; Supplementary Table S1) resembled

setting 5 the closest in that they were all low (i.e. �0.2).

Follow-up studies should look at a wider range of genetic

architectures, including more complex traits with a mixture

of additive and nonadditive pleiotropic QTNs, and measures

should be taken to directly control the correlation

between the simulated traits. Moreover, given that

simplePHENOTYPES allows for either control of trait herit-

abilities (and QTN effect sizes) or trait correlations, and not

both, we opted to control the trait heritabilities directly be-

cause it gave us more control over the traits we simulated. It

is important to point this limitation out because the corre-

lations of our simulated traits were all much higher than the

correlation of our real traits in most cases.

Finally, the simulation studies provided some potential

insight into the findings from the analysis of 23 maize

inflorescence-related traits. That is, the discrepancies in

results between methods for the real trait analysis were likely

not due to false associations but possibly from other factors

including the underlying genetic complexity of the traits and

the underlying cause of the pleiotropic signal detected by

each method (see Stearns 2010, Solovieff 2013, Gianola

et al. 2020 for review of mechanisms underlying pQTL).

Further exploration into pQTL identified in the analysis of

the real traits reported here will shed light on the degree to

which the multivariate GWAS approaches here can distin-

guish between biological mechanisms underlying putative

pleiotropic signals.

A

D

B C

Fig. 4 Genome-wide association results for PC11. (A)Distribution of observed vs. expected�log10 P-values from theGWAS conducted on PC11. (B)

Observed loadings from PC11 (y-axis) for each trait (x-axis). (C) �log10 P-values (y-axis) for the peak marker associated with PC11 (located on

chromosome 1, base pair position 20,835,743) for each univariate GWAS conducted on the traits contributing to PC11 (x-axis). (D)Manhattan plot

where the �log10 P-values (y-axis) from the GWAS conducted on PC11 are plotted for each marker according to its base pair and chromosome

position. All marker coordinates correspond to B73 RefGen_v4.
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Conclusion

The identification of pQTL associated with maize inflorescence

and related vegetative traits is important because it could result

in the simultaneous genetic gain of maize inflorescence as a

whole instead of on only an individual trait. The work presented

in this study facilitates such an endeavor by showing that it is

practical to use currently available multivariate GWAS

approaches in a concerted manner to find pQTL and hence

facilitate the identification of pleiotropic causal mutations.

We recommend that future research into multivariate GWAS

software development focuses on implementing approaches

that can dissect which subsets of traits have pQTL in a compu-

tationally efficient manner; particuarly noted that a pitfall of

current multivariate approaches is that it is difficult to elucidate

which traits have nonzero effects at a given pQTL. Nevertheless,

we clearly show that the tested multivariate approaches have

their greatest advantages over univariate approaches when cor-

related traits with low, medium and high heritabilities are con-

sidered in one analysis. Thus, we conclude that one of the

greatest advantages of pQTL analyses is its potential to facilitate

the quantification of the genetic architecture of low-heritable

traits that are correlated with higher-heritable traits.

Materials and Methods

Phenotypic and genotypic data

We analyzed a total of 23 publicly available inflorescence and leaf-related traits

in the 281-member Goodman–Buckler diversity panel (Flint-Garcia et al. 2005)

measured in up to 10 environments (Supplementary Table S1) (for informa-

tion on experimental design and data collection for this public data set, see

Buckler et al. 2009, Brown et al. 2011, Tian et al. 2011, Peiffer et al. 2014). Best

linear unbiased predictors (BLUPs) for each phenotype were predicted from a

generalized mixed model fitted across these environments using GLMER in R

Fig. 5 False-positive rates for the simulation study. The false-positive

rate is reported as the proportion of 1,000 replicate traits from the

simulation setting with no underlying QTN where at least one statistic-

ally significantly SNP association was identified. These proportions are

presented on the y-axis. The x-axis displays theGWASmodel being used,

particularly univariate GWAS (traits 1–3), multivariate GWAS (MV)

and PC GWAS (PCs 1–3). Results are reported for a Bonferroni control

of the experiment-wise (i.e. genome-wide) type I error rate of

α ¼ 0.05 and α ¼ 0:10, as well for the Benjamini–Hochberg pro-

cedure to control the FDR at 0.05 and 0.10.

Fig. 6 True-positive rates for the simulation study. For each simulation setting (A–J), the true-positive rate is reported as the proportion of 100

replicate traits with at least one statistically significant SNP association within ±250 kb of a quantitative trait nucleotide. These proportions are

presented on the y-axis. The x-axis displays theGWASmodel being used, particularly univariateGWAS (traits 1–3),multivariateGWAS (MV) andPC

GWAS (PCs 1–3). Results are reported for a Bonferroni control of the experiment-wise (i.e. genome-wide) type I error rate of α ¼ 0.05 and

α ¼ 0:10, as well for the Benjamini–Hochberg procedure to control the FDR at 0.05 and 0.10.
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(Bates et al. 2015, R Core Team 2019). For traits that were approximately nor-

mally distributed, the following model was used:

Yij ¼ μþ Gi þ Envj þ εij; (1)

where the response variable (YijÞ is the observed phenotypic value of the ith

genotype grown in the jth environment, μ is the grand mean, Gi is the random

effect of the ith genotype, Envj is the random effect of the jth environment and

εij is the error term for the ith genotype grown in the jth environment. For traits

that followed a gamma distribution (positively skewed), a similar generalized

linear model (GLM) with the negative inverse link function was used. For traits

that were collected as count data (i.e. positive integers, assumed to follow a

Poisson distribution), a similar GLM with the natural logarithm link was used. If

the model fitting procedure for these GLMs failed to converge and a normal

distribution could be reasonably assumed, then the identity link function was

used; otherwise, traits were transformed using a quartile transformation

(Gilchrist 2000) performed with the qnorm R function (van den Boogaart and

Tolosana-Delgado 2008). The resulting transformed data were assumed to fol-

low a normal distribution. For phenotypes where the effect size of environment

was close to zero, the Envj term was dropped from the model to avoid a singular

fit. To improve the accuracy of BLUPs, an additional 5,702 recombinant inbred

lines from the nested association mapping panel (Yu et al. 2008, McMullen et al.

2009) were used in model (1). Due to the nested structure of this panel, these

additional 5,702 lines were not included in further analyses. For each trait, the

BLUPs of the genotype effects were used as the response variables for GWAS.

A mixed model where the response variable was either a PC or trait BLUP

and the explanatory variable was the individual genotype effect with a covari-

ance matrix corresponding to the VanRaden additive effect matrix was used to

estimate narrow-sense heritability (h2) using mmer function in sommer

(Covarrubias-Pazaran 2016). Only h2 was calculated since the purpose was to

compare trait h2 to simulated traits where we were limited to only additive

effects. Standard error was estimated using the delta method (Holland et al.

2010) using the pin function in sommer.

We conducted a PC analysis (PCA) on BLUPs of 21 of the 23 traits using 259

lines (reduced from 281 due to missing data) using R function prcomp. Two

traits, GDD to silk andGDD to tassel, were not included in the PCA because they

were used as covariates in all GWAS models except for the univariate GWAS

models with GDD to silk and GDD to tassel as the response variables. To ensure

that none of these traits had an unwieldy influence on the resulting PCs, all 21 of

these traits were centered and scaled prior to conducting the PCA. Three of the

resulting PCs had a h2 of zero and were not considered for PC GWAS

(Supplementary Table S2). In total, 18 PC GWASs were conducted.

Two different marker sets were used in this study. Both sets were filtered to

only include biallelic markers with minor allele frequency (MAF) 0.05. The first

set, used for the analysis of the publicly available traits, consisted of 327,056 SNPs

(B73 RefGen_v4) from Bukowski et al. 2018. The second marker set, used for the

simulation study, was the IlluminaMaizeSNP50 BeadChip (Cook et al. 2012) and

had 49,280 SNPs (B73 RefGen_v3) available for analysis. Missing marker data

were imputed with the software LinkImpute (Money et al. 2015), which imple-

ments an LD-based approach to infer nearest-neighbor information

for imputation.

Univariate and multivariate GWASs

The unified MLM (Yu et al. 2006) was used to conduct both univariate and

multivariate GWASs. Briefly, the unified MLM is written as follows:

Y ¼ Qcþ Gaþ Zuþ ε; (2)

where Y is an n-by-tmatrix with n being the number of observations and t being

the number of traits; Q is the n-by-(pþ 1) incidence matrix corresponding to

the intercept and p fixed-effect covariates (i.e. PCs) accounting for subpopula-

tion structure; all models, except the univariate analysis of GDD to silk and GDD

to tassel, also included these two traits among the p fixed-effect covariates; c is a

(pþ 1)-by-t matrix of fixed effects of these covariates; G is an n-by-1 vector of

observed genotypes (coded�1, 0 or 1) at the tested marker; a is a 1-by-tmatrix

of additive effects at the testedmarker Y; Z is an n-by-n incidencematrix relating

u to Y; u�MVN(0, 2Kσ2G) is an n-by-tmatrix of genotype effects, where K is an

n-by-n kinship matrix measuring the degree of familial relatedness between

observations and σ
2
G is the genetic variance; and ε � MVN(0, Iσ2e ) is the n-by-

t-dimensional residual error with variance with I being the identity matrix and

σ
2
e being the residual variance. Note that Y, c, u and ε will collapse to a vector

and a will collapse to a scalar, if only one trait is being analyzed. The MLM fitted

to more than one trait is referred to as the mvMLM for the remainder of

the article.

The MLM was fit univariately at each SNP with MAF 0.05, for the 23 trait

BLUPs as well as 18 PCs. In addition, mvMLM was fit for three trait BLUPs (TPB,

ULA and ERN). Traits TPB and ULA were of particular interest due to the

extensive understanding of the pleiotropic nature of lg1 (Foster et al. 2004,

Brown et al. 2011, Tian et al. 2011, Lewis et al. 2014, Wu et al. 2016) and

Table 2 Simulation parameters

Simulation setting Trait h2 Number of

pleiotropic

QTNs

Largest QTN

effect size

(traits: 1–3)a

Number of

trait-specific

QTNs

Realized

correlation

with traits

1 and 2

Realized

correlation

with traits

1 and 3

Realized

correlation

with traits

2 and 3

Setting 1 null trait 0, 0, 0 0 0, 0, 0 0 0 0 0

Setting 2 0.9, 0.9, 0.9 3 0.9, 0.5, 0.2 0 0.9219 0.7607 0.9470

Setting 2 partially 0.9, 0.9, 0.9 3 0.9, 0.5, 0.2 2 0.7693 0.6310 0.9353

Setting 3 0.9, 0.5, 0.2 3 0.9, 0.5, 0.2 0 0.9222 0.7678 0.9512

Setting 3 partially 0.9, 0.5, 0.2 3 0.9, 0.5, 0.2 2 0.7719 0.6331 0.9378

Setting 4 0.5, 0.5, 0.5 3 0.9, 0.5, 0.2 0 0.9201 0.7579 0.9478

Setting 4 partially 0.5, 0.5, 0.5 3 0.9, 0.5, 0.2 2 0.7718 0.6376 0.9380

Setting 5 0.2, 0.2, 0.2 3 0.9, 0.5, 0.2 0 0.9201 0.7579 0.9478

Setting 5 partially 0.2, 0.2, 0.2 3 0.9, 0.5, 0.2 2 0.7649 0.6398 0.9372

Setting 6 0.2, 0.5, 0.9 3 0.9, 0.5, 0.2 0 0.9186 0.7465 0.9433

Setting 6 partially 0.2, 0.5, 0.9 3 0.9, 0.5, 0.2 2 0.7644 0.6279 0.9375

For each simulation setting, the narrow-sense heritabilities and other parameters of traits 1–3 are given. For each setting, an identical setting (i.e. ‘partially’) that included

additional trait-specific QTNs was simulated. The number of simulated trait-specific QTNs is reported. The remainder of simulation settings was constant across simulations

settings. The average Pearson correlation between each trait combination across replicates is given. h2, narrow-sense heritability.
aFor a given trait, the largestQTNeffect sizes (αÞ are chosen and the remainder follows a geometric serieswhere the ithQTNhas the effect size ofαi . The jth trait-specificQTNhas

an effect size that continues the geometric series (i.e. α3þj ).
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supporting evidence for further pleiotropy in expression data (Johnston et al.

2014). In addition, ear development, particularly ERN resulting from detrimin-

istic meristems, is well documented as being coordinated with tassel develop-

ment (Vollbrecht et al. 2005, Bortiri et al. 2006, Satoh-Nagasawa et al. 2006). For

both univariate MLM and mvMLM, a VanRaden additive genomic relationship

matrix was used to estimate K (VanRaden 2008) and the first five PCs of the

genomic markers were included in Q to account for population structure, with

the optimal number selected being based on the Bayesian information criteria

(BIC; Schwarz 1978). A LOCO approach that has been previously described

(Rincent et al. 2014, Chen and Lipka 2016) was used for kinship estimation

for the univariatemodels. In brief, LOCOprocedure calculates a separate kinship

matrix for each chromosome, where the kinship matrix for the ith chromosome

does not use any markers from that chromosome in its calculations. Univariate

MLM GWAS on the BLUPs and PC GWAS were conducted in R using GAPIT

(Lipka et al. 2012), while mvMLM GWAS was conducted using the software

GEMMA (Zhou and Stephens 2014). We used the Benjamini and Hochberg

(1995) procedure to control for an FDR of 5% and 10%. The genetic correlations

between traits were calculated as the Pearson correlation coefficient between

marker effect sizes (van Rheenen et al. 2019), and this was contrasted to the

pairwise Pearson correlation between trait BLUPs.

Simulation study

To compare the true- and false-positive QTN detection rates for each of these

GWAS approaches, we simulated six groups of three correlated phenotypes

with contrasting genetic architectures using SNPs from the MaizeSNP50

BeadChip set (Cook et al. 2012). Simulated traits were created using the R

package simplePHENOTYPES (Fernandes and Lipka 2020). The genetic archi-

tectures of these phenotypes differed by their QTN additive effect sizes, how

many of the QTN were pleiotropic, and the narrow-sense heritability (see

Table 2 for a summary of the considered genetic architectures). The additive

effects of each set of pleiotropic and non-pleiotropic QTN followed a geo-

metric series [described in Lande and Thompson (1990), Yu et al. (2008), Chen

et al. (2019), Rice and Lipka (2019)]. Thus, the effect size of the ith QTN in a

given set of QTNs was ki , where k 2 ð0; 1Þ. For each setting, a total of three

pleiotropic QTNs were simulated. Effect sizes were constant across settings; i.e.

for each triplet of simulated correlated traits, the largest QTN effect size was

0.9, 0.5 and 0.1. The narrow-sense heritabilities that were considered were h2¼
0.9, 0.5 and 0.2 (Table 2). A total of 1,000 replicates of a ‘null’ setting where no

QTNs were selected and heritability was zero were generated to rigorously test

false-positive rates; the remaining settings were replicated 100 times. Each

replicate had casual SNPs chosen at random with no bias toward selecting

markers associated with population structure and therefore covariates (i.e.

PCs of the markers) to control for population structure were not necessary to

include for both univariate and multivariate GWASs. For each replicate of the

simulation setting, all of the aforementioned GWAS approaches

were performed.

To enable a thorough evaluation of the true- and false-positive QTN detec-

tion rates across a variety of conservative and anticonservative multiple testing

adjustments, four different criteria were used to declare a marker–trait associ-

ation to be statistically significant: (i) the Benjamini and Hochberg (1995) pro-

cedure to control the FDR at 5%, (ii) the Benjamini and Hochberg (1995)

procedure to control the FDR at 10%, (iii) the Bonferroni procedure to control

the genome-wide type I error rate at α ¼ 0:05, and (iv) the Bonferroni proced-

ure to control the genome-wide type I error rate at α ¼ 0:10. For a given trait, a

true positive was defined as the presence of at least one significantly associated

SNP within ±250 kb of a simulated QTN, while a false positive was defined the

presence of at least one significantly associated SNP located outside of the ±

250 kb windows of all of the simulated QTNs. The ±250-kb window size was

chosen based on the previous work done in the same diversity panel to describe

regions of genomic proximity (Lipka et al. 2013).

Data Availability

Supplementary materials are available online. All raw pheno-

type and genotypic resources used are publicly available and

can be accessed via www.panzea.org. Trait BLUP data and

scripts used to analyze these BLUPs and conduct the simulation

studies are freely available to the public at https://github.com/

lipka-lab/Multi-Trait-GWAS-Methods-Reveal-Loci-Associat

ed-with-Maize-Inflorescence-and-Leaf-Architecture.

Supplementary Data

Supplementary data are available at PCP online.
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