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Abstract 44 

Opioid addiction (OA) has strong heritability, yet few genetic variant associations have been robustly identified. 45 

Only rs1799971, the A118G variant in OPRM1, has been identified as a genome-wide significant association 46 

with OA and independently replicated. We applied genomic structural equation modeling to conduct a GWAS 47 

of the new Genetics of Opioid Addiction Consortium (GENOA) data and published studies (Psychiatric 48 

Genomics Consortium, Million Veteran Program, and Partners Health), comprising 23,367 cases and effective 49 

sample size of 88,114 individuals of European ancestry. Genetic correlations among the various OA 50 

phenotypes were uniformly high (rg > 0.9). We observed the strongest evidence to date for OPRM1: lead SNP 51 

rs9478500 (p=2.56×10-9). Gene-based analyses identified novel genome-wide significant associations with 52 

PPP6C and FURIN. Variants within these loci appear to be pleiotropic for addiction and related traits.  53 

 54 

  55 
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In 2020 the U.S. saw the highest 12-month count of opioid overdose deaths recorded, >70,0001, which 56 

represents a 40% increase since 2019, a >250% increase since 2000,2 and is 1.7 times the number of deaths 57 

caused by automobile crashes in 2020.3 Approximately 4% of the U.S. population aged 12 and older (10.1 58 

million people) misused opioids in 2019, with 1.6 million people initiating new prescription opioid misuse.4 The 59 

most recent annual estimate of the total economic burden of prescription opioid abuse and dependence in the 60 

U.S. (2013) is over $78 billion,5 including Medicaid spending of more than $8 billion on opioid addiction (OA) 61 

treatment.6  By every metric, the opioid epidemic continues to be a tremendous burden, and the need to 62 

expand the medication-assisted treatment toolkit for OA through identification of new targets for drug 63 

development is clear.7  64 

Animal model and human neuroimaging studies have established a strong, albeit partial, understanding 65 

of the neurocircuitry of addiction as heuristically characterized in the Koob and Volkow model. 8 The primary 66 

neurocircuitry elements involved (basal ganglia, extended amygdala, and prefrontal cortex) and their molecular 67 

connections to the cycle of addiction (intoxication, withdrawal, and preoccupation) are broadly understood. 68 

However, there is clear variability in the functioning of this neurocircuitry among individuals as evidenced by 69 

only 20–30% of people who use heroin becoming addicted 9,10 and only 8–12% of chronic pain patients 70 

prescribed opioids developing OA. 11  71 

Genetics is a major contributor to individual variation in the risk of developing OA, with ~60% of the 72 

population variability being attributable to genetic factors.12,13 This heritability estimate is comparable to other 73 

complex phenotypes, such as Alzheimer’s,14 age-related macular degeneration,15 and height,16 which have 74 

conclusively associated genetic variants. However, few robust genetic variant associations with OA have been 75 

identified.17-20  76 

Eight genome-wide association studies (GWAS) of OA have been reported,21-28 in which the number of 77 

cases varied from 104 to 10,544 for ancestry specific analyses. Six of these GWAS identified genome-wide 78 

significant loci.23,25-29 However, only the largest analysis, which combined results of European ancestry (EA) 79 
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cohorts from the US Veterans Affairs Million Veterans Program (MVP), the Study of Addiction: Genetics and 80 

Environment (SAGE), and Yale-Penn (YP) cohorts (10,544 cases and 72,163 controls), identified a genome-81 

wide significant association that replicated in an independent sample (additional YP data: 508 cases and 206 82 

controls). The variant identified is the long-studied rs1799971 (OPRM1-A118G), a functional coding variant 83 

(encoding Asn40Asp) in the mu opioid receptor gene (OPRM1): discovery p=1.51×10−8, replication p=0.049. 84 

The rs1799971-G protective association with OA was also extended at nominal significance to buprenorphine 85 

treatment status in the UK Biobank (240 cases and 360 901 controls; p=0.04).  86 

To maximize discovery, we leveraged genomic structural equation modeling (gSEM)30 to combine new 87 

and existing GWAS with varied, but closely related, phenotypes for OA to enable the largest GWAS of OA to 88 

date (23,367 cases, 384,629 controls: effective sample size 88,114). We brought together novel results from 89 

the Genetics of Opioid Addiction Consortium (GENOA) with publicly available summary statistics from the 90 

MVP-SAGE-YP,27 the Psychiatric Genetics Consortium – Substance Use Disorder Group (PGC-SUD),26 and 91 

the Partners Health Group (PH).28 We examined SNP-based heritability and genetic correlation among the 92 

varied phenotypic definitions of OA across the contributing cohorts, including diagnostic and frequency of use-93 

based cases and different types of controls: opioid exposed, unexposed, and population-based. We conducted 94 

a variant level gSEM analysis in the full complement of cohorts and a gene-based association test based on 95 

those results. gSEM accounts for the sample overlap among the GENOA, PGC-SUD, and MVP-SAGE-YP 96 

analyses, therefore increasing the available sample size compared to standard meta-analysis. Follow-up 97 

analyses included: (1) evaluation of genetic correlation with brain-related phenotypes; (2) estimation of 98 

predicted genetically driven differential expression in brain tissues; (3) colocalization of genetic association loci 99 

with cis-eQTLs; (4) evaluation of loci pleiotropy, and (5) druggability of nominated targets.  100 

This study provides an unequivocal genome-wide significant association signal for the intron 1 locus in 101 

OPRM1 and, through haplotype analysis, suggests that rs1799971 (A118G) may not be the driver of the 102 

locus’s association with OA. We further nominate two novel genome-wide significant gene-based associations 103 
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with OA: PPP6C and FURIN. Both genes have been previously associated with phenotypes correlated with OA 104 

(e.g. PPP6C with cigarette smoking,31,32 alcohol consumption,31 and depressive symptoms;33 FURIN with 105 

schizophrenia,34,35 risk tolerance,36 and insomnia36). This study links these genes to predicted genetically 106 

driven differential expression in brain tissues by OA. Colocalization analysis supports a shared single variant 107 

between OA association and gene expression for PPP6C but provides less clear results for OPRM1 and 108 

FURIN. Collectively, these results provide extended insight into the association of OPRM1 with OA as well as 109 

novel genes associated with this phenotype.  110 
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Results 111 

Different approaches to defining OA are highly genetically correlated. Our gSEM for OA brings together 112 

novel GWAS data from GENOA and summary statistics from all prior GWAS of OA that included more than 113 

1,000 cases and 1,000 controls of European ancestry (EA).26-28 GENOA is a new consortium comprised of 114 

investigators who attend the National Institute on Drug Abuse Genetics and Epigenetics Cross-cutting 115 

Research Team Meetings and who have GWAS data on OA (Supplementary Table 1). In this study, OA refers 116 

to a broad meaning of addiction to opioids defined by multiple approaches to measuring the phenotype. The 117 

success of both the GENOA and gSEM analyses to maximize sample size and discovery then depends on 118 

similar heritability and high genetic correlations across the different measures of OA.  119 

We focused on EA cohorts for the genetic correlation and gSEM analyses because these approaches, 120 

which allow us to maximize sample size by bridging phenotypes and accounting for cohort overlap, require 121 

linkage disequilibrium score regression (LDSC) results to model the genetic variance-covariance matrix. LDSC 122 

in turn depends on an ancestry-specific reference panel, which isn’t currently available for African Americans 123 

(AAs).  124 

Among the 9 independent EA cohorts contributing to GENOA, OA was defined by Diagnostic and 125 

Statistical Manual criteria for opioid abuse or dependence (DSM-based; N=17,061) or by frequency of use 126 

(FOU) of illicit opioids (e.g., injecting heroin 10 or more times in the past 30 days; FOU-based; N=11,976; 127 

Supplementary Table 1). SNP-based heritability for both phenotypes was strong (DSM-based: h2=0.11, 128 

SE=0.03; FOU-based: h2=0.18, SE=0.04) and their genetic correlation robust (rg =1.05, SE=0.16; SNP-based 129 

genetic correlations are not bound by 1.0).  130 

Across the full set of GWAS results contributing to the gSEM GWAS (i.e., GENOA, MVP-SAGE-YP, 131 

PGC-SUD, and PH) there are additional OA definitions (MVP and PH used Electronic Health Record ICD-9 or 132 

ICD-10 codes for opioid use disorder [OUD]) and variation in type of controls used. GENOA cohorts used a 133 

combination of controls (opioid exposed, unexposed, and unknown exposure population controls). MVP and 134 
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PH used opioid exposed controls, and the PGC-SUD results used here were based on unexposed controls. 135 

Regardless of the approach to defining OA or the type of controls, the LDSC genetic correlations across 136 

cohorts were very high (all pairwise rg > 0.9, Supplementary Table 2). These heritabilities and genetic 137 

correlations show that the genetics contributing to OA are highly shared regardless of OA case definition or 138 

opioid exposure status of controls to which the cases are compared.  139 

 140 

GENOA GWAS identifies one European Ancestry specific OA association. Conducting ancestry specific 141 

and cross-ancestry meta-analyses of the GENOA cohorts (Supplementary Figures 1-6 and Supplementary 142 

Tables 3-5) yielded one genome-wide significant association locus on chromosome 4 among EAs 143 

(rs28386916-A, beta = 0.17, p=9.04×10-9). The rs28386916 variant was not associated with OA among AAs 144 

(beta = -0.025, p=0.51) and consequently was no longer significant in the EA+AA meta-analysis. rs28386916 145 

is an intronic variant located within the long noncoding RNA ENST00000659878 and between the SNCA and 146 

GPRIN3 genes (Supplementary Figure 7). Although, rs28386916-A is common (EUR MAF = 0.40; AFR MAF = 147 

0.81) and was well imputed (imputation quality > 0.8 across cohorts), this variant is not available in the results 148 

from the independent MVP or PH GWAS.  149 

  150 
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Genomic Structural Equation Model GWAS of Opioid Addiction identifies two other genome-wide 151 

significant loci in European Ancestry. A single common factor gSEM (Figure 1a) fit the GENOA, MVP-152 

SAGE-YP, PGC-SUD, and PH summary statistics for OA well, with high Akaike information criterion and 153 

comparative fit index, and low standardized root mean squared root (SRMR) values (Figure 1a). Testing the 154 

association of 2.4 million variants available across all cohorts with the latent genetic factor (effective sample 155 

size N=88,114) identified two genome-wide significant loci (Figure 1b; Q-Q plot Supplementary Figure 8): one 156 

with 32 genome-wide significant variants (top variant rs9478500-C, beta = 0.136, p=2.56×10-9; Supplementary 157 

Table 6; forest plot Supplementary Figure 9a) on chromosome 6 and the other represented by a single variant 158 

on chromosome 16 (rs13333582-C, beta = -0.219, p=3.58×10-8; forest plot Supplementary Figure 10). The 159 

LDSC intercept for this model (Figure 1b), being approximately 1, indicates that these results are not due to 160 

uncontrolled inflation that one would expect from inadequately accounting for overlap in the cohorts 161 

contributing to some of the summary statistics used here.30 162 

The associated locus on chromosome 6 was centered in intron 1 of the mu-opioid receptor gene 163 

OPRM1 (Supplementary Figure 11). The minor allele of the lead variant, rs9478500-C, was associated with 164 

increased risk of OA (beta = 0.136). All of the genome-wide significant variants were in high linkage 165 

disequilibrium (LD) with each other (r2 >0.88 and D’>0.93; Supplementary Table 7). The previously reported 166 

missense variant rs1799971 (OPRM1-A118G), which was genome-wide significant for OUD in MVP-SAGE-YP 167 

27, was less statistically significant in our gSEM analysis (rs1799971-G, beta = -0.115, p=1.94x10-6; forest plot 168 

Supplementary Figure 9b). This variant has low r2 (<0.04), but perfect D’ (1.0), with the genome-wide 169 

significant variants observed here. In the MVP GWAS rs9478500-C was associated with OA, but with less 170 

statistical significance (MVP rs9478500-C, beta = 0.09, p=4.31x10-5). Prior candidate gene studies that 171 

examined OPRM1 haplotypes with rs1799971 suggested that other variants may explain its equivocal 172 

association with OA.37,38 Raw data for haplotype analysis was available from a subset of cohorts contributing to 173 

the gSEM analysis (Figure 2). In this subset of cohorts, the single variant results for rs1799971 were weaker 174 
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than in the gSEM (beta=-0.058, p=0.135) and slightly stronger for rs9478500 (beta=0.205, p=2.43x10-9). 175 

Comparison of the three haplotypes formed by rs1799971 and the genome-wide significant variants (Figure 176 

2a) further weakened evidence for an association with OA being driven by rs1799971 (Figure 2b comparison 1: 177 

p=0.52, beta=-0.026, SE=0.0397) and strengthened evidence for an association with OA being driven by the 178 

effect of the non-rs1799971 variants (comparison 2: p=1.63x10-10, beta=0.2303, SE=0.036, Figure 2b).  179 

The genome-wide significant rs13333582 variant on chromosome 16 is intergenic (Supplementary 180 

Figure 9): rs13333582-C minor allele (frequency = 0.04, imputation quality > 0.8 for all cohorts) being 181 

associated with decreased risk of OA (beta = -0.22). However, the variants with which rs13333582 has strong 182 

LD showed weak evidence for association with OA (e.g., rs921982 r2 = 0.87, p=2.25×10-3).  183 

 184 

OA is genetically correlated with 21 other brain-related traits. We used LDSC to estimate the genetic 185 

correlation between OA (gSEM results) and 37 brain related traits (Figure 3, Supplementary Table 8); of these, 186 

21 were significantly correlated with OA at the Bonferroni corrected threshold of p<1.35×10-3. We observed 187 

high positive genetic correlations for OA with cannabis use disorder and alcohol dependence, as well as 188 

modest positive correlations across smoking traits and psychiatric disorders. Expected inverse genetic 189 

correlations were also evident for age of initiation of cigarette smoking and cognitive/educational traits. There 190 

were no genetic correlations between OA and brain volume traits. 191 

 192 

Gene-based MAGMA GWAS of gSEM summary statistics for OA corroborates OPRM1 and identifies 193 

novel genes. To enhance statistical power for discovery, we analyzed the summary statistics from the gSEM 194 

GWAS at the gene level using MAGMA 39. In addition to OPRM1, we observed two novel genes associated 195 

with OA that surpassed Bonferroni correction for the 15,977 genes tested (p<3.13×10-6; Figure 4; Q-Q plot 196 

Supplementary Figure 13; full results Supplementary Table 9).   197 
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The gene-level association between the Protein Phosphatase 6 Catalytic subunit gene (PPP6C) and 198 

OA was based on 57 variants and corresponds to the variant-level peak that approached genome-wide 199 

significance on chromosome 9 (Figure 1b). This peak encompassed PPP6C but variants in high LD and with 200 

moderate p-values for association with OA (p=3.37×10-7 to 2.14×10-5) extended across three genes: PPP6C, 201 

the Suppressor of Cancer Cell Invasion gene [SCAI], and the Rab9 Effector Protein with Kelch Motifs gene 202 

[RABEPK] (Supplementary Figure 14). However, SCAI and RABEPK associations with OA did not surpass 203 

Bonferroni correction (SCAI p=0.0016; RABEPK p=2.82×10-5) 204 

The gene-level association for the Furin Paired Basic Amino Acid Cleaving Enzyme gene (FURIN) and 205 

OA was based on a single variant (rs17514846-A, beta = -0.08, p=8.82x10-7). Other FURIN variants were 206 

excluded from the gSEM GWAS, and thereby the MAGMA analysis, due to the gSEM method’s requirement 207 

that variants be present in every contributing cohort. By running a standard logistic regression meta-analysis of 208 

FURIN variants across the subset of GWAS cohorts without overlapping participants (GENOA, MVP, and PH), 209 

we were able to retain additional variants excluded from the gSEM analysis, and identified 3 additional variants 210 

in strong LD with rs17514846 (r2>0.64, D’=1.0); all four variants were associated with OA (Supplementary 211 

Figure 15; Supplementary Table 10), the weakest association being for rs17514846 (p=1.67×10-6) and the 212 

strongest being for rs11372849, which was genome-wide significant (rs11372849-TC, beta = -0.074, 213 

p=4.11×10-8; forest plot Supplementary Figure 16).   214 

 215 

Predicted genetically driven gene expression in brain tissue expands neurobiologically relevant 216 

evidence for OA-associated genes. To estimate genetically driven differential gene expression in human 217 

brain tissues associated with OA, we applied S-PrediXcan 40 using GTEx version 8 eQTL gene models 218 

(http://predictdb.org/) with the gSEM GWAS summary statistics as input. Fourteen gene-tissue combinations 219 

surpassed correction for the total number of gene models and brain tissues (156,215 tests) with an FDR < 0.05 220 

(Table 1; all results presented in Supplementary Table 11). Predicted genetically driven OPRM1 expression 221 
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was significantly associated with OA in cerebellum. Only four brain tissues had gene models for OPRM1 222 

(cerebellum, cerebellar hemisphere, hypothalamus, and nucleus accumbens; Supplementary Table 11). In 223 

contrast, 12 brain tissues had gene models for PPP6C; of these, PPP6C was predicted to be differentially 224 

expressed in nine tissues. Nearby SCAI was the only other gene to show statistically significant genetically 225 

driven expression associated with OA, doing so across four brain tissues. FURIN was nominally associated 226 

(best p=9.67×10-5 in hippocampus) but did not surpass the FDR<0.05 threshold. RABEPK was not predicted to 227 

be differentially expressed by OA (best p=0.055 in caudate). 228 

 229 

Some OA associations colocalize with genetically driven gene expression. To estimate the likelihood that 230 

the genetic loci associated with OA share a causal variant with the expression quantitative trait loci (eQTLs) for 231 

our nominated genes (OPRM1, PPP6C, and FURIN), we applied coloc 41 to our gSEM GWAS results and the 232 

GTEx eQTL results for these genes. Because the variants underlying the genome-wide significant association 233 

for PPP6C physically extend into SCAI and RABEPK (Supplementary Figure 14), we included these genes in 234 

the analysis. We evaluated colocalization for these genes across the superset of 10 brain tissues which 235 

showed genetically driving differential expression for at least one gene in the S-PrediXcan analysis 236 

(Supplementary Table 11). OPRM1 is expressed at relatively low levels in the GTEx brain tissues 237 

(Supplementary Figure 17a). Only six of 10 brain tissues showed variant associations with OPRM1 expression 238 

in GTEx and could be included in the coloc analysis. The posterior probabilities for four tissues of the six 239 

tissues tested for OPRM1 favored the hypothesis that only a genetic association with OA at this locus is 240 

present (Figure 5 H2, Supplementary Table 12). However, in the cerebellum, where OPRM1 is most highly 241 

expressed and for which S-PrediXcan predicted differential expression by OA, the greatest posterior 242 

probabilities favored hypotheses for both the OA-associated locus and cis-eQTL traits being associated, but 243 

with different causal variants (H3) or a shared single causal variant (H4). Among the three genes at the 244 

PPP6C-centered locus, PPP6C shows the highest levels of gene expression in brain tissues (Supplementary 245 
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Figure 17b-d) and the greatest support for colocalization of OA-associated variants with cis-eQTLs for PPP6C 246 

(Figure 5, Supplementary Table 12). In contrast, the analysis for RABEPK uniformly indicated that the OA-247 

associated variants do not colocalize with the RABEPK cis-eQTLs. For FURIN, the null hypothesis of neither 248 

trait being associated in this region has the highest posterior probability across all tested brain tissues (Figure 249 

5, Supplementary Table 12), which is consistent with (1) a single variant (rs17514846) driving the genome-250 

wide significant gene-based association with OA, (2) no significant evidence for differential gene expression in 251 

the S-PrediXcan analyses, (3) limited evidence for this variant as an eQTL in brain tissues (Supplementary 252 

Table 13).  253 

 254 

Drug repurposing analyses suggest druggabillity of all three genes: OPRM1, PPP6C, and FURIN. To 255 

characterize the potential for new pharmacological treatments of OA through drug repurposing or compound 256 

development, we examined OPRM1, PPP6C, and FURIN across multiple drug repurposing databases (the 257 

Drug Gene Interaction Database v.3.0 [DGIdb],42 Connectivity Map [CMap],43 PHAROS 258 

[https://pharos.nih.gov/]44) OPRM1 is a known target of more than one-hundred drugs and compounds, 259 

including illicit drugs, abused therapeutics (e.g., heroin and oxycodone), and OA treatments (e.g., methadone 260 

and buprenorphine)(Supplementary Table 15a-c). In contrast, PPP6C is not a target of any known drug or 261 

compound but has a 94% likelihood that its protein has ligand properties based on its chemistry.45 FURIN is 262 

the target of one approved drug, pirfenidone, which is indicated for treatment of idiopathic pulmonary fibrosis. 263 

There are more than 80 compounds identified targeting FURIN, most developed as inhibitors targeting FURIN 264 

function in infectious diseases: Supplementary Table 16a-c. 265 

 266 

Testing previously reported GWAS variant associations supports three variants: rs1799971, 267 

rs62103177, and rs640561. Among the previously reported associations, the strongest association in the 268 

current results was observed for rs1799971 (p=1.94×10-6). The only other previously reported variant tested in 269 
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our gSEM was rs62103177 in the KCNG2 gene, which was nominally associated with OA in our EA cohort 270 

(p=0.0024), though its initial report was among AA only and we were unable to test for replication in AAs owing 271 

to a lack of available results that are independent of the initial study.46 The GENOA AA analyses are not 272 

independent of the Yale-Penn cohorts in the original study.  We extended our lookup of previously reported 273 

variants to the standard logistic regression meta-analysis we ran with the subset of EA GWAS cohorts without 274 

overlapping participants for previously reported EA specific findings. The CNIH3 variant, rs10799590, and the 275 

PGC-SUD variant, rs201123820, were not statistically significant in our standard meta-analysis (p=0.49 and 276 

p=0.63, respectively). Of the two PH reported variants, only rs10014685 was present in independent cohorts, 277 

but it was not significant in either (deCODE p=0.89; UHS p=0.36).  Examining a recently reported GWAS of 278 

prescription opioid misuse (POU),47 we see a moderate genetic correlation between OA and POU (rg=0.74, 279 

p=2.24x10-12) and extend their association of rs640561 to OA (rs640561-T, beta = -0.061, p=0.009). Finally, we 280 

examined our gene-based GWAS results for evidence supporting previously reported genes and found no 281 

support for GRM8 (p=0.591) or CNIH3 (p=0.184), but nominal support for BEND4 (p=0.0023) association with 282 

OA, which was reported as genome-wide significant in the PGC-SUD GWAS for the opioid use phenotype 283 

(exposed vs. unexposed controls)26 and PTPRF for POU (p=0.026).47  284 

 285 

  286 
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Discussion 287 

Opioid misuse, addiction, and overdoses remain at crisis levels in the United States. Identification of new 288 

genetic drivers of OA phenotypes could lead to much needed new pharmacological treatments. In this study, 289 

we demonstrated a high degree of genetic correlation between differing diagnostic and frequency-based case 290 

definitions of OA and across different types of controls (opioid exposed, unexposed, and population controls), 291 

which allowed us to conduct the GENOA meta-analysis and apply gSEM successfully to GENOA and existing 292 

summary statistics to conduct the largest GWAS among European ancestry cohort participants to date (23,367 293 

cases and total effective sample size of 88,114 individuals) with the OA case definition. The GENOA GWAS 294 

identified European ancestry specific genome-wide significant associations (rs28386916) but the variant was 295 

not available in the MVP or PH cohorts and, consequently, was not tested for replication nor was the variant 296 

present in the gSEM GWAS. In the gSEM GWAS we found the strongest statistical evidence to date linking 297 

variants in intron 1 of the OPRM1 gene to OA, extending previous candidate gene studies focused on this 298 

gene.37,48,49 Haplotype analysis of this locus indicated that the long studied and GWAS-identified variant 299 

rs1799971 (OPRM1-A118G)27 may not be the driving variant for this locus’s association with OA. Gene-based 300 

analyses of these combined data also identified two novel genome-wide significantly associated genes for OA: 301 

PPP6C and FURIN. Examining the predicted differential expression of these genes in brain tissue and their 302 

colocalization with OA association signals suggest that the effect of the PPP6C locus on risk of OA is likely to 303 

be through effects on PPP6C expression, while the signal for OPRM1 is more complex; there is limited 304 

evidence that expression differences explain the association of FURIN with OA.   305 

The eight previously published GWAS of OA phenotypes have yielded inconsistent results. The first two 306 

used small samples and numbers of variants: N=205 European Americans (EAs)21 and N=775 EAs and AAs.22 307 

No SNPs met genome-wide significance, but different variants in a glutamate receptor gene (GRM8) were 308 

among the top candidate gene variants in both studies.22 The next two larger GWAS found genome-wide 309 

significant associations in two different genes: (1) a potassium channel gene (KCNG2) associated with number 310 
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of opioid dependence symptoms among users (total N=5,432 AAs and p=3.6×10-10 for rs62103177),46 and (2) 311 

SNPs in a regulator gene of the glutamate system (CNIH3) associated with opioid dependence (total N=2,637 312 

of European ancestry and smallest p=4.3×10-9 for rs10799590).24 The most recent and largest OA GWAS to 313 

date are from the PGC-SUD, 26 MVP, 27 and PH,28 which were incorporated in our gSEM GWAS. The PGC-314 

SUD examination of opioid use disorder (OUD; N=4,503 OUD cases, 4,173 opioid-exposed controls) found no 315 

genome-wide significant associations; the analysis of OUD vs unexposed controls among AAs (N=1,231 316 

cases, 6,111 controls) found one genome-wide significant association (rs201123820 [p = 2.9 × 10–8]) but no  317 

clear connection to addiction. The MVP tested for variant associations with OUD cases and opioid-exposed 318 

controls, finding one genome-wide significant association (p=1.51×10−8) for rs1799971 in OPRM1. Genome-319 

wide significance was achieved by combining the MVP EA cohort with Yale-Penn and SAGE EA cohorts for a 320 

combined sample of 10,544 cases and 72,163 controls. PH tested variant associations among EAs with OUD 321 

cases defined by ICD9 and ICD10 codes (N=1,039) compared to both general controls without substance use 322 

disorder diagnoses (N=20,271) and a subset that also had a medical record of having been prescribed an 323 

opioid (N=10,744). Analyses using both control groups identified a genome-wide significant locus on 324 

chromosome 4 (rs10014685 [p=2.40×10−8 using all controls and p=1.75×10−9 using exposed controls]), while 325 

the exposed control analysis found an additional locus on chromosome 16 (rs12931235 [p=7.18×10−10]). OUD 326 

associations for these loci, both intergenic and of unclear functional relevance to OUD. Testing these 327 

previously reported variants in the gSEM and standard meta-analysis GWAS results found support for three 328 

variants, rs1799971, rs62103177, rs640561. Although the original association between rs62103177 and opioid 329 

dependence was found among AAs only, our gSEM results extend that association to EAs. We were unable to 330 

test for replication in AAs due to a lack of independent AA GWAS results. rs62103177 is an intronic variant in 331 

the potassium voltage-gated channel modifier subfamily G member 2 (KCNG2) gene, which has been 332 

suggested to have a role in substance use disorders.23,50 In GTEx, this variant is also an expression 333 

quantitative trait locus in brain tissues for the nearby RBFA Downstream Neighbor (RBFADN) gene 334 
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(p<6.1×10−6 across 12 GTEx brain tissues). Additional evaluation of this variant and its function in brain are 335 

supported by these results.     336 

 The top finding of this gSEM GWAS for OA was centered in intron 1 of the OPRM1 gene (lead SNP 337 

rs9478500-C, beta = 0.136, p=2.56×10-9). Prior candidate gene studies of this region have found nominal 338 

associations of variants in intron 1, including some of those that are genome-wide significant here (e.g., 339 

rs1381376, rs3778151, & rs3778150).37,48,49 As the mu-opioid receptor gene, OPRM1 has long been a target of 340 

OA research and drug development. The functional coding variant rs1799971 (A118G), encoding the amino 341 

acid change Asn40Asp, has been studied at length with equivocal results.37,51,52 In the current GWAS era, only 342 

the MVP GWAS of OUD found rs1799971 to be genome-wide significant (p=1.51×10-8).27 Adding cohorts to the 343 

MVP summary statistics in the current study reduced the variant’s association with OA to p=1.94×10-6, which 344 

may be due to variation in haplotype prevalence between studies (discussed below), increase in phenotypic 345 

heterogeneity (despite high overall genetic correlations among OA phenotypes), or stochastic variation.    346 

Following prior candidate gene studies,37,38 we examined the associations of specific OPRM1 347 

haplotypes with OA. Three haplotypes were formed by rs1799971 and the genome-wide significant variants: 348 

(A) a haplotype with major alleles at all variants; (B) a haplotype with the minor rs1799971-G allele and major 349 

alleles at all other variants; and (C) a haplotype with the major rs1799971-A allele and minor alleles at all other 350 

variants. In this analysis, the OA association was strongest with haplotype C (p=2.43x10-9), which was 351 

associated with increased risk compared to both haplotype A and haplotype B. Haplotype B, which carried the 352 

rs1799971-G allele, was strongly not significant (p=0.52). Evaluation of haplotype associations with OA in this 353 

study were limited to a subset of the cohorts for which we had raw genotype data. In this subset, the variant 354 

level association for rs1799971 was also not significant (p=0.135), which limits the strength of our conclusions. 355 

However, our earlier haplotype analyses of OPRM1 intron 1 variants and rs1799971 came to similar 356 

conclusions, albeit in more limited datasets.37,38 This relationship between the underlying EA haplotype 357 
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structure and risk for OA may explain the equivocal findings at the individual rs1799971 variant level, but it may 358 

be that other unidentified variants could be the true causal variants driving these haplotype associations.  359 

 The role of genetically driven OPRM1 expression also appeared complex in this study. In our S-360 

PrediXcan analysis, we observed statistically significant, predicted differential expression of OPRM1 for OA in 361 

cerebellum, the brain tissue with the highest level of OPRM1 expression in GTEx. Moreover, one of the two 362 

cis-eQTL variants in the version 8 GTEx model for OPRM1 expression (rs478498) is in high LD with our top 363 

association variant (rs9478500; r2=0.56, D’= 0.98), suggesting that the intron 1 locus may have its effect on OA 364 

through OPRM1 expression. However, the colocalization analysis was more equivocal. The hypotheses with 365 

the greatest posterior probabilities were that both OPRM1 expression and OA risk are associated with this 366 

locus, but with different causal variants (H3, posterior probability=0.46) and with a single causal variant (H4, 367 

posterior probability=0.38). Given the generally low level of OPRM1 expression across bulk brain tissues, 368 

larger sample sizes and single nuclei experiments will be needed to further distinguish which of these 369 

hypotheses is most likely. Ultimately, model organism or organoid experiments are likely to be necessary to 370 

fully test gene expression as a potential mechanism for the association of this locus with OA.   371 

Beyond OPRM1, we also observed a genome-wide significant association with OA for the intergenic 372 

variant rs13333582.  Variants in high LD had much weaker associations (p=2.25×10-3), which may indicate that 373 

the rs13333582 association with OA was a false positive. However, rs13333582 is an eQTL for RANBP10 in 374 

multiple brain tissues (Supplementary Table 17). RANBP10 has been associated with regulation of dopamine 375 

D1 and mu-opioid receptors53 and was recently linked with the variant rs8052287 and substance use disorder—376 

gene interactions that included opioids.54 LD between rs13333582 and rs8052287 is moderate in European 377 

ancestry (r2=0.60, D’=0.81). However, the association between rs8052287 and OA in this gSEM GWAS was 378 

only nominally significant (beta=-0.083, p=0.0239).  379 

Increasing statistical power through a gene-based GWAS of the gSEM summary statistics identified two 380 

new genome-wide significant genes for OA: PPP6C and FURIN. PPP6C (Protein Phosphatase 6 Catalytic 381 
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subunit gene) is a component of a signaling pathway regulating cell cycle progression known to be involved 382 

with the immune system and cancer(https://www.uniprot.org/uniprot/O00743#function) However, the gene is 383 

also strongly expressed across adult human brain tissues (Supplementary Figure 17c) and is linked to 384 

abnormal locomotor behavior in mice (http://www.informatics.jax.org/diseasePortal/genoCluster/view/20628).55 385 

Predicted biological processes for PPP6C include G-protein coupled purinergic nucleotide receptor signaling 386 

pathway (GO:0035589) (https://maayanlab.cloud/archs4/gene/PPP6C), which affects regulation of neurons, 387 

microglia and astrocytes 56. Predicted genetically driven differential expression of PPP6C by OA was significant 388 

across a number of brain regions, and colocalization analysis of PPP6C cis-eQTLs and the OA-variant 389 

association signal at this locus also showed high probability of being driven by a shared single variant. 390 

Because the PPP6C-centered association locus extends into the nearby genes SCAI and RABEPK, and 391 

significant predicted genetically driven differential expression of SCAI was also observed, we cannot exclude 392 

the possibility that these other genes play a role in, or are responsible for, the PPP6C-OA association. 393 

However, the degree of gene expression/variant association colocalization for PPP6C across brain tissues 394 

suggest it as the leading candidate for follow-up studies. 395 

The genome-wide significant gene-based association of OA with FURIN was driven by a single variant, 396 

rs17514846. However, this signal was supported by analysis of additional FURIN variants in a subset of 397 

cohorts where more FURIN variants were available, including a genome-wide significant association with OA 398 

at the variant level for rs11372849. FURIN (Furin, Paired Basic Amino Acid Cleaving Enzyme gene) is a 399 

member of the convertase family and encodes a type 1 membrane bound protease that is expressed in 400 

neuroendocrine and brain tissues, among others (https://www.ncbi.nlm.nih.gov/gene/5045). Although FURIN 401 

shows higher expression across brain tissues than OPRM1, the S-PrediXcan analysis did not show significant 402 

predicted genetically driven expression differences associated with OA for this gene, and the colocalization 403 

analysis highest posterior probabilities favored no association of either eQTLs or the OA-variant association 404 
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signal at this locus. However, this may reflect the single variant association with OA in the gSEM GWAS and 405 

an effect on OA through mechanisms other than gene expression. 406 

LDSC analyses demonstrated moderate to strong genetic correlations between OA and a variety of 407 

substance use, psychiatric, and cognitive phenotypes in expected directions (e.g., positive correlation with 408 

cannabis use disorder, inverse correlation with age of smoking initiation). Focusing from the general genomic 409 

signal to the specific OA-associated genes, we observed important differences in OPRM1, PPP6C, and FURIN 410 

associations with brain- and SUD-related phenotypes. Although OPRM1 has been broadly studied, from a 411 

GWAS perspective variants in this gene are specifically associated with OUD in the MVP GWAS57 and in a 412 

GWAS of methadone dose.58 No GWAS of other brain- or SUD-related phenotypes have reported an 413 

association with OPRM1, as indexed by Open Targets (Supplementary Figure 18; Supplementary Table 414 

14a).59,60 The variant associated with methadone dose, rs73568641, was not associated with OA in this gSEM 415 

GWAS (p=0.328). In contrast with OPRM1, variants in PPP6C have been associated with numerous brain- and 416 

SUD-related phenotypes, notably opioid medication use, alcohol consumption, numerous smoking phenotypes, 417 

and depression among others (Supplementary Figure 19; Supplementary Table 14b). Indeed, the specific 418 

PPP6C variants associated with OA in this gSEM GWAS, albeit at p-values in the 10-7 range, have been 419 

associated with neuroticism, depressive symptoms and a number of smoking phenotypes at genome-wide 420 

significance (Supplementary Table 14b). Variants in FURIN have been associated with other brain- and SUD-421 

related phenotypes, most predominantly schizophrenia, but also risk taking, number of sexual partners, and 422 

insomnia (Supplementary Figure 20; Supplementary Table 14c). The variant driving the genome-wide 423 

significant gene-based result here (rs17514846) and the genome-wide significant variant in our subset meta-424 

analysis for OA (rs11372849) are associated with each of these Open Target-identified phenotypes at 425 

genome-wide significance (Supplementary Table 14c).  426 

 Similar variability was seen across OPRM1, PPP6C, and FURIN in drug repurposing analyses. While 427 

OPRM1 is the known target of more than one-hundred drugs and compounds, FURIN is the target of one 428 
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approved drug (pirfenidone), and PPP6C is not a target of any known drug or compound across the databases 429 

evaluated: DGIdb42, CMap43 and PHAROS.44 However, FURIN is the target of more than 80 compounds and 430 

the PPP6C protein has a 94% likelihood of being ligandable. Should these novel gene associations be 431 

validated in subsequent studies they appear to be potentially important drug development targets.   432 

Among this study’s limitations, the most notable is the focus on cohorts of European ancestry. This focus 433 

was required to maximize sample size and statistical power by combining summary statistics across GENOA, 434 

PGC-SUD, MVP and PH GWAS through application of the gSEM GWAS method. This approach allowed us to 435 

more than double the number of cases used in the EA-focused MVP-SAGE-YP analyses that yielded genome-436 

wide significance for rs1799971 (n=23,367 vs n=10,544) by leveraging gSEM’s ability to model multiple 437 

correlated phenotypes and account for sample overlap. These gSEM analyses will be extended to African 438 

Americans when the needed ancestry-specific LDSC reference panel becomes available. An additional 439 

potential limitation is the variability in OA case definitions (e.g., diagnostic and frequency of use) and types of 440 

controls (e.g., exposed, unexposed, and population-based) used to define OA phenotypes across the cohorts 441 

within the GENOA and across the other contributing GWAS. However, the genetic correlations across 442 

phenotypes were uniformly high (rg>0.9) and resulted in a well-fitting single latent factor gSEM model. An 443 

important caveat to the high correlations observed across cohorts with exposed, unexposed, and population 444 

controls is that the exposure to opioids was often based on prescribed medication (MVP and PH), which differs 445 

in risk of OA from exposure to illicit heroin use. Fine-grained comparison of large samples with different types 446 

of exposure to opioids will be needed to resolve this question. Because we have incorporated GENOA and 447 

previously published GWAS of OA for our discovery analyses, we do not have independent replication cohorts 448 

available in which to test the identified associations. However, OA associations with the intron 1 locus have 449 

been previously reported,29,37,48,49 the chromosome 16 (rs13333582) is an eQTL for a gene previously reported 450 

as associated with OA,54 and variants in both PPP6C and FURIN have previously been associated with 451 

substance use and psychiatric disorder traits that are highly associated with OA (Supplementary Figures 12 452 
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and 13). Thus, independent replication remains to be demonstrated, but the available evidence supports the 453 

identified variants and genes as associated with OA. 454 

 In this study, we leveraged gSEM across new and existing OA GWAS that employed various OA 455 

phenotypes to conduct the largest EA-focused GWAS to date. Our results show the strongest statistical 456 

evidence to date for an association between variants in intron 1 of OPRM1 with OA. Haplotype analysis of the 457 

genome-wide significant variants and previously associated rs1799971 (A118G) suggest that it is the intron 1 458 

variants rather than rs1799971 that is responsible for this association signal, although other unidentified 459 

variants outside the tested haplotypes could explain the observed results.  Gene-based analyses identified two 460 

genome-wide significant associations: PPP6C and FURIN. These genes are novel for OA, however, variants 461 

within them have been associated at genome-wide significance with related phenotypes, such as cigarette 462 

smoking, alcohol consumption, general risk taking, and schizophrenia. With strong SNP-based heritability for 463 

these OA phenotypes, but only these few genome-wide significant findings, it is clear that increased sample 464 

sizes for GWAS and complementary approaches (e.g., gene regulation in postmortem brain tissues) are 465 

needed to identify much of the genetics driving risk of OA as well as to extend these studies to non-European 466 

ancestries.   467 

 468 

 469 

  470 
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Methods471 

Cohorts and Opioid Addiction Phenotype. Descriptive statistics for the GENOA studies contributing 472 

previously unpublished GWAS of opioid addiction (OA) to this investigation are provided in Supplementary 473 

Table 1, and full descriptions of the studies are provided in the Supplementary Methods. In total, this analysis 474 

provides new OA GWAS results for 304,831 individuals, including 7,281 cases and 297,550 controls, with an 475 

effective sample size of 88,114 (4 / ((1 / # Cases) + (1 / # Controls))).61,62 476 

In the GENOA studies, OA was defined either based on frequency of opioid use (FOU) or Diagnostic 477 

and Statistical Manual (DSM) of Mental Disorders criteria. Some studies included only opioid-exposed 478 

individuals in their control groups, while others included both exposed and unexposed individuals. 479 

 480 

Genotype Quality Control and Imputation. Sites in the GENOA consortium conducted standard genotype 481 

quality control using filters appropriate for their samples. SNPs were filtered based on call rate and deviation 482 

from Hardy-Weinberg equilibrium. Samples were filtered based on call rate, excessive homozygosity, 483 

relatedness, and sex discrepancies. Classification of European ancestry individuals was based on comparison 484 

to reference populations using STRUCTURE 63. Specific filters used for each sample are provided in 485 

Supplementary Table 18. 486 

For most samples, genotype imputation was performed with the Michigan Imputation Server 64 using 487 

the 1000 Genomes Phase 3 v5 reference panel. For COGA, genotypes were phased with SHAPEIT265 and 488 

imputed with Minimac364 using the 1000 Genomes Phase 3 v5 reference panel. For deCODE, genotype 489 

imputation was conducted by long-range phasing and haplotype imputation of chip-genotyped individuals with 490 

methods described previously 66. 491 

 492 
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Association Testing. Imputed genotypes for GENOA studies were tested for association with opioid addiction 493 

case-control status using rvtests 67, adjusting for sex, age, genotype principal components and in some cases 494 

recruitment site and other study-specific covariates. deCODE data were analyzed using logistic regression 495 

treating disease status as the response and imputed genotype counts as covariates.   Other available 496 

individual characteristics that correlate with disease status were also included in the model as nuisance 497 

variables (sex, age, county of origin(ref1), blood sample availability, and an indicator function for the overlap of 498 

the lifetime of the individual with the time span of phenotype collection) using previously described methods.68 499 

To account for inflation due to population stratification and relatedness, test statistics were divided by an 500 

inflation factor (1.10) estimated from linkage disequilibrium score regression (LDSR).69 Inverse variance-501 

weighted meta-analysis of chromosome 15 variants with MAF<0.01 and Rsq<0.8 in the region containing 502 

FURIN was performed using METAL 70 including only studies with no overlapping samples  (GENOA + MVP 503 

without SAGE and Yale-Penn + Partners; Cases N = 16,849, Controls N = 379,493, Total N = 396,342, 504 

Effective Total N = 52,508). 505 

 506 
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Cohort Descriptions for GenomicSEM. The gSEM analysis includes results on EA from the GENOA meta-507 

analysis, Million Veteran Program (MVP), Psychiatric Genetics Consortium Substance Use Disorders Group 508 

(PGC-SUD), and the Partners Health cohorts. The MVP results are based on a meta-analysis including MVP 509 

parts 1 and 2 (total of 8,529 OUD cases and 71,200 opioid-exposed controls), along with Yale-Penn and Study 510 

of Addition: Genetics and Environment (SAGE) cohorts (total of 10,544 OUD cases and 72,163 opioid-exposed 511 

controls). 27 The PGC-SUD results include 4,503 opioid dependence cases and 4,173 unexposed controls. 26 512 

Unexposed controls are used for the PGC-SUD because the exposed controls results have negative heritability 513 

estimates. The partners health cohort includes 1,039 OUD cases and 10,743 exposed controls. 28 Note that the 514 

GENOA GWAS, Yale-Penn, and SAGE parts of the MVP, and the PGC-SUD results include overlapping 515 

samples. However, accounting for this sample overlap is a feature of the gSEM approach applied in this study. 516 

A total of 2,434,903 variants were present in all cohorts and tested for association with the OA latent variable in 517 

the gSEM analysis using a total sample size of 403,915 (23,367 cases and 384,619 controls; effective sample 518 

size of 88,115). 519 

 520 
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Genomic Structural Equation Modeling. The GenomicSEM package 30 within R was used for genomic 521 

structural equation modeling (gSEM). The gSEM implemented multivariable LDSC function within this package 522 

was used to calculate single-nucleotide polymorphism heritability on the observed and liability scale 523 

(prevalence of 10%), genetic covariance matrices, and genetic correlation. The LD scores from 1000 Genomes 524 

Project phase 3 European 69 were used as the reference population in this calculation. The sampling genetic 525 

covariance matrix is expanded to incorporate SNP effects by including the covariances between SNPs and 526 

each cohort. This expanded sampling genetic covariance includes the multivariate LDSC estimated genetic 527 

variances and covariances, along with the sampling covariance matrix of the SNP effects on the cohorts, which 528 

are estimated using cross-trait LDSC with the sampling correlation weighted by the sample overlap. With the 529 

gSEM implemented LDSC, the overlap of samples between GENOA, MVP meta-analysis, and PGC-SUD is 530 

not a concern.  531 

A single latent factor gSEM was used with the residual variance of the latent factor set to 1 to normalize 532 

the loading estimates. The loadings were calculated using diagonally weighted least squares and residual 533 

variances were bound to above 0.01 to avoid negative residual variance estimates.  534 

 535 
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Haplotype Analyses. To conduct haplotype analyses raw genotype data is needed. Chromosome 6 536 

genotypes were available from UHS, VIDUS, ODB, Yale-Penn, CATS and Kreek (Supplementary Table 1). 537 

These cohorts’ data were phased with Eagle v2.4 via the Michigan Imputation Server 64. Haplotypes for 538 

samples from each study were constructed by extracting OPRM1 variants that were genome-wide significant in 539 

the gSEM analysis and concatenating ordered by genomic position. Supplementary Table 19 provides counts 540 

for the various haplotypes observed across the studies. The 3 most common haplotypes, which accounted for 541 

98% of observed haplotypes, were tested for association with OA in R adjusting for sex and genotype principal 542 

components. Only individuals carrying exclusively these haplotypes were included in the analysis. Two models 543 

were run, one in which the haplotype containing all major alleles served as the reference haplotype and one in 544 

which the haplotype containing the minor rs1799971-G allele served as the reference. This approach provided 545 

three effective comparisons: (a) rs1799971-G haplotype versus the major allele haplotype; (b) minor allele + 546 

rs1799971-A haplotype versus the major allele haplotype; (c) minor allele + rs1799971-A haplotype versus 547 

rs1799971-G haplotype. Individual cohort results were combined in an inverse variance-weighted meta-548 

analysis using METAL (N = 21,037). 549 

 550 

Gene-Based Analyses. Gene-based associations with OA were calculated from the gSEM summary statistics 551 

with MAGMA v1.08 39 with a 10 kb gene window via the Functional Mapping and Annotation (FUMA) of GWAS 552 

web tool v1.3.6a 71. The gSEM summary statistics were mapped to 15,977 protein coding genes, resulting in a 553 

Bonferroni-corrected threshold of p = 3.129e-6 for declaring genome-wide significance. 554 

 555 
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Cross-trait genetic correlations with OA. Summary statistics from the gSEM were used as input into LD 556 

score regression (LDSC) with reference to the 1000 Genomes EUR panel to estimate genetic correlations 557 

between OA and 38 other complex phenotypes. These phenotypes were categorized into the following groups: 558 

drug and alcohol use, cigarette smoking, psychiatric, personality, neurological, cognitive/education, and brain 559 

volume. The full list of phenotypes and GWAS datasets, as obtained from LD Hub or shared by the original 560 

investigators, are provided in the Supplementary Table 20. 561 

 562 

PrediXcan. To investigate the transcriptome-wide associations between predicted gene expression and OA, 563 

we employed the MetaXcan v0.6.6 40 method. Briefly, MetaXcan uses association summary statistics to predict 564 

associations between gene expression and a phenotype of interest association. Gene expression models were 565 

predicted from tissue-specific eQTL datasets. To increase the performance of our prediction models, we used 566 

the MASHR-M 72 models built on fine-mapped variables from DAP-G.73 The specific models we used were pre-567 

computed MetaXcan models available through PredictDB (http://predictdb.org/) for 12 brain regions 568 

(Supplementary Table 21) that were generated using the GTEx 74 version 8 datasets. 569 

Summary level statistics from the Genomic SEM analysis were used as input to MetaXcan. Prior to 570 

input, summary statistics were harmonized according to the best practices guide outlined on the MetaXcan 571 

wiki. As part of this process, the gwas_parsing.py utility (https://github.com/hakyimlab/summary-gwas-572 

imputation) was used to lift summary statistics over to the human genome build version 38 and provide 573 

harmonized variant identifiers compatible with those used by GTEx v8. To increase the number of overlapping 574 

markers between our summary statistics and the fine-mapped pre-built MASHR models, we imputed missing 575 

summary associations as suggested by the best practices workflow. Imputation was performed separately for 576 

each chromosome using the gwas_summary_imputation.py utility (https://github.com/hakyimlab/summary-577 

gwas-imputation) and the pre-computed parquet genotype, genotype metadata files, and European LD block 578 
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files available through the MetaXcan zenodo repository 75. Imputed summary statistics were finally re-579 

combined using the gwas_summary_imputation_postprocess.py utility. 580 

The resulting imputed, harmonized association summary statistics were then used as input to 581 

MetaXcan. The number of genes tested for each tissue is found in Supplementary Table 21. FDR correction 582 

was applied to account for the number of genes tested across all tissues (156215 total tests). A gene’s 583 

predicted expression was considered significantly associated with OA if its FDR-adjusted p-value fell below a 584 

threshold of 0.05. 585 

 586 

Colocalization. Co-localization analysis was performed using the coloc package in R.76 Cis-eQTL data for 587 

individuals of European ancestry from the GTEx v8 eQTL Tissue-Specific All SNP Gene Associations dataset 588 

(dbGaP Accession phs000424.v8.p2) were input as a quantitative trait into coloc (sample sizes for each tissue 589 

type indicated in Supplementary Table 22). Summary statistics from the gSEM analysis were input as a 590 

quantitative trait, with a sample size of 403,915. Summary statistics from the standard meta-analysis of OA 591 

were input as a case-control trait with 16,849 cases and 379,493 controls. All SNP positions were lifted over to 592 

build 38. The cis-eQTL data was partitioned into blocks based on the gene in the SNP-gene pair. For each 593 

gene block, only SNPs in the gSEM or meta-analysis summary statistics overlapping with the cis-eQTL data 594 

were input into the coloc function for (approximate) Bayes Factor colocalization analysis.  595 

 596 

Data availability  597 

The GWAS summary statistics generated and/or analyzed during the current study will be made available via 598 

dbGAP; the dbGaP accession assigned to the UHS is phs000454.v1.p1. The website is 599 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000454.v1.p1 600 

 601 
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Tables 627 

Table 1. Fourteen gene-brain region combinations exhibiting predicted genetically driven differential gene 628 

expression in human brain regions associated with OA (across tissue FDR < 0.05) in analysis of gSEM GWAS 629 

summary statistics with S-PrediXcan analysis using GTEx version 8 eQTL gene models. 630 

Gene Tissue Across Tissue FDR 

OPRM1 Cerebellum 0.009 

SCAI Cerebellum 0.009 

SCAI Frontal cortex 0.009 

SCAI Hippocampus 0.009 

PPP6C Hippocampus 0.009 

PPP6C Anterior cingulate cortex 0.01 

PPP6C Cerebellar hemisphere 0.01 

PPP6C Putamen basal ganglia 0.01 

PPP6C Caudate basal ganglia 0.01 

SCAI Cortex 0.01 

PPP6C Cortex 0.01 

PPP6C Frontal cortex 0.01 

PPP6C Hypothalamus 0.01 

PPP6C 
Nucleus accumbens basal 
ganglia 0.01 

 631 

  632 
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Figures 633 
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Figure 1. Genomic SEM model and Manhattan plot. (a) A common factor (pg) gSEM model (using 635 

GenomicSEM) is fit with summary statistics from GENOA, MVP12-YP-SAGE, PGC, and Partners Health 636 

cohorts. Standardized estimates and standard errors are shown for each free parameter. Model fit is shown by 637 

a non-significant chi-square test, high Akaike information criterion (AIC, higher is better) and comparative fit 638 

index (CFI) equal to exactly 1.0, and low standardized root mean squared root (SRMR) values (ideal < 0.05) 639 

(b) Manhattan plot for gSEM results with summary statistics from GWAS from each cohort. Bonferroni 640 

correction was used to correct for multiple comparisons; associations with P<2x10-8 (indicated by horizontal 641 

black bar) were considered to be genome-wide significant (top SNP highlighted in red).  642 

  643 
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 644 

Figure 2. Association of major haplotypes for genome-wide significant OPRM1 variants with OA.645 

The 3 major haplotypes for genome-wide significant OPRM1 variants. Haplotype A is the predominant 646 

A. (a) 
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haplotype (frequency ~0.69 among contributing cohorts) and consists of major alleles for all variants. 647 

Haplotype B (frequency ~ 0.13 among contributing cohorts) consists of the minor allele for rs1799971 and the 648 

major allele for all other variants. Haplotype C (frequency ~ 0.16 among contributing cohorts) consists of the 649 

major allele for rs1799971 and minor allele for all other variants. The cohorts for whom we had the raw data to 650 

conduct the haplotype analyses were: UHS, VIDUS, ODB, Yale-Penn, CATS and Kreek (Supplementary Table 651 

1).  (b) Association of OPRM1 haplotypes with OA. Haplotype C is associated with increased risk of OA when 652 

compared to Haplotype A or Haplotype B, whereas Haplotype B does not have a significant impact on OA 653 

relative to Haplotype A. The single variant results using the cohorts contributing to the haplotype analyses 654 

were: rs1799971 beta=-0.058, p=0.135; rs9478500 beta=0.205, p=2.43x10-9. 655 

  656 
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 657 

Figure 3. Genetic correlations of opioid addiction (OA) with 38 other brain-related phenotypes. 658 

Correlations were calculated using linkage disequilibrium (LD) score regression with the gSEM OA GWAS 659 

meta-analysis results, compared with results made available via LD Hub or study investigators (see 660 

Supplementary Table 20 for original references). Phenotypes were grouped by disease/trait or measurement 661 

category, as indicated by different colorings. Dots indicate the mean values for genetic correlation (rg); error 662 

bars show the 95% confidence intervals; the dashed vertical black line corresponds to rg�=�0 (no correlation 663 

with OA), and the solid vertical black line corresponds to rg�=�1.0 (complete correlation with OA). Phenotypes 664 

with significant correlation with OA are bolded (1 degree of freedom Chi-square test; Bonferroni adjusted p-665 
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value <0.05 after accounting for 38 independent tests). Exact p-values are provided in Supplementary Table 666 

8). 667 

 668 

 669 
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671 

Figure 4. Gene-level Manhattan Plot. GWAS results were summarized at the gene-level using MAGMA672 

Bonferroni correction was used to correct for multiple comparisons; associations with P<3x10-6 (indicate673 

horizontal red dotted line) were considered to be genome-wide significant.  674 

  675 
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676 

Figure 5.  Colocalization of GWAS loci and QTLs for selected genes across 10 brain tissues. Posterior 677 

probabilities of supporting hypotheses regarding the association of each trait with SNPs in a region were 678 

calculated using coloc. For OPRM1, SNP-gene cis-eQTL associations were reported in GTEx Analysis v8 for 679 

only 6 of the 10 tissues.   680 
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