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Soft white wheat is a wheat class used in foreign and domestic markets to make various
end products requiring specific quality attributes. Due to associated cost, time, and
amount of seed needed, phenotyping for the end-use quality trait is delayed until later
generations. Previously, we explored the potential of using genomic selection (GS) for
selecting superior genotypes earlier in the breeding program. Breeders typically measure
multiple traits across various locations, and it opens up the avenue for exploring multi-
trait–based GS models. This study’s main objective was to explore the potential of using
multi-trait GS models for predicting seven different end-use quality traits using cross-
validation, independent prediction, and across-location predictions in a wheat breeding
program. The population used consisted of 666 soft white wheat genotypes planted for
5 years at two locations in Washington, United States. We optimized and compared the
performances of four uni-trait– and multi-trait–based GS models, namely, Bayes B,
genomic best linear unbiased prediction (GBLUP), multilayer perceptron (MLP), and
random forests. The prediction accuracies for multi-trait GS models were 5.5 and
7.9% superior to uni-trait models for the within-environment and across-location
predictions. Multi-trait machine and deep learning models performed superior to
GBLUP and Bayes B for across-location predictions, but their advantages diminished
when the genotype by environment component was included in the model. The highest
improvement in prediction accuracy, that is, 35% was obtained for flour protein content
with the multi-trait MLP model. This study showed the potential of using multi-trait–based
GS models to enhance prediction accuracy by using information from previously
phenotyped traits. It would assist in speeding up the breeding cycle time in a cost-
friendly manner.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important staple crops worldwide, providing 18% of
the caloric intake (Awika, 2011; Saini et al., 2022). Hexaploid wheat is categorized into soft and hard
wheat classes based on protein strength, kernel texture, water absorption, and milling quality
(Kiszonas et al., 2013). In the United States, six major classes of wheat, namely, hard white wheat,
hard red spring wheat, hard red winter wheat, soft white wheat, soft red winter wheat, and durum, are
grown in different regions. Soft white wheat (SWW) is a predominant class in eastern Washington
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and the inland Pacific Northwest (Kiszonas and Morris, 2018).
SWW is one of the wheat classes with high demands from
overseas markets in countries like the Philippines, Korea,
Japan, and Indonesia, due to its high end-use quality. Soft
wheat is mainly used for making cakes, cookies, pastries,
Asian-style noodles, crackers, and pretzels (Morris et al.,
2008). In addition to having high grain yield, disease and
insect resistance, wide adaptability, and cold tolerance, the
released wheat cultivar needs to maintain high end-use quality
attributes required by millers, bakers, and grain markets (Morris
et al., 2009; Carter et al., 2012; Guzman et al., 2016; Sandhu et al.,
2021d).

Phenotyping for end-use quality traits is usually delayed until
advanced generations in wheat breeding owing to the associated
cost, labor, and amount of seed required (Battenfield et al., 2016).
Delayed phenotyping usually results in hindrance of releasing
promising cultivars due to lack of end-use quality data to make
decisions. Important end-use quality traits in wheat include
cookie diameter, flour sedimentation value, flour yield, grain
protein content, and milling score (Campbell et al., 2007;
Kiszonas et al., 2015). Linkage and association mapping have
been used to identify the genomic loci controlling end-use quality
traits, and most of the major effect genes are now fixed into the
breeding programs for different market classes (Jernigan et al.,
2018; Yang et al., 2020). Marker-assisted selection has been used
to screen for some major effect end-use quality genes in wheat
classes based on granule-based starch synthase 1, low and high
molecular weight glutenins, and kernel texture (Aoun et al.,
2021b). These major effect loci only assist in differentiating
between different classes but do not provide the complete
profile (Kumar et al., 2019). Association mapping studies in
wheat have shown that more than 300 small effect QTLs
control these end-use quality traits and suggest the
quantitative nature of these traits, requiring appropriate
strategies to be adopted in breeding programs for selection
(Breseghello and Sorrells, 2006; Bhave and Morris, 2008;
Jernigan et al., 2018; Yang et al., 2020).

The ultimate interest of a plant breeding program is to
enhance the long-term genetic gain, and in modern terms,
genetic gain is defined as ΔG � iσAr/t, where ΔG is the rate of
the gain/response to selection, σA is the square root of the
standard additive genetic variance, i is the selection intensity, r
is the correlation between genotypic and true breeding values,
and t is the length of the breeding cycle (Bernardo, 2016; Cobb
et al., 2019a; Cobb et al., 2019b). Genomic selection (GS) is the
approach adopted by most plant breeding programs, which
enhances the rate of genetic gain by estimating breeding
values using whole genome-wide markers without phenotyping
(Meuwissen et al., 2001). First, the GS model is trained using
previous year phenotypic and genotypic data to estimate marker
effect and the model’s performance is assessed using various
cross-validation approaches. The trained GS model predicts the
genomic estimated breeding values of the selection/breeding
population (Lorenz et al., 2011; Lorenz, 2013). Since the last
decade, increasing the prediction accuracies for GS has been the
main focus of research (Kaur et al., 2021). GS performance is
affected by the relationship between testing and training set, trait

heritability and architecture, population structure, population
size, and the statistical model (Herter et al., 2019; Monteverde
et al., 2019).

Most genomic selection studies use the uni-trait model, where
a single trait is predicted (Qin et al., 2019; Pérez-Rodríguez et al.,
2020; Sandhu et al., 2022). However, plant breeders have shifted
to multi-trait (MT) GS models that simultaneously predict two or
more traits and demonstrate improved accuracy (Calus and
Veerkamp, 2011; Sandhu et al., 2021a). MT models use the
shared genetic information between the traits using the same
set of predictors with the assumption of some structure in the
captured output. MT models leverage the correlation between
different traits and show a considerable advantage in other
domains, such as ecological modeling, weather forecasting,
forest management, and data mining (Voyant et al., 2017).
MT models using shared genetic information are important
for hard/expensive to phenotype traits having low heritability
(Juliana et al., 2019). Several studies have demonstrated the
improvement of prediction accuracy for a primary trait with
the inclusion of a secondary trait into the MT models in wheat.
Sandhu et al. (2021a) showed an improvement of 20 and 12%
prediction accuracies for grain yield and grain protein content in
wheat, respectively, by including correlated spectral reflectance
indices into the model as secondary traits in the MT approach.
Similarly, Hayes et al. (2017), Lado et al. (2018), and Bhatta et al.
(2020) observed the improvement of prediction abilities with MT
models over the uni-trait models for end-use quality traits in
cereals.

A previous study from our group showed that GS accuracies
varied from 0.27 to 0.81 for 14 end-use quality traits using nine
different uni-trait models (Sandhu et al., 2021c). Statistical
models used for training the uni- or multi-trait GS models
play an important role in evaluating performance (Jia and
Jannink, 2012). Ridge regression best linear unbiased
prediction (rrBLUP) is one of the most frequently used
models for quantitative traits assuming normal distribution of
marker effects with constant variances (Endelman, 2011). Bayes
Cpi uses variable selection, scaled-t distribution to estimate
marker effects and assumes different variances for adjusting to
the different genetic architecture of the trait (Pérez and De Los
Campos, 2014; Montesinos-López et al., 2019a). rrBLUP and
Bayes Cpi are known as parametric models as they assume a prior
relationship between features and predictors, and this opens up
the avenue for the nonparametric machine and deep learning
algorithms. Machine learning models such as random forest,
ensemble learning, and support vector machines use algorithms
that progressively learn the pattern from sample data to make
final predictions (Hastie et al., 2009). Deep learning is one of the
branches of machine learning focusing on the artificial neural
network for model training and predictions. Deep learning
models such as generative neural networks, convolutional
neural networks, and recurrent neural networks use different
combinations of layers and nonlinear activation functions to
transform the data at each layer to obtain a better fit for each
trait by considering genetic architecture (Lecun et al., 2015).

In previous studies, we have shown the advantages of multi-
trait GS models (Sandhu et al., 2021e) and machine and deep

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 8310202

Sandhu et al. Multi-Trait Multi-Environment Predictions

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


learning models for predicting complex traits in wheat (Sandhu
et al., 2021b; Sandhu et al., 2021c). Building upon the findings of
previous studies, this study’s objectives were to 1) optimize the
uni- and multi-trait GS models for seven end-use quality traits, 2)
compare the performances of four uni- and multi-trait GS models
using cross-validation and independent predictions, and 3) assess
the potential of across-location prediction using multi-trait
models and with the inclusion of genotype by environment
interaction component.

MATERIALS AND METHODS

Plant material: A total of 666 SWW genotypes from the
Washington State University winter wheat breeding program
were screened at two locations, namely, Lind and Pullman,
WA, United States, from 2015 to 2019. These genotypes
consist of preliminary and advanced yield lines, doubled
haploid lines, and F3:5 lines screened as part of the breeding
program. Genotypes in the advanced and preliminary yield trials
were screened for yield, and superior lines were later evaluated for
end-use quality traits. Double haploid lines and F3:5 derived lines
were screened for disease resistance and agronomic traits, and the
selected genotypes were screened for quality traits and not for
yield traits. As the dataset was from a breeding program, some
lines were continuously removed each year with new genotypes in
the subsequent year, resulting in an unbalanced dataset. More
information about the dataset is referred to Aoun et al., 2021a and
Sandhu et al., 2021b. End-use quality data were collected
separately at both locations for all the genotypes.

Phenotyping for the end-use quality traits: These genotypes
were tested for seven end-use quality traits, namely, cookie
diameter (CODI), grain protein content (GPC), flour yield
(FYELD), flour SDS sedimentation (FSDS), flour ash (FASH),
flour protein (FPROT), and milling score (MSCOR). Complete
information about all these traits and their summary is provided
in Table 1. To evaluate grain characteristics, GPC was measured
following AACC Approved Method 39–10.01 using an NIR
analyzer (Perten Elmer, Sweden). Flour parameters, namely,
FASH, FPROT, and FSD were measured using the extracted
flour. FASH and FPROT were measured using Approved
methods 08–01.01 and 39–11.01. The milling traits, that is,
FYELD and MSCOR were measured using the sample
obtained from the modified Quadrumat Senior Experimental
Milling System. FYELD was estimated as a ratio of total flour
by weight (reduction rolls and break). MSCOR was obtained

using FYELD and FASH. CODI is one of the baking parameters
and is estimated by following the AACC Approved Method
10–52.02. More information about the phenotyping is referred
to Aoun et al., 2021a and Sandhu et al., 2021b.

Genotyping: Genotyping by sequencing (GBS) was used for
genotyping the complete population using the facilities from
Genomics Sciences Laboratory, Raleigh, NC (Poland et al.,
2012). The complete details about the genotyping and SNP
calling was reported in Aoun et al. (2021a) and Sandhu et al.
(2021a). Initial SNP data consisted of 216,392 markers anchored
to the T. aestivum RefSeq v1.0 reference genome. Markers were
removed based on the minor allele frequency less than 5%,
heterozygosity more than 15%, and markers missing more
than 20% of data, and the whole pipeline was implemented in
R (R Development Core Team, 2020). At the end of the filtering,
we were left with 40,518 SNPs used for further analysis.

Phenotypic data analysis: To account for the unbalanced
dataset in this study, adjusted means were extracted using
residuals obtained from the unreplicated genotypes in
individual environments using the augmented complete
block design model implemented in the R statistical
program. Adjusted means were obtained according to the
method implemented in Sandhu et al. (2021b), and the model
equation is given as follows:

Yij � Blocki + Checkj + eij,

where Yij is the raw phenotype, Blocki corresponds to the fixed
block effect, Checkj is the replicated check cultivar effect; Blocki is
the fixed block effect, and eij is the residuals.

Adjusted means across the environments were obtained using
the models and are given as follows:

Yijk �µ+Checki+Blockj+Envk +Checkj ×Envk +Blocki ×Envk
+eijk ,

where Yijk is the raw phenotype value; Checkj, Blocki, and Envk
are the fixed effect of the ith check, jth block, and kth
environment, respectively; and eijk is the residuals.

Heritability of each trait was calculated using the model as
follows:

H2
C � 1 − �vBLUPΔ..

2σ
∧2
g
,

whereH2
C is the Cullis heritability, �vBLUPΔ.. is the mean–variance of

BLUPs, and σ
∧2
g is genotypic variance.

TABLE 1 | Summary statistics of seven end-use quality traits evaluated from the SWW population.

Trait Abbreviation Mean Standard error Heritability Units

Grain protein content GPC 10.73 0.05 0.56 percent
Flour protein FPROT 8.93 0.04 0.57 percent
Flour ash FASH 0.39 0.001 0.88 percent
Milling score MSCOR 85.6 0.10 0.81 unitless
Flour yield FYELD 69.9 0.09 0.91 percent
Cookie diameter CODI 9.2 0.008 0.89 cm
Flour SDS sedimentation FSDS 10.1 0.09 0.92 g/mL
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Genetic correlation among traits was obtained using the
multivariate models as follows:

[yA

yB
] � [XA 0

0 XB
][ bA

bB
] + [ZA 0

0 ZB
][gA

gB
] + [ εA

εB
],

where yA and yB are the BLUPs of the two traits, X and Z denote
the design matrix, g is the random genetic effects, and e is the
residual for each trait. Variance components were calculated

assuming [gA

gB
]~ N(0, H⊗G), where H is the genetic

variance–covariance matrix, G is the genomic relationship

matrix, and [ εA
εB

]~ N(0, I⊗R), where I is the identity matrix

and R is the residual variance–covariance matrix. The genetic
correlation is calculated as follows:

rG � cov(A, B)�������������
var(A) · var(B)√ ,

where cov(A, B) is the covariance between two traits, Var(A) and
Var(B) represent variances of two traits individually, and the analysis
was performed using JMP genomics (SAS Institute Inc, 2011).

Genomic selectionmodels:We evaluated the performances of
four uni-trait and multi-trait GS models for predicting seven end-
use quality traits, and prediction accuracy was compared under
different validation scenarios to mimic the breeding program.
These four models were GBLUP, Bayes B, RF, and MLP and were
tried under both uni-trait and multi-trait scenarios. Complete
information about the model structure and optimization is
provided below:

Genomic best linear unbiased predictor: The uni-trait
GBLUP model was used to train each trait individually, and
the model is represented as follows:

y � µ + Zu + e,

where y is the vector of end-use quality phenotype for each
genotype, µ is the overall mean, u is a vector of normally
distributed marker predictor effects as u~ N (0, I σ2u), Z is a
design matrix assigning markers to genotypes, and e is the
residual error with e ~ N (0, I σ2e). The multi-trait model is
represented as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

.

.

.
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X 0
. .
. .
. .
0 Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
µ1
.
.
.
µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z 0
. .
. .
. .
0 Zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

.

.

.
un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
.
.
.
εn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where n is the number of traits, y1 to n represents the vector of
phenotypes of the end-use quality traits, X and Z are design

matrix, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1
.
.
.
un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ represents the random marker effects,

distributed as ~ N (0, G⊗H), where G is the genomic
relationship matrix, H is the variance–covariance matrix, and

ε1...n represents the standard normal error, distributed as ~ N (0,
I⊗R), where R is the residual variance–covariance matrix and I is
identify matrix.

Bayesian B: The uni-trait Bayes B model was used to train
each trait individually, and the model is represented as follows:

yi � µ +∑j�p
j�1

xijβj + εi,

where yi is the vector of end-use quality phenotype for each line,
xij is the identity of the SNP, βj represents the marker effect, µ is
the overall mean, and εi is residual error. MTM and BGLR
packages were used for the analysis with 5,000 burn-in and 15,000
test iterations (de los Campos and Grüneberg, 2016). Prior
distribution used for model training is as follows:

βj
∣∣∣∣∣σ2

j , Π � ⎧⎨⎩ 0 with probability π

N(0, σ2
j)with probability 1 − π

,

which is a mixture of distribution with mass at zero and same
prior for all remaining markers, that is, χ−2 (dfβ, Sβ) where Sβ is a
scaling parameter and dfβ is the degree of freedom (Pérez and De
Los Campos, 2014).

The MT Bayes B model is represented as follows:

y � µ + Zu + ε,

where y represents the vector of phenotypes of the end-use quality
traits, µ is the overall mean, u is the genotypic value distributed as
u~ N(0, H⊗G), and ε is residuals.

Bayesian multi-trait multi-environment model (BMTME):
Montesinos-López et al., 2016, Montesinos-López et al., 2019b
provided a BMTME model for predictions which is represented
as follows:

y � Xβ + Z1b1 + Z2b2 + ε,

where y is the matrix of order t x l, with t is the number of traits
and l = e x g, where g is the number of genotypes and e is the
number of environments; X, Z1, and Z2 are design matrixes for
environmental effect, genotypic effect, and genotype by
environmental interaction, respectively; β is beta coefficient
matrix of order e x t; b1 is the random genotypic effect
distributed as b1~ MN(0, G, Ʃt), where G is additive
relationship matrix and Ʃt is the unstructured covariance
matrix of order t x t; b2 is the random genotypic x trait x
environment effect matrix distributed as b2~ MN(0, Ʃe G, Ʃt),
where Ʃe is the unstructured covariance matrix of order e x e.
BMTME package was used for the analysis with 5,000 burn-in
and 15,000 test iterations (Montesinos-López et al., 2019b).

Random forests: RF is a tree-based machine learning model
where output is predicted from the collection of identically
distributed trees. Input features are split at each node of the
tree to create a new branch, and splitting is performed by
lowering the loss function. Bootstrap sampling was performed
over the training set to select the best set of features for tree
building (Ramzan et al., 2020). The model equation is given as
follows:
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ŷi �
1
B
∑B
b�1

Tb(xi),

where ŷi is the predicted value of the end-use quality trait with
genotype xi, T represents the number of trees, and B is the
number of bootstrap samples. The outline of model optimization
is as follows.

1) Bootstrap sampling was performed to select the plants from
the training set with replacement and was repeated for b =
(1,. . ., B) times.

2) Max feature (max_feature) function from the random forest
regressor library was used to identify the best set of features
(SNP) by lowering the loss function while building new trees.

3) Splitting at each node of the tree was performed using
genotypic data to lower the mean square error

4) The aforementioned three steps were repeated until a
minimum node or maximum depth was reached. The set
of these trees were used to predict the output of a genotype xi

by averaging the performance over the forest.

The hyperparameter space was explored using the grid search
cross-validation (CV) function to optimize the hyperparameters
for each trait by lowering the mean squared error. The important
hyperparameters used for RF training were number and depth of
trees, feature importance, and number of features sampled for
each iteration. Hyperparameters tried were number of trees (200,
300, 500, and 1,000), max features (auto and sqrt), and max depth
(40, 60, 80, and 100) using random forest regression and Scikit
learn libraries.

Multilayer perceptron (MLP):MLP is a special type of neural
network where information flows in one direction, starting from
input layer through different hidden (processing) layers to the
output layer. The output from the last hidden layer is used to
predict output and is represented as follows:

Yj � b(j−1) +Wjf(j−1)(x),
where Yj is the output from the jth hidden layer, f(j-1) is the
activation function,Wj is the neuron’s weight, and b(j-1) is the bias
associated with each layer. The number of vectors in the output
layer define the uni- and multi-trait models.

The hyperparameter space was explored using the Keras inner
grid search cross-validation (CV) function to optimize the
hyperparameters for each trait by lowering the mean squared
error. For hyperparameter optimization, 80% of the training data
were used, where 80% of this dataset was used for exploring the
hyperparameter space and the remaining 20% for validation.
Scikit learn and Keras libraries were used to optimize the model in
Python (Gulli and Pal 2017). A full-factor design was
implemented using grid search CV to explore parameters, that
is, solvers, dropout, learning rate, number of filters, activation
function, number of hidden layers and neurons, and
regularizations. Overfitting in the model was controlled using
early stopping, regularization, and dropout (Srivastava et al.,
2014). More information about the MLP models,
hyperparameter optimization, and overfitting control is used
in Sandhu et al., 2021c, Sandhu et al., 2021a.

Assessing the model’s prediction abilities: The genomic
selection model performance was evaluated as prediction
accuracy, which is the correlation between GEBVs and the
observed phenotype. The correlate function from the “corrr” R
package was used to assess prediction accuracy (Max et al., 2020).
Cross-validation approach, that is, a five-fold CV was used to
evaluate the prediction accuracies where each fold was used
separately as a testing fold, and this process was repeated two
hundred times. For each location, that is, Pullman and Lind,
performances of both uni- and multi-trait models were evaluated
separately using five-fold CV, and the results were reported
separately for each trait and model.

FIGURE 1 | Phenotypic correlation among the seven end-use quality
traits evaluated from the SWW population.

FIGURE 2 | Genetic correlation among the seven end-use quality traits
evaluated from the SWW population.
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Across-location prediction scenarios were also tested where the
dataset from one location was used to predict the performances of
genotypes at another location and environment. In our case, the
complete data set from one location, that is, Lind was used to train
the model, and predictions were made for 2019 Pullman
environment and vice versa. Genotype by environment
components was also included during across-location predictions.

RESULTS

Trait summary, heritability, and correlation: Table 1 provides the
summary and broad-sense heritability of seven end-use quality
traits evaluated from the SWW population planted at two locations
in this study. Most of the traits had moderate to high heritability,
except grain protein content and flour protein. Heritability of FSDS
and FYELD was 0.92 and 0.91, respectively, highest among all the
traits. Phenotypic and genetic correlation results provided evidence
that few traits were correlated (Figures 1, 2). The highest
phenotypic and genetic correlations were observed between GPC
and FPROT, which was 0.93 and 0.91, respectively (Figures 1, 2).

Some traits were negatively correlated with each other. Principal
component analysis showed the absence of structure in the
population, where first and second PCs only explained the 5.8
and 4.2% variation, respectively (Figure 3), and this was expected as
the population was from the same breeding program. Frequency
distribution for all the traits at both locations is shown in
Supplementary Figure S1. Furthermore, ANOVA results
showed that all the traits, except CODI, have significant GXE
interaction (Supplementary Table S1).

Hyperparameter optimization for the MLP model: Two
hundred iterations were performed for the MLP model using
Keras inner grid search CV function to optimize the
hyperparameters for each trait by lowering the mean squared
error. The hyperparameters optimized for each trait were later
used for predicting traits in the testing set. Tables 2, 3 provide the
set of hyperparameters optimized for each trait under the uni-
and multi-trait MLP model. Regularization and dropout were
used in the model to control the overfitting following Srivastava
et al. (2014). The number of hidden layers and neurons played a
critical role during model optimization compared to other
hyperparameters. For the uni-trait MLP model, some traits

FIGURE 3 | Principal component analysis for the 666 SWW genotypes obtained using 40,518 SNP markers.

TABLE 2 | Hyperparameters optimized for seven end-use quality traits using the uni-trait MLP model.

Hyperparameter GPC FPROT FASH MSCOR FYELD CODI FSDS

Activation function relu relu tanh relu relu tanh tanh
Epochs 200 200 100 150 150 200 150
Dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Learning rate adaptive adaptive constant adaptive constant adaptive constant
No. of hidden layers 4 3 4 3 3 4 2
No. of neurons (30, 30, 30, 30) (24, 24, 24) (50, 50, 25, 25) (30, 30, 10) (90, 90) (100, 50, 25, 25) (50, 50)
Regularization 0.1 0.1 0.05 0.02 0.05 0.1 0.001
Solver Adam Adam SGD L-BFGS SGD L-BFGS SGD
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required different activation functions other than relu, while for
multi-trait MLP, all the traits gave the lowest MSE with a relu
activation function. Information about the hyperparameters is
provided separately for each trait, demonstrating that
different genetic architecture required specific combinations of
hyperparameters for best performance (Tables 2, 3).

Prediction accuracies within the location using cross-
validation: We compared the performance of four uni- and
multi-trait models using a five-fold CV approach to predict
seven quality traits. Average results for each trait in the multi-
trait GS were used to compare its performance with uni-trait GS
models. Figures 4, 5 show the uni- and multi-trait prediction
accuracies for the two locations, namely, Pullman and Lind,
respectively. Multi-trait prediction accuracies were higher for
all the traits, except CODI, for both locations (Table 4).
Prediction accuracies varied from 0.44 to 0.76 and from 0.40
to 0.79 for uni- and multi-trait models, respectively, for seven
traits evaluated in this study (Figures 4, 5). The Bayes B uni-
trait model obtained the lowest prediction accuracies, while the
MLP multi-trait model obtained the highest prediction

accuracies. On average, multi-trait GS models gave 5.5%
higher prediction accuracies than uni-trait GS models
(Table 4). There was no difference in the uni- and multi-
trait Bayes B model’s performance for most traits. In
summary, multi-trait GBLUP, Bayes B, RF, and MLP
performed 6.9, 1.8, 6.6, and 6.5% superior to their uni-trait
counterparts, respectively (Table 4).

The highest prediction accuracies were obtained using a multi-
trait MLPmodel for five of the seven traits evaluated in this study,
closely followed by the multi-trait–based RF and GBLUP model.
FPROT showed the greatest improvement in prediction accuracy,
that is, 36%, with the multi-trait model compared to uni-trait GS
models, while CODI showed the lowest improvement in
prediction accuracy, that is, -2.9%. Prediction accuracies for
the Pullman and Lind locations varied from 0.52 to 0.79 and
from 0.40 to 0.70, respectively, with higher accuracy for all the
traits at the Pullman location. Improvement in prediction
accuracies for GPC, FASH, MSCOR, FYELD, and FSDS with
multi-trait models was -0.1–31.6%, 5.4–15.4%, 9.6–31.6%,
1.5–2.3%, and 7.6–16.7%, respectively (Figures 4, 5).

TABLE 3 | Hyperparameters optimized for seven end-use quality traits using the multi-trait MLP model.

Hyperparameter GPC and
FPROT

FPROT and
FSDS

FASH and
MSCOR

FYELD and
MSCOR

CODI and
FSDS

Activation function relu relu relu relu relu
Epochs 200 200 200 200 200
Dropout 0.2 0.2 0.2 0.2 0.2
Learning rate adaptive adaptive adaptive adaptive adaptive
No. of hidden layers 5 4 5 4 4
No. of neurons (90, 90, 90, 90, 90) (100, 60, 60, 60) (50, 50, 50, 50) (30, 15, 15, 10) (100, 90, 90, 70)
Regularization 0.1 0.1 0.1 0.1 0.1
Solver Adam Adam Adam Adam Adam

FIGURE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Pullman location.
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Prediction accuracies across the environments: Across-
location predictions were performed where data from the
Pullman environment was used for model training and
predictions were made for the Lind environment, and vice
versa. Across-location prediction accuracies were lower than
prediction accuracies within the environment using cross-
validation (Tables 4, 5). Figure 6 and Table 5 show the
prediction accuracies for 2019_Pullman when the model
was trained on Lind data, and predictions were made for
seven end-use quality traits with four different uni- and
multi-trait GS and one multi-trait multi-environment

model. Similarly, Figure 7 and Table 5 show the prediction
accuracies for 2019_Lind when the model was trained using
the Pullman dataset. Across-location prediction accuracies
varied from 0.25–0.50, 0.28–0.48, to 0.31–0.56 for uni-trait,
multi-trait, and multi-trait multi-environment models,
respectively, for seven traits evaluated in this study. Similar
to cross-validation results, Bayes B models performed inferior
compared to all other models.

We observed that multi-trait GS models performed 7.9%
superior compared to uni-trait GS models, and it further
strengthens the results obtained for within the environment

FIGURE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Lind location.

TABLE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the two locations across the years,
namely, Pullman and Lind using the cross-validation approach.

Uni-trait models Multi-trait models

Location Trait GBLUP BayesB RF MLP GBLUP BayesB RF MLP
Pullman GPC 0.55 0.54 0.59 0.60 0.59 0.50 0.76 0.72

FPROT 0.58 0.58 0.61 0.62 0.64 0.61 0.66 0.79
FASH 0.55 0.59 0.58 0.59 0.63 0.58 0.62 0.63
MSCOR 0.58 0.52 0.60 0.63 0.66 0.57 0.64 0.68
FYELD 0.71 0.64 0.76 0.75 0.68 0.65 0.75 0.73
CODI 0.67 0.67 0.69 0.69 0.64 0.61 0.67 0.64
FSDS 0.67 0.66 0.69 0.70 0.71 0.72 0.73 0.77

Lind GPC 0.51 0.51 0.54 0.55 0.55 0.53 0.58 0.62
FPROT 0.48 0.46 0.51 0.53 0.53 0.50 0.56 0.54
FASH 0.51 0.44 0.54 0.56 0.59 0.40 0.62 0.60
MSCOR 0.48 0.53 0.50 0.52 0.57 0.57 0.55 0.63
FYELD 0.64 0.58 0.68 0.67 0.66 0.59 0.69 0.70
CODI 0.56 0.54 0.57 0.58 0.55 0.54 0.58 0.59
FSDS 0.59 0.59 0.62 0.63 0.64 0.62 0.67 0.64

Average 0.58 0.56 0.61 0.62 0.62 0.57 0.65 0.66

Highest prediction accuracies are bolded for each trait.
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scenario that multi-trait GS models are better for predicting
end-use quality traits. Multi-trait GBLUP, Bayes B, RF, and
MLP performed 8.1, 5.7, 5.0, and 10.0% superior to their uni-
trait counterparts, respectively (Table 5). Improvement in
prediction accuracies for GPC, FPROT, FASH, MSCOR,

FYELD, CODI, and FSDS with multi-trait models was
21.7–43.4%, -14.7–29.4%, 5.0–12.5%, -17.4–65.2%,
2.4–24.4%, 10.0–32.5%, and 13.3–60.0%, respectively, over
the uni-trait models (Figures 4, 5). There was no difference in
the performance of multi-trait machine and deep learning

TABLE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic prediction models for the across-location predictions.
2019_Pullman_Lind represents the scenario where predictions were made on 2019_Pullman by training models on the Lind dataset.

Uni-trait models Multi-trait models Multi-trait
multi-environment models

Location Trait GBLUP BayesB RF MLP GBLUP BayesB RF MLP BMTME
2019_Pullman_Lind GPC 0.25 0.23 0.30 0.31 0.32 0.28 0.33 0.31 0.31

FPROT 0.35 0.34 0.40 0.40 0.40 0.29 0.39 0.44 0.47
FASH 0.40 0.41 0.41 0.41 0.42 0.45 0.44 0.43 0.45
MSCOR 0.27 0.23 0.30 0.30 0.33 0.27 0.35 0.38 0.36
FYELD 0.41 0.42 0.48 0.50 0.42 0.45 0.51 0.50 0.52
CODI 0.40 0.43 0.45 0.46 0.47 0.44 0.49 0.53 0.56
FSDS 0.36 0.30 0.44 0.43 0.38 0.34 0.47 0.48 0.46

2019_Lind_Pullman GPC 0.27 0.29 0.30 0.28 0.31 0.33 0.37 0.36 0.40
FPROT 0.34 0.37 0.42 0.42 0.37 0.39 0.42 0.47 0.38
FASH 0.41 0.38 0.42 0.42 0.48 0.46 0.44 0.45 0.47
MSCOR 0.28 0.28 0.29 0.31 0.31 0.28 0.31 0.34 0.31
FYELD 0.43 0.42 0.47 0.50 0.47 0.43 0.52 0.51 0.55
CODI 0.42 0.45 0.44 0.46 0.43 0.44 0.41 0.46 0.49
FSDS 0.38 0.35 0.41 0.40 0.42 0.39 0.45 0.45 0.42

Average 0.37 0.35 0.40 0.40 0.40 0.37 0.42 0.44 0.42

Highest prediction accuracies are bolded for each trait.

FIGURE 6 | Prediction accuracies across environment Pullman with training on the Lind dataset for seven end-use quality traits using four different uni- and multi-
trait and one Bayesian multi-trait multi-environment genomic prediction models.
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models from the multi-trait multi-environment model which
consisted of genotype by environmental interaction in the
model (Table 5).

DISCUSSION

Plant breeders routinely collect data for multiple traits from
multiple environments before making final selections.
Genomic selection is becoming popular to predict GEBVs
due to robust next-generation sequencing technologies and
its cost-effectiveness. However, few studies have utilized the
multi-trait and multi-environment prediction models due to
the model’s complexity, huge computational burden, and lack
of good quality phenotyping data (Cuevas et al., 2017). Multi-
environment prediction represents a perfect scenario to reduce
the number of locations or plots needed in subsequent
selection trials (Tolhurst et al., 2019; de Oliveira et al.,
2020). Multi-trait GS models showed improved prediction
accuracy in previous studies when traits are correlated and
have low heritability; these models provide an opportunity to
predict traits simultaneously by borrowing information from
each other (Gill et al., 2021; Larkin et al., 2021). This study
explored the potential of using multi-trait–based GS models to
predict seven end-use quality traits in soft white wheat
population planted at two locations in Washington,
United States, from 2015 to 2019. Prediction accuracies for
individual traits varied from 0.23 to 0.79 using different
models, with multi-trait models performing superior to uni-
trait models for the majority of the traits and validation
scenarios.

Seven out of the 14 end-use quality traits from our previous
study were selected for multi-trait and multi-environment
predictions, which showed lower prediction accuracies and
higher genotype by environment interactions (Aoun et al.,
2021a; Sandhu et al., 2021c). These higher values of the
genotype by environment interactions demonstrated the
potential of using multi-trait multi-location models in the
breeding programs. We observed a change in genotypes
ranking across the multiple environments for these seven traits
due to high genotype by environment interactions and negative
correlation among the environments. Multi-trait models
performed 5.5 and 7.9% superior to uni-trait GS models for
within-environment and across-location predictions, while
multi-trait multi-environment models performed 10.5%
superior to uni-trait GS models. Across-location prediction
accuracies for the seven traits varied from 0.23 to 0.53, which
were higher than those of previous studies for across-location
predictions for end-use quality traits (Lado et al., 2013; Hayes
et al., 2017). This was attributed to the reference population,
which included the progeny of different lines from the same
breeding program. Likewise, Heffner et al. (2011) showed higher
across-location prediction for end-use quality by using the same
set of biparental populations across the locations. The high
prediction accuracy in their study was reflected from a
biparental population where training and testing sets must
have a relationship and with little variation (Heffner et al.,
2011). Furthermore, we observed that genotype by
environment interaction components could improve across-
location prediction accuracies in the models. Similar work was
shown by Ward et al. (2019) and Monteverde et al. (2019) that
describe the advantage of including genotype by environment

FIGURE 7 | Prediction accuracies across environment Lind with training on the Pullman dataset for seven end-use quality traits using four different uni- and multi-
trait and one Bayesian multi-trait multi-environment genomic prediction models.
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and marker by environment interaction components into the
models when correlation among environments is lower.

Predicting breeding values of un-phenotyped individuals is
always a daunting task, but different strategies have been
employed in recent years for predictions under different
circumstances. Inclusion of correlated traits into multi-trait
models has been effective to increase predictions for primary
traits with low heritability when the secondary trait is highly
correlated with high heritability. However, some studies have
shown no improvement of prediction accuracies when secondary
correlated traits were included into the models for predicting
traits in rice (Oryza sativa L.) (Schulthess et al., 2016), avocado
(He et al., 2016), and mice (Jiang et al., 2015), which could be
attributed to some environmental changes or interactions not
captured by the associated models. Similarly, Jia and Jannink
(2012) showed no advantage of using multi-trait GS models even
when traits have high heritability differences. However, in our
study, we observed that even though traits have moderate to high
heritability, they still showed an increase in prediction accuracies
using multi-trait models when the traits have moderate to high
correlation. Highest improvement was observed for traits like
GPC, FPROT, and FSDS due to their high correlation, whereas
CODI showed lowest improvement due to low correlation with
other traits. Correlated traits help predict correlated responses
when traits of interest are not phenotyped; this will also help
predict expensive to phenotype traits. Previous works have shown
that prediction accuracies increase when traits have high
correlation, but not with low to intermediate correlation
among traits (Rutkoski et al., 2012; Jiang et al., 2015).

Our study showed that uni-trait– and multi-trait–based machine
and deep learning models performed superior to traditional GS
models. We observed that machine and deep learning models
performed 5–11% superior to Bayes B and GBLUP under cross-
validation and across-location predictions. Liu et al. (2019), Sandhu
et al. (2021a) and Zingaretti et al. (2020) also demonstrated the
advantage of using deep learning models in soybean (Glycine max
L.), wheat, and strawberries (Fragaris ananassa) over the traditional
mixed model–based approaches and supported our findings.
Similarly, Montesinos-López et al. (2018) demonstrated the
multi-trait–based deep learning model’s superiority over the
multi-trait Bayesian models for predicting four different traits in
wheat and maize (Zea mays L.). These machine learning models are
highly flexible for understanding complex interactions present in
these datasets, thus inferring the current trends in the datasets
compared to parametric models like GBLUP and Bayes B.
Furthermore, multi-trait machine learning models are more
suitable as they could further explore relationships between traits
and sets of predictors with the removal of redundant information
from the models with explicit programming. Due to these
characteristics of machine and deep learning models, we observed
their better performances under uni- and multi-trait scenarios than
under Bayes B and GBLUP.

As discussed, multi-trait machine and deep learning models
performed better than multi-trait Bayes B and GBLUP models;
however, the advantage of machine and deep learning models
diminishes when the genotype by environment interaction
component was included in the BMTME model. The

inclusion of genotype by environment components perfectly
models the environmental effects and correlation among the
traits for different environments, resulting in improvement of
prediction accuracy. Similarly, Guo et al. (2020) and Ibba et al.
(2020) showed an increase in prediction accuracies for yield-
related traits in U.S. soft wheat and end-use quality traits using
multi-trait multi-environment models over the uni-trait
models. The comparable performance of multi-trait
machine learning models and BMTME models could be
attributed to the capacity of BMTME models to provide
separate penalization for the genotypes, environment, and
genotype by environmental interaction, while working of
the machine and deep learning models follow the black-box
nature, creating problem for biological understanding of the
process.

CONCLUSION

We explored the potential of using multi-trait–based genomic
selection models for predicting seven end-use quality traits in soft
white wheat population. Uni-trait– and multi-trait–based
genomic selection models were optimized separately for each
trait, and optimized hyperparameters were used for testing.
Different cross-validation, independent, and across-location
prediction scenarios were applied to compare the model’s
performance. Multi-trait genomic selection models performed
superior to uni-trait models when traits were correlated with each
other. The inclusion of genotype by environment interaction
components further improves the across-location prediction
accuracies, a typical advantage shown by machine and deep
learning models. Prediction accuracies obtained in this study
using multi-trait models for within-environment and across-
location predictions open up the avenue to explore the use of
genomic selection to select for end-use quality traits in wheat. The
prediction accuracies obtained in this study further provide
evidence of the usefulness of genomic selection in wheat
breeding and will enhance the confidence of the breeder to
utilize this tool when making selections.
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