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Abstract: The employment of unmanned aerial vehicles (UAVs) has greatly facilitated the lives of
humans. Due to the mass manufacturing of consumer unmanned aerial vehicles and the support of
related scientific research, it can now be used in lighting shows, jungle search-and-rescues, topograph-
ical mapping, disaster monitoring, and sports event broadcasting, among many other disciplines.
Some applications have stricter requirements for the autonomous positioning capability of UAV
clusters, requiring its positioning precision to be within the cognitive range of a human or machine.
Global Navigation Satellite System (GNSS) is currently the only method that can be applied directly
and consistently to UAV positioning. Even with dependable GNSS, large-scale clustering of drones
might fail, resulting in drone cluster bombardment. As a type of passive sensor, the visual sensor has
a compact size, a low cost, a wealth of information, strong positional autonomy and reliability, and
high positioning accuracy. This automated navigation technology is ideal for drone swarms. The
application of vision sensors in the collaborative task of multiple UAVs can effectively avoid naviga-
tion interruption or precision deficiency caused by factors such as field-of-view obstruction or flight
height limitation of a single UAV sensor and achieve large-area group positioning and navigation in
complex environments. This paper examines collaborative visual positioning among multiple UAVs
(UAV autonomous positioning and navigation, distributed collaborative measurement fusion under
cluster dynamic topology, and group navigation based on active behavior control and distributed
fusion of multi-source dynamic sensing information). Current research constraints are compared and
appraised, and the most pressing issues to be addressed in the future are anticipated and researched.
Through analysis and discussion, it has been concluded that the integrated employment of the afore-
mentioned methodologies aids in enhancing the cooperative positioning and navigation capabilities
of multiple UAVs during GNSS denial.

Keywords: multi-UAV; absolute positioning; collaborative active navigation; dynamic topology;
distributed fusion

1. Introduction

UAVs have low production costs [1], a longer battery life [2], good concealment [3],
great vitality [4], no worry of casualties [5], simple takeoff and landing [6], good auton-
omy [7], versatility [8], and convenience [9]. They are suitable for doing more demanding
tasks in dangerous environments [5,10]. It has enormous military and civilian use potential.
UAVs may be used in the military [11] for early air warning, reconnaissance and surveil-
lance, communication relay, target attack, electronic countermeasures, and intelligence
acquisition, among other tasks; in civilian applications [12], UAVs may be utilized for mete-
orological observation, terrain survey, urban environment monitoring, artificial rainfall,
forest fire warning, smart agriculture [13] and aerial photography. As the number of appli-
cations for UAVs increases, the performance criteria for UAVs, namely their control and
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positioning performance [14], become more stringent. Existing positioning and navigation
techniques make it difficult for UAVs to operate in dynamic environments [15].

Recently, UAV positioning and navigation rely heavily on location data provided
by GNSS [16]; nevertheless, GNSS signals are extremely weak and susceptible to inter-
ference [17]. In highly occluded outdoor and indoor conditions, GNSS cannot reliably
work and deliver steady speed and location data, thus preventing the drone from flying
correctly. This has led to the development of cutting-edge solutions to complement or
replace satellite navigation in settings devoid of GNSS signals [17]. The vision sensor is
a passive perception sensor that uses external light to detect information about the sur-
rounding environment via images. It has a small size, a low cost, abundant information,
strong positioning autonomy and dependability, and high positioning precision [18]. In
autonomous visual positioning and navigation of UAVs, features are often retrieved or
matched directly based on the brightness value of each pixel in the image to determine
pose changes. Hence, in the majority of light-sensitive conditions, visual-based positioning
technology might be a useful complement to GNSS navigation means.

With the growing number of drone crews and cluster applications, the question of
how to use visual navigation to enhance cluster autonomous navigation capabilities has
also become crucial [18,19]. In complex situations, multi-UAV collaboration can effectively
prevent navigation pauses or insufficient precision caused by obstacles to a single drone’s
sensor vision or flying height restrictions, as well as coordinate positioning and navigation
in a great number of places [19,20]. Several UAV coordination points offer the following
benefits over single drones: (1) can improve visibility and data utilization through the
sharing of space measurement information; (2) in large areas, can reduce the completion
time of tasks by parallel execution, thus improving efficiency; (3) can improve positioning
by increasing their visibility to one another; (4) can increase the probability of successful
positioning through coordinated assignment.

This paper is divided into the following sections: First, an overview of absolute
vision autonomous positioning and navigation technology based on UAVs is provided
in Section 2, followed by a discussion of matching positioning based on the prior map,
cross-view matching, and the application of visual odometry in absolute positioning. In
Section 3, the difficulties and significance of distributed collaborative measurement fusion
methods in UAV cluster applications with a highly dynamic topology are briefly presented.
Then, Section 4 describes how group navigation technology based on active behavior
control can provide rich fusion information for UAV cluster research and implementation.
Afterward, Section 5 discusses and examines the primary approaches to distributed fusion
of existing multi-source dynamic perception data. In Section 6, the unresolved challenges
in the existing research are presented, and future research work is reviewed and proposed.
Finally, the research conclusions are summarized in Section 7.

2. Autonomous Localization and Navigation of Vision Multi-Airborne Vehicles

The research on autonomous intelligent positioning and navigation for UAVs began
in college laboratories, based mainly on visual SLAM technology. The GRASP Laboratory
at the University of Pennsylvania in the United States has implemented multi-sensor infor-
mation fusion for unmanned aerial vehicles, achieving interior and outdoor environment
perception as well as precise positioning and modeling [21]. The Computer Science and
Artificial Intelligence Laboratory (CSAIL) of the Massachusetts Institute of Technology
has conducted research on mobile robot navigation and environmental perception [22].
The Institute of Dynamic Systems and Control of the Federal Polytechnic University of
Zurich, Switzerland, studies algorithms such as indoor precise positioning and environ-
ment reconstruction for multi-rotor UAVs. The Computer Vision Research Laboratory of
the Munich University of Technology in Germany has conducted research on the vision
SLAM algorithm and 3D environment reconstruction of multi-rotor UAVs [23].

Many researchers were also concerned with the vision-based SLAM method of multi-
UAV cooperation earlier. Nemra et al. [24] of the University of Cranfield, UK, proposed a
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SLAM robust algorithm to achieve multi-UAV cooperation. In this approach, each UAV
is outfitted with an IMU and stereo camera system, the SLAM algorithm is conducted on
each UAV, and the data are filtered by the H∞ nonlinear controller. Simulation findings
reveal that by evaluating the uncertainty of the feature and employing the closed-loop
detection approach of revisiting the feature, the algorithm increases the position estimate
of the xyz-axis and the map feature estimation compared to a single UAV. Loiano et al. [25]
of the University of Pennsylvania proposed a multi-MAV (Micro Air Vehicle) collabora-
tive vision positioning and mapping method using IMU and RGB-D sensors, which can
provide dense and sparse maps at the same time. On the one hand, the monocular vision
mileage calculation method is used to process the positioning task, and on the other hand,
the depth data are used to solve the scale problem of monocular odometry, effectively
breaking the bottleneck of a large amount of computation of 3D RGB-D collaborative vision
SLAM. However, merging the map into the global coordinate system can effectively avoid
the over-overlapping problem when multiple aircraft information is transmitted to the
ground station.

Based on the same methodology, reference [26] utilized a collaborative stereo camera
to deliver positional data for an aircraft fleet. Each aircraft was equipped with a monocular
camera, an IMU, and a sonar sensor, and the formation was controlled to maximize the
overlap of the field of view. However, this strategy must take into account the redundancy
of optical sensors and the difficulty in calculating load distribution due to the increase in
aircraft. Wang et al. [27] of the National University of Singapore proposed a comprehensive
set of indoor UAV navigation systems based on visual optical flow and laser SLAM for the
vision SLAM approach based on multi-sensor fusion technology. Its core concept was to
fuse the UAV-mounted IMU navigation elements, the downward phase machine, and the
laser scanning range finder data in order to accurately predict the UAV’s speed and position.
Bryson [28] of the University of Sydney, Australia, and Kim [29] of the National University
of Australia proposed a visual SLAM algorithm for high-speed aircraft based on the fusion
of EKF inertial and visual data. Under the conditions of a limited flight path and continuous
feature observation, the simulation results indicate that the visual SLAM algorithm can
successfully converge the positioning error and achieve greater accuracy. However, when
the trajectory is large and the received feature observation is not continuous enough, the
consistency of the algorithm becomes poor. This is mostly due to the fact that positional
uncertainty and error accumulation violate the linear assumption of EKF. Hence, the issue
of missing features in straight and horizontal flight, as well as the consistency of the SLAM
algorithm, must be addressed further.

In addition, some experts and scholars have focused on the issue of combining UAVs
with artificial intelligence technology, such as Gandhi et al. [30] from Carnegie Mellon
University in the United States, aiming at AR Drone 2.0 UAV. The self-supervised learning
method [31] was used to conduct 40 h training on the images obtained from safe flight
and impact, respectively, by using a convolutional neural network, thereby realizing tasks
such as UAV path planning and UAV obstacle avoidance. The Reliable Flight Control
Research Group of the Beijing University of Aeronautics and Astronautics employed an
AR Drone equipped with a monocular camera to perform research on information fusion
algorithms and realize robust attitude estimation [32]. Zou et al. of Shanghai Jiao Tong
University proposed Struct-SLAM based on line characteristics [33] and Co-SLAM based
on multi-camera collaboration [34]. Shen et al., Hong Kong University of Science and
Technology, proposed the VMs-Mono and MVDepthNet [35] algorithms for monocular
depth estimation, with the intention of achieving the merger of visual SLAM and IMU
for aircraft.

It can be seen that experts and scholars have performed a considerable amount of study
and investigation on the application of visual SLAM systems in the field of multi-rotor
UAVs, and that open-source systems are increasingly becoming an important factor in the
rapid development of visual autonomous intelligent positioning and navigation technology.
Generally, however, the majority of research conclusions and experiments take place in
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relatively ideal laboratory settings. In engineering fields, there are still several additional
challenges to be solved, such as feature extraction in highly complex surroundings with no
texture, 3D environment reconstruction of large scenes, algorithms that care for accuracy
and timeliness, and stability of algorithms in high-speed motion. It is still a formidable
issue for both local and international scholars and researchers.

2.1. Image Matching Based on Prior Map

In recent years, vision-based and vision-assisted positioning have emerged as the most
significant alternatives to or complements of GNSS-INS fusion. The field of vision-based
UAV positioning is comprised of two main strategies: relative visual positioning and
absolute visual positioning. The method of relative visual positioning is also known as
frame-to-frame positioning, whereas the approach of absolute visual positioning is also
known as frame-to-reference positioning. The most challenging aspect of vision-based
positioning is that it must examine a substantial amount of information in real time, and
the comprehension and analysis of this data are quite sophisticated.

The key challenge of relative visual positioning is eliminating the error accumulation
issue, commonly known as time drift. Drift is the cumulative error caused by generating
fresh estimates using recursive estimation. If the accuracy of the current estimate depends
on the accuracy of the previous estimate, the error in the previous estimate will affect the
accuracy of the current estimate. Focusing on the fundamental aspect of the cumulative
error of relative visual positioning, academics have performed a considerable amount of
study, such as using the inertial data of inertial navigation devices and visual odometry
tightly coupled to form very accurate visual-inertial odometry [36–38], which can solve the
needs of most UAV positioning, but these methods have not answered the key problem
of error accumulation, and further studies are necessary. Absolute visual positioning has
remarkable anti-drift capabilities. The absolute visual positioning approach generally relies
on an existing data set (reference data) corrected by an accurate geographical reference to
compare the similarity of the current frame to a previously stored dataset (reference data)
and then completes the UAV’s unique positioning. The majority of the reference data [39]
are treated with orthophoto correction. The reference data might be made up of loose
satellite image sets or merged satellite images. Nowadays, there are a rapidly increasing
number of free images (such as Google EarthTM [40]) and geographic information systems
(GIS) (ArcGISTM [41]), which encourages the rapid development of absolute positioning
techniques. The pre-flight UAV image dataset is an alternative source of reference data.
The airborne GNSS geolocation [42–45] must be collected simultaneously with captured
images. Absolute visual positioning requires reliable GNSS data during data collection,
whereas subsequent real-time positioning is independent of GNSS. Template matching and
character matching are the two commonly utilized approaches for absolute positioning on
drones based on vision.

2.1.1. UAV Location Based on Template Matching

Template matching is also known as direct or dense matching in the image matching
and image registration fields [46,47]. In the research on absolute visual positioning, several
investigators have explored numerous different template-matching-based approaches.
They formulate the positioning issue as a template-matching problem and search for the
corresponding template in the base map based on the current image of the UAV to fulfill
the positioning. The UAV positioning method is proposed based on template matching
and employs image patch comparison operators (such as the sum of square deviations) to
compare two image patches and estimate their similarity measures. Figure 1 illustrates the
visual positioning diagram for UAV aerial image matching with a reference satellite image
template. Similarity measurement is comparatively expensive to compute, which is the
primary shortcoming of template matching.
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Dalen et al. [48] proposed a method for estimating the absolute position of an un-
manned aerial vehicle [49] using normalized cross-correlation. Using normalized cross-
correlation in the probability density function [50] of the particle filter framework, normal-
ized cross-correlation is employed to align the dense images between the UAV image and
the Bing MapsTM [51] reference image. Utilizing absolute position estimation to enhance
or expand the SLAM navigation system [52] is the purpose of this research. Once the
conditions have been met, the estimated positioning and variance will be embedded in the
SLAM navigation system’s EKF [53] measurement update. This contribution was tested in
the open area using a GTMax helicopter [54], and the study area measured 90 m × 90 m.
The maximum position error between differential GPS position estimation and this method
is 12.5 m at 100 m. Yol et al. [55] employed mutual information as a measure of similarity of
position. Mutual information is a measure of dependence between two signals derived from
information theory. In order to accomplish UAV positioning, the magnitude of data shared
by two images [56,57] is evaluated using mutual information. Mutual information is more
difficult to compute than the sum of square deviations and normalized cross-correlation,
but it has larger advantages when comparing local and global differences between images.
For testing, the UAV traveled 695 m at a height of 150 m. The results demonstrate that
the root mean square error in each direction of longitude, latitude and height is 6.56 m,
8.02 m, and 7.44 m, respectively. Wan et al. [58] proposed an illumination-invariant phase
correlation-based positioning system [59]. Phase correlation is a method for matching
templates based on the Fourier translation capabilities. It has been demonstrated through
studies and experiments that the phase correlation algorithm is intrinsically insensitive
to the sun’s position-related changes in illumination. The paper then proposes a phase
correlation-based absolute vision positioning approach for satellite images. Theoretically, if
the image to be positioned overlaps the reference image by more than one-fourth, only one
round of the phase correlation method is necessary to position the UAV. To achieve robust
positioning, the research employs the sliding window scanning algorithm, owing to the
fact that the image overlap may be extremely small. On an unknown flight path at a height
of 350 m, the normalized cross-correlation, mutual information, and phase correlation
positioning algorithms were evaluated. According to the estimates, the resolution of the
image is around 6 cm. The results of the experiment indicate that the average error of phase
correlation is 1.31 m, whereas the average error of normalized cross-correlation is 2.19 m,
and the average error of mutual information is 3.08 m, exemplifying the superiority of
phase correlation.

Patel [60] proposed a novel method for geolocation based on the work of Yol and
others [55]. The paper proposes an innovative positioning method based on the normalized
information distance obtained from measuring mutual information similarity [61]. The
normalized information distance does not depend on the degree of overlap between
images, unlike mutual information. Hence, normalized information distance is more
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universal for positioning applications. Tests demonstrate that the normalized information
distance method can provide grid search results with the same accuracy levels as mutual
information while requiring less computation. Using the VT&R (vision-based autonomous
route following system) architecture, Warren et al. [45] employ visual odometry for absolute
positioning. The hypothesis that there is no rotation shift between the UAV frame and the
reference image is a limitation of this work. The UAV travels 1132 m in the height range
of 36 to 42 m with just an average root mean square error of 1.6 m in longitude, 0.88 m in
latitude, and 1.17 m in altitude.

2.1.2. UAV Location Based on Feature Matching

In UAV visual positioning applications, feature matching, also known as indirect
matching, can efficiently replace template matching. The methods involved in feature
matching and location include feature point detection and descriptor extraction. Generally,
corner detectors, such as the highly regarded Harris [62] and FAST [63,64] detectors, are
utilized for feature point detection. Feature point detection seeks to identify salient regions
that are simple to recognize in two completely independent detection iterations on different
images of the same geographical area. The images utilized for feature point detection
may differ greatly in terms of illumination, scale, rotation, and perspective. In descriptor
extraction, feature vectors are extracted from the immediately surrounding feature points.
Widely used techniques for matching features include the gradient histogram based on
the SIFT feature [65] and the binary test based on the BRIEF feature [66]. The purpose
of feature matching is to generate a descriptor that matches several feature points using
metrics such as Euclidean distance or Markov distance. Figure 2 is an illustration of feature
point matching between UAV and satellite images.
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The work of Seema et al. [67] and Saranya et al. [68] is extremely similar. The UAV
image is registered to the global reference map by comparing the features of the combi-
nation of normalized cross-correlation and random sample consensus [69] and SURF [70].
Normalized cross-correlation template matching involves initial edge detection on UAV
and reference map images. On each UAV image, the normalized cross-correlation method is
employed. The position of the UAV image in the reference map corresponds to the greatest
response in the reference map. For feature point matching, the SURF feature is extracted
from the UAV image and reference map. The random sample consensus algorithm is
used to eliminate match outliers. Computing the geometric transformation between the
remaining feature matching points restored the position of the UAV image within the
reference map. Normalized cross-correlation seems to have a lower time complexity than
random sample consensus, but it is very vulnerable to scale change, rotation, noise, and
ambiguity. This experiment demonstrates two disadvantages of the random sample con-
sensus approach using SURF features: the required minimum number of features and the
non-constant feature extraction time. Shan et al. [71] proposed a framework for positioning
that combines a directional gradient histogram [72], particle filter, and optical flow [73]. The
initial step in localization is to initialize the required global localization for the particle filter.
To avoid a complex sliding window search, the correlation filter based on the 2D Fourier
transform [74] is employed to obtain the global position confidence map. In the particle
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filter propagation process, the author employs optical flow rather than a typical motion
system. However, the assumption of the optical flow approach is that the rotation motion
and height estimation of the IMU are available, as the optical flow method requires these
estimations to compute the translation between frames. At an experimental environment of
approximately 40 × 225 m, the UAV is being evaluated in real-time. The author contrasts
the proposed scheme with the optical flow method alone. The root mean square error for
the particle filter approach is 6.77 m, while the error for the optical flow method by itself is
169.19 m.

Chiu et al. [75] proposed a positioning and navigation method in a GPS-blocked
environment based on the combination of IMU and geographic image registration results.
In this method, the aircraft state was estimated using a fixed-length sliding window with
a constant calculation time. The authors described two stages for state estimation: in the
first step, the feature classes of an unmanned aerial vehicle (UAV) image are matched
with a 2D reference map derived from a 3D terrain model by another subsystem. The
second phase tracks the features frame by frame, extends the first step’s matching process,
and enables the 3D absolute position information to propagate frame by frame, which
significantly increases the accuracy of the attitude estimate. In two large outdoor scenes,
when comparing the state estimation results of the two steps, the root-mean-square errors
of the 2D-3D joint matching approach are 13.98 and 10.52 m, while frame-by-frame tracking
features reduce these mistakes to 9.83 and 9.35 m, respectively. Mantelli et al. [76] designed
a 4-DOF absolute positioning system using satellite images. The system uses a down-
looking monocular camera, assuming that the roll angle and pitch angle are close to zero,
and uses the abBREIF descriptor [66] to match the UAV image with the satellite map.
Using the abBRIEF descriptor, the author randomly selects a fixed number of pixel pairs on
the entire image, generates a global descriptor for each image, and allows to skip corner
detection, which greatly reduces the calculation time. The positioning system has been
evaluated on three tracks, with the longest track showing an average error of 17.78 m.
Masselli et al. [77] proposed a method based on terrain classification and a particle filter.
This method divides terrain patches into four arbitrary categories: grass, bushes, roads,
and buildings. Firstly, ORB [78] features are extracted from each cell that defines the grid
on the image; then, these descriptors are classified using a random forest model [79]. The
author applies the same terrain classification method to estimate the UAV position on
the UAV image, takes the average position of 15 particles as the estimated position of the
UAV, and averages the estimated position in the last four frames to reduce the impact of
noise. This technique employs only visual representations for position estimation without
IMU data at 60 × 100 m in an outdoor environment, and the average position estimation
error was 9.5 m. Shan and Charan [80] proposed a method for detecting, extracting,
and matching UAV images and reference map features simultaneously. This method
employs maximum self-similarity for detecting feature points [81] and local self-similarity
for extracting descriptors [82]. This method includes constructing a reference map from
Google MapsTM, extracting feature points, and utilizing the optical flow approach to limit
the search region of the reference map. Then, the feature points are matched within the
sliding window of the region surrounding the optical flow method’s projected position.
Then, the sum of Euclidean distances between matching feature point descriptors for each
possible sliding window is calculated. The UAV’s location corresponds to the window with
the smallest total. After UAV flight verification, the flight route comparison map reveals
that the positioning result is extremely close to GPS positioning and that its positioning
accuracy is significantly higher than that of the optical flow method alone.

In summary, the existing methods for the UAV’s positioning challenge in the circum-
stance of satellite positioning system denial primarily rely on the visual image and the
airborne reference map to match the scene and obtain the UAV’s absolute position informa-
tion. However, there are differences in height, time, and perspective between the reference
image and the real-time acquisition information of the UAV. As a result, the corresponding
relationship between the image’s features will be destroyed, making it difficult for existing
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methods to obtain the correct positioning of the UAVs in a complex real-world environment.
To complete the accurate positioning of the UAVs in a complex real-world environment, it
is essential to look into a highly reliable cross-view matching strategy.

2.2. Cross-View Matching

Cross-view image matching [83–88] is the retrieval of images from several platforms
with the highest similarity. Mostly, it is essential to estimate the geographical position of
an image—using cross-perspective geographical location is a potential solution. Cross-
view geographic positioning research was originally performed employing ground images
(front view) and satellite images (vertical view) [89–95]. The ground view is nearly per-
pendicular to the horizon, whereas the satellite view is nearly parallel. Thus, cross-view
geographical location remains a challenging undertaking. Compared with the traditional
ground view image, the UAV view image encounters fewer obstacles and provides a true
oblique viewpoint with a visual angle of close to 45 degrees. The oblique view is closer
to the vertical view than the front view, which is more suitable for cross-view geographic
positioning. Therefore, in order to make up for the shortcomings of the existing meth-
ods, Zheng et al. [96] introduced the UAV view into the cross-view matching problem by
matching the UAV image with the satellite image. Furthermore, it offers two additional
applications: (1) UAV positioning, i.e., given the UAV view image, search the satellite candi-
date image for the same positioning image, and (2) UAV navigation, i.e., given the satellite
view image, find the most relevant UAV view image location that it passes. Unfortunately,
the algorithm for matching UAV views (oblique views) and satellite views (vertical views)
remains in its infancy.

Currently, the majority of existing approaches for the aforementioned two applications
solely explore the feature representation based on image content, neglecting the spatial
correlation between UAV and satellite images. Zheng et al. [96] utilized cross-view image
retrieval as a classification problem, introduced the third platform’s data set and optimized
the network using the loss function. Wang et al. [97] proposed a local pattern network (LPN)
that employs a feature-level partitioning approach for end-to-end context information
learning. Ding et al. [98] proposed a position classification matching (LCM) method to
address the issue of unbalanced UAV and satellite image input samples. There is no explicit
view conversion method for the input image, and these three algorithms directly extract the
view-invariant features. Thus, reference [99] applies the perspective conversion approach
to the input image, offering a novel concept for UAV navigation and positioning. Strong
spatial significant correlation between the target’s position in the satellite image and its
position in the UAV image. By analyzing the scene’s geometric structure and employing
perspective projection transformation, the ambiguity of UAV satellite transverse image
matching can be significantly minimized.

In contrast to the conventional method [96–98], the method proposed in the litera-
ture [99] focuses on establishing the spatial correspondence between the UAV field and the
satellite field and then learning the feature correspondence from the two roughly matched
fields. In theory, a deep neural network might very well learn any function transformation;
nonetheless, the learning process will be significantly burdened by this capability. The
two domains are registered based on their geometric connection to facilitate network con-
vergence and lower the learning expense. As shown in Figure 3, a perspective projection
transformation is applied to the UAV image in order to estimate its similarity to the satellite
image. The perspective transformation does not take scene information into account, and
the real correspondence between two distinct domains is far more complex than the simple
perspective transformation. In order to address these issues, the satellite images with
realistic appearance and content preservation are synthesized from the corresponding UAV
view in hopes of addressing the large visual angle difference between the two fields and
achieving geographical positioning.
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The main challenge of geographic positioning based on cross-view images is that
the appearance and perspective of view image pairings are too distinctive [100–102]. The
approach of directly extracting perspective features [102–104] does not employ the view
conversion method explicitly to the input image. The viewpoint transformation approach
described in the literature [105–107] is applied to the polar coordinate transformation from
satellite view to ground view (which can bridge the gap between different visual domains,
but the resulting image is very distinct from the real image). The second option is to only
use CGAN, which can make more realistic images but is not very motivated to do so and
cannot remember what was in the image it was given.

Absolute matching positioning based on a prior map and matching positioning based
on cross perspective share a common weakness, namely that because of global positioning,
image processing requires a large amount of computation, and real-time positioning results
cannot be guaranteed for demanding applications that require frequent updates of position
information. Consider integrating the image information with data from the aerial Inertial
Measurement Unit (IMU) to produce visual-inertial odometry (VIO) to ensure that the pose
information is updated in real-time.

2.3. Visual Odometry

Visual odometry is a positioning approach that analyzes the self-motion difference
by comparing the current frame observed by the UAV to the prior frames. Generally,
position and pose are estimated using optical flow analysis [108,109]. To obtain a current
attitude estimation, the visual odometry adds the estimated differential attitude vector
to the previous attitude estimation. Thus, the feature of visual odometry is that just the
current and previous observation data are used for each position estimate.

The visual odometry is not limited to the relative visual positioning method but can
also be extended to the absolute visual positioning system built using the data in the pre-
flight. In this method, visual odometry is used to collect the data after geographic location
registration to form a database for later relocation. The absolute positioning method of
visual odometry is very different from other methods. Except for the work mentioned by
Goforth and Lucey [110], the existing methods do not rely on continuous frame comparison.
Among the existing visual odometry methods, it is necessary to compare the UAV image
with the attitude map, not just the image features, so it faces completely different challenges,
which promotes the generation of the absolute visual odometry positioning method. The
research work of Goforth and Lucey [110] is closer to the deep learning method. Warren
et al. [45] proposed a positioning method. After the GPS positioning fails, the UAV can
return to its initial position. The author improved the VT&R path-tracking algorithm for
unmanned aerial vehicles. When the unmanned aerial vehicle can obtain stable and contin-
uous GPS positioning, visual odometry and GPS navigation should be used to build the
relative attitude map. The visual odometry system uses SURF [70] features, then eliminates
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the attitude outliers and uses the maximum likelihood estimation sample consensus to
obtain the transformation of the last key frame [111]. Use the simultaneous trajectory
estimation and mapping packet adjustment engine [112] to optimize the conversion. Then,
if the key frame changes significantly compared with the previous key frame, add it to
the attitude map and adjust the window bundle on the last 5 to 10 vertices in the figure
to form a deadlock path. In the return phase (without GPS), the visual odometry and
visual matching are parallel to match the 3D map. In this stage, the previous deadlock
path can be used to reduce the number of matches. MLESAC and STEAM are used in
the visual odometry for visual matching processing to obtain the final transformation
relative to the attitude map. Then, the estimated location information is input into the path
planning system to maintain the tracking starting point. The positioning test was carried
out at 140 × 160 m in the testing facility, and the positioning error (y − z) was 1.5 m with a
maximum turning error of 3.6 m.

After introducing the technology and approach for visual positioning of a single UAV,
we have to investigate multi-UAV collaborative positioning. To enhance the measurement
abundance of cluster UAVs, relative measurement is utilized by the UAVs, and inter-aircraft
data are expanded with angle measurement or range data with the goal of achieving
autonomous flying of the formation. As UAVs exist as a whole, inter-aircraft measurement
must consider the topological connection between UAV clusters. In Section 3, the relative
measurement between UAV clusters based on dynamic topology will be displayed.

3. Distributed Collaborative Measurement Fusion under Cluster Dynamic Topology

State estimation is the essential technology in sensor network applications. In order
to meet the actual requirements of numerous applications, all nodes or a subset of nodes
in a distributed sensor network must implement accurate and consistent estimation and
prediction of the target state of interest. This enables the formation of unified and clear
situation information for each sensor, which improves the success probability and efficiency
of network task execution in a dynamically changing monitoring environment. It is an
efficient estimation fusion method in distributed sensor networks for implementing con-
sistent state estimation of targets via node cooperation. The classic KCF algorithm [113]
was proposed in 2007 to solve the issue of consistent state estimation in network topology.
The KCF algorithm used the average consistency method to synthesize the state estimation
between neighboring nodes, and the state estimation of all nodes had the same consistent
rate factor in the summation formula. In 2014, [114] proposed an information filter based on
square root volume Kalman to solve the problem of consistent state estimation in nonlinear
systems, achieving a substantial increase in estimation accuracy. In 2015, [115] introduced a
distributed steady-state filter whose structure consists of the measurement update term
from adjacent nodes and the consistency term about state estimation, thereby transforming
the calculation of filter gain into a convex optimization problem. The 2016 publication [116]
proposed a recursive information uniform filter for decentralized dynamic state estimation,
but did not take into consideration the topology of the communication network; another
study [117] proposed an insensitive Kalman filter algorithm based on weighted average
consistency and proved the lower bound of estimation error; In 2017, [118] analyzed the
nonlinear state estimation problem of unknown measurement noise statistics and proposed
a variational Bayesian consistent volume filtering method; another study [119] developed
a network channel model suitable for dense deployment and introduced a new class of
distributed weighted consistency strategies, which can realize distributed learning of local
observation to achieve network positioning. [120] explored the issue of consistency-based
distributed estimating of linear time-invariant systems on sensor networks and proposed
a novel code-decode scheme (EDS), shown in Figure 4. This scheme is composed of two
pairs of innovative encoders/decoders and estimation encoders/decoders, which are used
to compress data on each sensor to adapt to bandwidth-restricted networks. Designed is a
consistency estimator based on EDS. The necessary and sufficient conditions for maintain-
ing the dynamic convergence of the state estimate error are established, as are the bounds
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of the transmission data size. Three optimization algorithms are presented for the quickest
convergence of error dynamics, the minimizing of estimator gain, and the tradeoff between
convergence speed and estimation error.
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The authors of [121] analyzed the consistency state estimation framework of dis-
tributed sensor networks, proposed a four-level functional model, described the main
process of consistency state estimation technology from the perspective of information
processing, interaction, and fusion, and designed an adaptive weight allocation method
based on dynamic topology information. On this basis, they describe an adaptive weighted
Kalman consistency filter (AW-KCF) algorithm. The authors of [122] proposed a fast-
distributed multi-model (FDMM) nonlinear estimating approach for satellites in an effort
to enhance the stability and accuracy of tracking and lower the processing burden. This
algorithm employs a novel architecture for distributed multi-model fusion, as shown in
Figure 5. At first, each satellite must perform local filtering based on its own model, and
the corresponding fusion factor generated from the Wasserstein distance must still be
computed for each local estimation; Then, each satellite performs a multi-model fusion
of the received estimation based on the minimum weighted Kullbac–Leibler divergence;
Ultimately, each satellite updates its state estimation based on the consistency agreement.

Drones 2023, 7, x FOR PEER REVIEW 12 of 36 
 

consistency, which can converge globally and has broad applicability in general topology. 
Global optimum convergence requires several iterative communications, which is a dis-
advantage. In the fusion strategy of the gossip protocol, each sensor node randomly or 
deterministically communicates with one of its connected neighbors iteratively, and the 
state fusion is also based on the weighted average consistency, which can be globally con-
vergent, and the general topology is extremely relevant. However, countless (preferably 
infinite) iterations are required. In the diffusion fusion strategy, each sensor node com-
municates with all connected neighbors once and performs linear combination weighted 
fusion by using diffusion convex combination of local estimation. The diffusion fusion 
estimation is a fully distributed estimation with low communication load and no topology 
limitations; however, there is no global convergence [124]. The most current application 
of distributed estimating is shown in Figure 7. 

 
Figure 5. FDMM-based distributed fusion framework [122]. 

 
Figure 6. Schematic diagram of dynamic topology. 

Figure 5. FDMM-based distributed fusion framework [122].



Drones 2023, 7, 261 12 of 35

In [123], the estimation problem is simplified into a tiny local sub-problem that re-
sponds to the time-varying communication topology via the self-organization process
of the local estimation node, as shown in Figure 6 for the topological structure diagram.
Relying on the communication mode between local sensor nodes and neighboring nodes,
the existing literature proposes four sample distributed fusion strategies: sequential fusion,
consensus protocol, gossip protocol, and diffusion fusion strategy. In sequential fusion, two
sensors communicate with each other sequentially and repeatedly combine two sensors in
sequence. The fusion strategy is simple and straightforward, even though the topologies
must be connected sequentially. Each node is capable of observing the target. Each sensor
node in the consensus protocol fusion method communicates iteratively with all of its
linked neighbors and carries out state fusion based on weighted average consistency, which
can converge globally and has broad applicability in general topology. Global optimum
convergence requires several iterative communications, which is a disadvantage. In the
fusion strategy of the gossip protocol, each sensor node randomly or deterministically
communicates with one of its connected neighbors iteratively, and the state fusion is also
based on the weighted average consistency, which can be globally convergent, and the
general topology is extremely relevant. However, countless (preferably infinite) iterations
are required. In the diffusion fusion strategy, each sensor node communicates with all
connected neighbors once and performs linear combination weighted fusion by using
diffusion convex combination of local estimation. The diffusion fusion estimation is a fully
distributed estimation with low communication load and no topology limitations; however,
there is no global convergence [124]. The most current application of distributed estimating
is shown in Figure 7.

Drones 2023, 7, x FOR PEER REVIEW 12 of 36 
 

two sensors in sequence. The fusion strategy is simple and straightforward, even though 

the topologies must be connected sequentially. Each node is capable of observing the 

target. Each sensor node in the consensus protocol fusion method communicates 

iteratively with all of its linked neighbors and carries out state fusion based on weighted 

average consistency, which can converge globally and has broad applicability in general 

topology. Global optimum convergence requires several iterative communications, which 

is a disadvantage. In the fusion strategy of the gossip protocol, each sensor node randomly 

or deterministically communicates with one of its connected neighbors iteratively, and the 

state fusion is also based on the weighted average consistency, which can be globally 

convergent, and the general topology is extremely relevant. However, countless 

(preferably infinite) iterations are required. In the diffusion fusion strategy, each sensor 

node communicates with all connected neighbors once and performs linear combination 

weighted fusion by using diffusion convex combination of local estimation. The diffusion 

fusion estimation is a fully distributed estimation with low communication load and no 

topology limitations; however, there is no global convergence [124]. The most current 

application of distributed estimating is shown in Figure 7. 

 

Figure 5. FDMM-based distributed fusion framework [122]. 

 

Figure 6. Schematic diagram of dynamic topology. Figure 6. Schematic diagram of dynamic topology.

Traditional measurement is a passive measurement, which is a form of passive recep-
tion of the geometry, color, or texture information of other agents within the field of vision
or measurement range. Until now, passive measurement or detection of other agents has
not been beneficial to unified cluster planning and control. To meet the comprehensive
application of group intelligent positioning and navigation technology, group navigation
technology based on active behavior control is absolutely necessary. Section 4 would then
introduce the group navigation technology based on active behavior control.
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4. Group Navigation Based on Active Behavior Control

The active vision method is the most widely used in group positioning and navigation
technology based on active control. Active robot vision [125] refers to the capacity of a robot
to actively alter its vision sensor to get meaningful information for different activities. In
UAV positioning and navigation, view planning [126–128], sensor planning [129–131], and
next-best view (NBV) determination [132–134] are key components of active vision. They
allow the UAV vision system to process and analyze current information and gradually
cover or identify moving objects in order to complete positioning and reconstruction (as
shown in Figure 8), whereas, with the updated view A on the left, the new view B on
the right can capture unknown information. Therefore, it is more useful than NBV. View
planning could considerably enhance the effectiveness of UAV systems [135–137]. Sensors
can perceive meaningful data from a single current perspective. But still, because of the
working range and field of view of each sensor, a single view provides limited information.
In addition, noise and error cannot be avoided during the conversion of analog signals
to digital data. Several perspectives can provide sufficient information, and they can also
filter out average noise for more accurate data processing. The optimal planning of robot
view sequences has been extensively explored [135,138,139] in response to the concept of
utilizing multiple viewpoints.
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Given the importance of point-of-view planning in active vision, numerous new
approaches and applications have been proposed. This research has significantly improved
the robot system’s capacity for perception. Vision-based tasks (object reconstruction, scene
exploration, and target tracking), for which robots depend exclusively on continuous visual
information from sensors [140–142], have a great deal to gain from the most sophisticated
view planning algorithm.

The active vision workflow shown in Figure 9 comprises view planning, motion
planning, sensor scanning, and map update. Four components are systematically connected
to produce a closed circuit. This closed loop is performed by the UAV actuator until the
specified termination conditions are satisfied. In this cycle, a random view is selected
to initialize the robot as a valid view. The termination condition varies depending on
the target, such as the scanning range of the object’s surface, the uncertainty category
recognition of the object, and the change in the workspace’s entropy.
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4.1. Scene Reconstruction

The reconstruction of the working scene is an integral component of the cluster’s UAV
positioning and navigation technology. While measuring the object, the UAV reconstructs
the scene. This is the most fundamental SLAM process, which improves its positioning
accuracy by reconstructing the scene. In contrast to the target reconstruction of one or more
objects in a finite volume, scene reconstruction requires a model of the entire 3D scene
within the target volume. Therefore, the UAV employed to reconstruct a scene must be able
to drive independently to every position within the scene. During the scanning procedure,
the robot’s position must be known [143,144]. The UAV can then plan its path and sensor
view based on its position and the existing local model of the scene in order to correctly
scan the scene. The UAV system generates the scene reconstruction view based on criteria
such as information gain, mobile cost, and reconstruction quality [141,145]. In addition to
employing mobile robots on the ground for scene reconstruction [146–148], aerial robot
platforms may also be employed [149]. Bircher et al. [149] proposed a method for view
planning in MAV scene space exploration. This approach samples the view as nodes in a
random tree using a tree construction algorithm such as RRT [150] or RRT-STAR [151]. NBV
is computed by evaluating the unidentified information gained from each tree branch. In
each iteration of view planning, the initial edge of the optimal branch is employed to scan
and update the scene. MAV performs the iterative procedure in reverse until the horizon
has been detected. Simulated and physical experiments were carried out simultaneously to
verify that the view planner can process complex space in real-time on the MAV platform
with limited computational resources.
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Conventional active vision systems enhance scene knowledge by acquiring 2D scene
maps [146,147] or 3D scan data [148]. By performing an offline analysis of the obtained
data, the scene’s object model is reconstructed in its entirety. Xu et al. [152] proposed
an online analytical method for scene reconstruction. The first of its kind, the system
combines robot interaction with active verification of object extraction and scene segmen-
tation, enabling object quality reconstruction. On the basis of this system, Xu et al. [153]
reconstructed the scene by employing a 3D shape database to identify objects online, and
target recognition is accomplished by a new recursive network with subnetworks for input
processing, information aggregation, action generation, and next view prediction. During
scene reconstruction, the reconstructed 3D objects are gradually put into the scene to replace
the corresponding object scan. Liu et al. [142] proposed a comprehensive active vision
system that provides target perception guidance for dynamic scene exploration and target
recognition, as opposed to the method of object extraction by physical interaction. The
proposed system began the navigation process by determining which object in the scene
should be designated the target. The system uses multi-class graph cut minimizing for
object segmentation; the target object is chosen based on the database matching degree and
the robot’s traveling cost. The robot next goes to the target object and uses the information
acquired from object perception to planning the NBV for local scanning. After recognizing
and reconstructing the current target object, the robot continues navigation by recognizing
and modeling the next target object. The robot sequentially scans and accesses all scene
objects in order to reconstruct the whole scene model. Experimental results demonstrate
that this strategy is more accurate and effective than the majority of related work. Based
on SUNCG [154] and SCANNET [155] scene data sets, the author conducted simulation
experiments. Mobile robots outfitted with Kinect sensors have additionally been employed
in physical experiments. Experimental results show that the system performs well in terms
of reconstruction quality and efficiency (Figure 10).
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Zheng et al. [156] proposed an original online reconstruction method for active under-
standing of unknown indoor scenes based on semantic segmentation for similar aims. This
method is applied to voxel labeling based on depth learning [157] and employs volume
representation. View planning is a view scoring field that takes into account not only infor-
mation gain but also security, visibility, and mobile cost. Then, the robot path and camera
path are jointly optimized for the neighboring NBV. Dong et al. [141] recently proposed a
multi-robot cooperative reconstruction system. Using several robots simultaneously can
substantially improve the speed of scene reconstruction by minimizing the scanning effort
of each robot while maximizing their aggregate coverage and quality of reconstruction.
In each iteration of view planning, the algorithm decides on the optimal set of views and
assigns each to a certain robot. The assignment view planning procedure can be represented
by several traveling salesman problems (MTSP). This issue recognizes a path for each robot
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such that each task view may be accurately reached once, and the overall travel cost is
minimized. Each robot is required to cross the specified view, as shown in Figure 11.
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View planning employs a single depth image acquired by a depth sensor as the input
for high-quality scene reconstruction [158]. The depth reinforcement learning network
DQN [159] is used to determine the viewpoint sequence required to finish the occlusion
space in the depth image. To compensate for any missing information, complete the
assignment in an iterative manner. Each iteration would choose a new viewpoint to render
a depth image, which is then internally drawn to fill the resulting empty space and re-
projected into 3D space for the next iteration. The entire interior painting employs the
2D interior painting network [160] and SSCNet [154]. Continue these processes until a
complete point cloud of the scene has been established. Compared to the prior scene
completion methods, SSCNet [154] and ScanComplete [161], the proposed approach is
more reliable and exhaustive.

Scene reconstruction and object reconstruction are quite similar from the perspective
of a view planning algorithm. Both of them evaluate the view based on the amount of in-
formation it provides when selecting NBV. The chief concern in scene reconstruction is how
to effectively construct a precise and comprehensive scene model. Object reconstruction
requires high accuracy and requires more object details. However, scene reconstruction is
more complex than object reconstruction, even though all object models in the entire region
must be acquired. For viewpoint planning, the active vision system must process a great
deal of information in order to realize scene reconstruction. In this process, collision and
occlusion-induced uncertainty must be considered. The employment of antenna robots to
analyze large areas [149], object-guided scene reconstruction combined with object recogni-
tion [142], and multi-robot cooperative reconstruction [141] have all been proposed in a
recent survey and are valuable and challenging research topics.

4.2. Attitude Estimation

In the cluster of UAV positioning and navigation systems, the major focus remains
the accurate estimation of its position and attitude. Attitude estimation focuses on how to
accurately find components in a scene using visual data in order to interact with them fur-
ther. Each observation point is deficient in information. Multi-view can provide additional
information for attitude estimation. View planning is used to provide supplemental key
information for matching scene objectives with database models. In order to estimate an
object’s attitude, the system has to not only match the target, but also accurately recover its
position and attitude. Therefore, the number of details required for attitude estimation is
substantially greater than that required for target recognition. Specifically, target recogni-
tion can use features from 2D images to match without depth information, whereas attitude
estimation requires depth information to accurately recover an object’s attitude. Using the
view planning algorithm, the robot system typically finds the key feature points that help
calculate the target attitude.

The estimation of information and the decision-making process in perspective plan-
ning is a typical Markov chain, and each perspective decision represents a state transition.
Eidenberg and Scharinger [162] proposed a partially observable Markov decision process
for effective target recognition and attitude estimation. The system establishes a high-
dimensional Gaussian model of the object’s attitude, deduces its state transition process,
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and evaluates the view based on the change in entropy of the probability distribution. Wu
et al. [163] simultaneously performed target recognition and attitude estimation. The robot
system obtains the initial assumptions of the target and its relative orientation for the scene
model during the initial stage.

Using the preprocessing method described in [164], the input RGB-D point cloud is
segmented into several clusters and filtered to identify candidate clusters that may contain
targets. Then, the cluster’s feature descriptors are extracted (such as SURF [165] and
SIFT [166]). The corresponding relationship between clustering and database is established
by feature matching and consistency matching. The system then uses the correspondence
to estimate the cluster’s attitude, employing singular value decomposition (SVD) [167].
After generating the candidate view of the robot’s current posture, the view that captures
the most matching feature is selected using ray-casting simulation. The process should be
continued until the system can generate a reliable estimate.

Conventional machine learning techniques are critical for tackling attitude uncer-
tainties. Doumanoglou et al. [168] proposed a new framework using active random
forests [169]. This structure is used to address the challenges of classified view plan-
ning, grab point detection, and robot clothing deployment task attitude estimation. Further
work by Doumanoglou et al. [170] addressed the application of Hough Forest [171] for
attitude estimation planning. Hough Forest employs features automatically created by
unsupervised automatic coders and then performs target classification and attitude recog-
nition simultaneously. The new view calculates the information entropy based on the data
contained in the leaf nodes of the Hough forest. NBV using the entropy reduction of the
new view should then be chosen.

In the object’s attitude estimation, mutual obstruction by the target hinders observation
and feature extraction. It is difficult to determine the target attitude in the scene with
extreme occlusion. Sock et al. [172] established an active vision system to estimate the
posture of stacked objects in highly dense and cluttered environments. The system relies
initially on the most sophisticated single target attitude estimator generation hypothesis.
Then, the objective hypothesis to predict the NBV is utilized. Usually, the number of visible
voxels is used to calculate the information entropy, but this metric is not applicable to the 6D
attitude estimation of multiple targets in a dense environment. Consequently, a viewpoint
entropy considering saliency is developed, which can potentially reduce the uncertainty
of attitude estimation. The system uses the potential Hoff-like forest (LHCF) [173] and
sparse automatic encoder to generate the target attitude assumption of the view following
image acquisition. The information acquired from each view is enhanced and processed
for registration and correction. After image acquisition and registration, the system uses
the accumulated point cloud and multiple 6D target assumptions to render candidate
views, calculates information entropy, and chooses the candidate view with the lowest
view entropy as the NBV. During pose estimation, the robot system makes numerous
assumptions about the scene model, which specifies which targets are present in the scene
and what attitude each target has [172]. Based on the current multi-model hypothesis, the
view planner evaluates the reduced uncertainty provided by the new view and selects
NBV [163,170,172]. In the pose estimation, the robot system infers the type of objects in the
scene and accurately recovers their pose. Basic pose estimation involves the extraction of
target features, the matching of features, and the determination of target attitude. Viewpoint
planning must select an appropriate viewpoint to provide a higher quantity of feature
information so that pose estimation may be completed reliably and effectively. Particularly,
machine learning methods such as random forest [169] and automatic encoder [174] are
beneficial for view planning in attitude estimation tasks [168,170,172].

With the advancement of UAV positioning technology and view planning methods,
the application of view planning becomes increasingly applicable and demanding. It is
noteworthy that more and more popular modern technologies, such as machine learning
and deep neural networks, are integrated into view planning. (1) With the rapid growth of
active vision, view planning tasks become more practicable. The research on this subject
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is not limited to laboratories, but has practical applications in many industrial scenarios,
such as manufacturing, home robot services, and autonomous driving. (2) View planning
algorithms will be significantly impacted by the continued development of robotics and
sensors. For instance, robots can provide a broader, more flexible, and more diverse
field of view. In addition to color and depth, the sensor also provides useful information
regarding texture, temperature, and odor for view planning. (3) The ability of an active
vision system to perform many tasks simultaneously merits consideration. Future work
is increasingly inclined to construct more integrated multi-robot systems. For instance, a
robot system utilized for scene exploration must commonly perform object recognition
and reconstruction. Object recognition and attitude evaluation are inseparable. It is
initially expected that an outstanding robot system will be able to perform multiple tasks
simultaneously and that effective cooperation will bring benefits to each task. (4) In active
vision view planning, the application of machine learning and deep learning technologies
will be widely considered. (5) In the multi-robot system, the positioning accuracy of the
multi-robot system may be effectively increased by employing active vision based on the
active behavior of individual members in the UAV cluster, along with the determination of
the motion model (as shown in Figure 12).
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In the UAV cluster, each UAV broadcasts its own active measurement information
and position in real-time while receiving information from other UAVs. Using the relative
measurement between different individuals, the UAVs’ global positioning capability is
enhanced. Nevertheless, considering the load limitation, the UAV sensors may be het-
erogeneous, and the number of UAVs in the field of vision at different times is not fixed,
leading to time-varying observation quantities and the observable data problem, which
makes fusion challenging. In Section 5, the key features and applications of multi-source
dynamic sensing and distributed fusion technology in multi-UAV collaborative positioning
are analyzed and discussed.

5. Distributed Fusion of Multi-Source Dynamic Sensing Information

In distributed cooperative positioning and navigation of clustered UAVs, the fusion
of collected data by multiple UAVs can enhance the positioning accuracy of individual
UAVs; consequently, research on multi-transmitter data fusion is critical. Multi-sensor data
fusion is achieved by combining data from many sensors with model-based predictions
to generate more meaningful and accurate state estimates. Currently, multi-sensor data
fusion is extensively employed in process control and autonomous navigation. Although
centralized fusion can produce optimal solutions in theory, it cannot scale the number
of nodes; that is, as the number of nodes grows, it may or may not be feasible to handle
all sensor measurements at a single terminal due to communication limits and reliability
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requirements. In the distributed fusion architecture [175], multi-source measurement
data are independently processed at each node, and local estimates are required prior to
communication to the central node for fusion. Distributed fusion, on the other hand, is
robust to system failures while offering the virtue of minimal communication costs.

Nonetheless, distributed fusion must take into account the correlation between local
estimates. Due to redundant calculations or the sharing of prior information or data sources,
local estimates may be interdependent, but data received by distributed sensors include a
clear physical relationship between their observed values [176]. In a centralized architecture
where the independence hypothesis holds true, the Kalman filter (KF) [177] calculates an
optimal estimate based on the minimum mean square error. In contrast, in distributed
structures where the independence hypothesis does not hold, filtering without taking cross-
correlation into account may result in divergence due to the mismatch between the mean
and covariance of the fusion process. It remains challenging to estimate cross-correlation
between data sources, particularly in a distributed fusion architecture. Fusion may be
too expensive for large, distributed sensor networks, even when all cross-correlations are
enabled. However, eliminating cross-correlation will result in a more conservative fusion
mean and covariance.

Methods to address the unknown correlation fusion problem in distributed architec-
ture can be categorized into three categories based on their processing techniques. (1) Data
de-correlation: the input data source is de-correlated based on measurement reconstruction
prior to fusion [178] or the straightforward elimination of double calculation [179,180];
(2) Modeling correlation: obtaining fusion solutions based on unknown correlation in-
formation and modeling [181–184]; (3) Ellipsoid method (EM): Under the hypothesis of
bounded cross-correlation, the suboptimal but consistent fusion solution is generated by ap-
proximating the intersection of several data sources without cross-correlation information.

A second concern with sensor fusion is that sensors commonly generate unpredictable
or incorrectly modeled data. Yet, the sensor may provide inconsistent and incorrect data
for a variety of reasons, including sensor failure, sensor noise, and slow failure due to
sensor component failure, among others [185–187]. The fusion of irregular sensor data with
reliable data can result in extremely incorrect results [188]. Hence, inconsistencies must be
identified and eliminated prior to fusing the distributed fusion architecture. Multi-sensor
data fusion with inconsistencies and incorrect sensor data can be roughly categorized
into three groups: (1) Model-based methods: sensor data are compared with reference
to identify and eliminate inconsistencies, which can be obtained through mathematical
models [189,190]; (2) Redundancy-based approaches: multiple sensors provide estimates
of observed quantities, and then inconsistent estimates are identified and eliminated by
consistency checking and majority voting [185]. (3) Fusion-based method: the fusion
covariance is amplified to embrace all the local means and covariances, hence making the
fusion estimation consistent under the pseudo-data [191,192].

Distributed sensor networks cannot match the estimated quality of centralized systems,
but they are more adaptable and tolerant to faults. In distributed architectures, local sensor
estimates might be linked because observations from distributed sensors may be impacted
by the same process noise. Local estimations may be effective due to double counting.
Cross-correlations should be considered by distributed fusion algorithms to maintain
optimality and consistency.

5.1. Fusion under Known Correlations

In distributed estimating, the conditional independence of the estimation is a simplifi-
cation assumption. However, neglecting cross-correlations in distributed structures might
result in inconsistent outputs, which in turn can result in inconsistent outcomes in fusion
methods. By combining known cross-correlations, there are several approaches for state
estimation and fusion. One study [193] presented just one fusion rule that is applicable to
centralized, distributed, and hybrid fusion architectures with complete prior knowledge.
The authors of [194] proposed a fusion approach for discrete multi-rate independent sys-
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tems based on multi-scale theory under the assumption that the sampling ratio between
local estimates is a positive integer. Distributed fusion estimation of asynchronous systems
with correlated noise is studied in [195–197].

Other researchers have also investigated learning-based multi-sensor data fusion meth-
ods [198–203]. The multi-feature fusion method proposed in the literature [200] is applied
to visual recognition in multimedia applications. The authors of [201] presented a neural
network-based framework for the fusion of multi-rate and multi-sensor linear systems.
The framework transforms a multi-rate multi-sensor system into a single multi-sensor
system with the highest sampling rate and efficiently fuses local estimates using neural
networks. In [204,205], neural network-based multi-sensor data fusion was compared to the
traditional method and is demonstrated to offer superior fusion performance. Nevertheless,
the learning-based strategy is limited by the huge amount of training data required.

In a centralized architecture, KF/IF performs at its highest level since the independence
assumption is true. By computing and combining accurate cross-correlations, it is feasible
to achieve optimality in a distributed fusion architecture. In addition, the proposed fusion
method can be utilized independently or cooperatively, depending on the fusion structure
and practical constraints, to address the complex fusion problems.

5.2. Fusion under Unknown Correlation

There are numerous sources of correlation in a distributed architecture that affect the
state estimation and fusion processes. When cross-correlation is absent, the outputs will be
excessively extreme, and the fusion method could diverge. Given the double computation
and lack of internal parameters, it is challenging to estimate the cross-correlation in large-
scale distributed sensor networks with accuracy. Proper management and maintaining
cross-correlations is complex and expensive, and the cost is quadratic with the number
of updates. Thus, it appears that a suboptimal strategy is employed to seek the fusion
solution based on numerous data sources without understanding the real cross-correlation.
Figure 13 shows the distributed fusion classification under an unknown correlation.

Drones 2023, 7, x FOR PEER REVIEW 21 of 36 
 

 
Figure 13. Distributed fusion classification with unknown correlation. 

5.2.1. Data De-Correlation 
Cross-association of data is prevalent in distributed architectures. When the same 

data reaches the fusion node via a distinct or cyclic path, a double count occurs. Literature 
[179,180] proposes an approach for eliminating correlation by deleting duplicate counts. 
The purpose is to parse external measurements from other sensor nodes’ state estimates, 
store them, and employ them to update state estimates. In this way, double-counted data 
are eliminated prior to data merging. This approach presupposes a specific network struc-
ture and eliminates dependencies caused by multiple calculations. The authors of [206] 
propose an approach based on an algorithm derived from graph theory that is appropriate 
to any network topology with variable delay. Nevertheless, this is neither scalable nor 
practical for large sensor networks [207]. In measurement reconstruction [178], system 
noise is artificially modified to eliminate the correlation between measurement sequences. 
At fusion nodes, wireless measurements are reconstructed based on local sensor estima-
tion. This strategy has been employed for tracking in cluttered environments [208], unor-
dered filtering [209], and non-Gaussian distributions with the Gaussian mixture model 
[210]. To correctly reconstruct measurement results, however, external information such 
as Kalman gain, associated weight, and sensor model information must be considered 
[211,212]. Because de-correlation methods rely on empirical knowledge and specialized 
analysis of a particular real system, one‘s fusion performance is compromised. Moreover, 
as the number of sensors grows, these methods become incredibly inefficient and imprac-
tical. 

5.2.2. Modeling Correlation 
Although it is challenging to obtain accurate cross-correlations between local esti-

mates in distributed architectures, the nature of the joint covariance matrix can impose 
some limitations on the cross-correlations that are feasible. In addition, certain applica-
tions can provide prior knowledge and limitations on the degree of correlation, allowing 
someone to infer whether estimates at the local level are strongly or weakly related. The 
cross-correlation is not completely unknown since the estimations provided by several 
sensors are neither completely independent nor completely correlated. Thus, the infor-
mation regarding unknown cross-correlation can be used to enhance the accuracy of fu-
sion solutions under uncertain correlation. 

Reference [182] proposes the closed equation of scalar value fusion and the approxi-
mative solution of vector value fusion based on the uniform distribution correlation coef-
ficient. Through the use of single covariance and constraint correlation coefficients, the 
compact upper bound of the joint covariance matrix from reference [213] is derived. On 
the basis of bounded correlation, the universal approach of bounded covariance expan-
sion (BCINF) [214] with upper and lower cross-correlation bounds is proposed. The model 

Figure 13. Distributed fusion classification with unknown correlation.

5.2.1. Data De-Correlation

Cross-association of data is prevalent in distributed architectures. When the same data
reaches the fusion node via a distinct or cyclic path, a double count occurs. Literature [179,180]
proposes an approach for eliminating correlation by deleting duplicate counts. The pur-
pose is to parse external measurements from other sensor nodes’ state estimates, store
them, and employ them to update state estimates. In this way, double-counted data are
eliminated prior to data merging. This approach presupposes a specific network structure
and eliminates dependencies caused by multiple calculations. The authors of [206] propose
an approach based on an algorithm derived from graph theory that is appropriate to any
network topology with variable delay. Nevertheless, this is neither scalable nor practi-
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cal for large sensor networks [207]. In measurement reconstruction [178], system noise
is artificially modified to eliminate the correlation between measurement sequences. At
fusion nodes, wireless measurements are reconstructed based on local sensor estimation.
This strategy has been employed for tracking in cluttered environments [208], unordered
filtering [209], and non-Gaussian distributions with the Gaussian mixture model [210]. To
correctly reconstruct measurement results, however, external information such as Kalman
gain, associated weight, and sensor model information must be considered [211,212]. Be-
cause de-correlation methods rely on empirical knowledge and specialized analysis of a
particular real system, one‘s fusion performance is compromised. Moreover, as the number
of sensors grows, these methods become incredibly inefficient and impractical.

5.2.2. Modeling Correlation

Although it is challenging to obtain accurate cross-correlations between local estimates
in distributed architectures, the nature of the joint covariance matrix can impose some
limitations on the cross-correlations that are feasible. In addition, certain applications can
provide prior knowledge and limitations on the degree of correlation, allowing someone
to infer whether estimates at the local level are strongly or weakly related. The cross-
correlation is not completely unknown since the estimations provided by several sensors are
neither completely independent nor completely correlated. Thus, the information regarding
unknown cross-correlation can be used to enhance the accuracy of fusion solutions under
uncertain correlation.

Reference [182] proposes the closed equation of scalar value fusion and the approx-
imative solution of vector value fusion based on the uniform distribution correlation
coefficient. Through the use of single covariance and constraint correlation coefficients,
the compact upper bound of the joint covariance matrix from reference [213] is derived.
On the basis of bounded correlation, the universal approach of bounded covariance ex-
pansion (BCINF) [214] with upper and lower cross-correlation bounds is proposed. The
model proposed in [184] ensures the semi-positive value of the joint covariance matrix and
complies with the canonical correlation analysis of multivariate correlation [215]. In [184],
the Cholesky decomposition model of unknown cross-correlation was applied to the BC
formula, and the Min-Max optimization function was employed to iteratively estimate the
fusion solution to the unknown cross-correlation value. In addition, conservative fusion
solutions are provided under the assumption that correlation coefficients are distributed
uniformly. Using the correlation model in the BC formula, [181] analyzed the maximum
limit of unknown correlation estimation from track-to-track fusion. The reference [216]
studies the multi-sensor estimation issue under the norm-bounded cross-correlation hy-
pothesis, where the worst-case fusion MSE is minimized for all feasible mutual covariances.
To take advantage of some prior knowledge of mutual covariance, the tolerance formula for
mutual covariance was proposed in [217] in order to capitalize on this information. Based
on the proposed model, semidefinite programming (SDP) was employed to develop an
optimal fusion strategy that minimizes the worst-case fusion mean square error (MSE).

5.2.3. Ellipsoidal Method

The potential cross-covariances between data sources are bound [176,218,219], thereby
limiting the possible results of fusion covariances to sets with bounds. As shown in
Figure 14, several mutual covariances are selected, and the covariances of fusion are
located at the intersection of several data sources. The ellipsoid method (EM) aims at
estimating fusion by approximating the crossing regions of several ellipsoids. Other
subdivisions of EM include the covariance intersection method (CI) [219], the largest
ellipsoid method (LE) [220], the inner ellipsoid approximation method (IEA) [221], and the
ellipsoid intersection method (EI). The goal of the three methods, LE, IEA, and EI, is to find
the maximum ellipsoid in the region where a single ellipsoid intersects, which is called the
maximum ellipsoid method (ME).
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Several applications involve CI approaches, including positioning [222–224], target
tracking [225,226], simultaneous localization and mapping (SLAM) [227], image integra-
tion [228], NASA Mars Rovers [229], and spacecraft state estimation [226]. In order to avoid
overestimating CI, the maximum ellipsoid approach [220] provides the greatest ellipsoid
within the intersection of two independent ellipsoids. The internal ellipsoid approximation
method (IEA) [221,230,231] takes into account the intersection regions of a single ellipsoid
internally to complement the LE method. The ellipsoidal intersection approach [232] com-
putes the fusion mean and covariance by employing mutually exclusive information from
two data sources in order to solve the fusion problem under an unknown correlation.

In the case when the cross-correlation hypothesis is uncertain, the choice of fusion
method is reliant on the prospective fusion problem. The data de-correlation method
eliminates correlations prior to fusion estimation but is restricted to tiny network topologies.
To achieve optimality in distributed fusion architectures, it is preferable to employ accurate
cross-correlations. Thus, if there is some prior knowledge of the degree of correlation,
this information may be employed to improve the estimation’s accuracy. CI methods can
be used to combine data with unknown correlations in a consistent manner. However,
CI results tend to be conservative and less reliable. The EI approach can produce fewer
conservative solutions.

6. Open Problems and Possible Future Research Directions

Open Problem 1: Model resolution improvement and similarity model establishment
based on sparse features and invariant features.

The majority of existing surface feature model approaches are typically focused on
one or more of the surface features that are widely available to visible light, such as
geometry, brightness, color, etc., with the lowest number of feature requirements. The
research on the features of invariance is relatively limited, and the research is reasonably
straightforward [233–235]. The information on deep features is not exploited, nor is the
resolution of the surface feature model at different scales addressed. If the fast retrieval
and matching of the ground object model established at a certain scale could result in
mismatches and damage the geometry of the final position solution accuracy, this must be
further explored and discussed. Applying feature invariance and invariance feature vector
analysis, surface features and deep features are continuously extracted, and a multi-scale
and highly available similarity feature model construction approach is proposed for the
fundamental goal of enhancing model resolution.

Open Problem 2: Multi-scale and multi-sensor adjustment and nonlinear optimization.
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As UAVs coordinate their positioning, they must share relative measurement data in
real-time, resulting in an exceedingly large information vector for each UAV to address.
Traditional optimization theory (such as the Kalman filter, etc.) and related optimization
methods do not utilize this numerous information solution. It is essential to implement
the whole network adjustment strategy, evaluate its nonlinear optimization issue, evaluate
its optimization method, and learn from each other [236,237]. Analyze the optimization
theory for the cooperative positioning technology of UAVs, optimize and solve the existing
observation equation, and establish theoretical support for the problem of multi-scale
multi-sensor position and attitude fusion estimations.

Open Problem 3: Observability of distributed cooperative measurement of UAVs.
Due to the navigation interruption or insufficient accuracy caused by factors such

as single UAV sensor field of view occlusion or flight height limitation, UAV cluster dis-
tributed cooperative positioning can achieve group positioning and navigation in a large
area, thereby enhancing the observability of measurements [238,239]. On the basis of con-
siderable measurements, resolve the issue that the number of UAVs that can be observed in
the field of view of a single UAV changes with time, establish a reasonable cluster hierarchi-
cal cooperative positioning method, employ the real-time broadcast inter-aircraft relative
measurement information, and then improve the global positioning accuracy of UAVs
through the joint calculation of the whole network adjustment and nonlinear optimization.

6.1. Research on Feature Extraction and Modeling of Key Features in Geographic Information

The existing feature extraction methods [240–242] have certain challenges, such as
poor universality and usability in large-scale environments and low-resolution images, a
lack of feature information, and complexity in modeling. First of all, study the perspective
changes of images at different heights and the impact of different perspectives on the
features, analyze the features of changes caused by time changes (such as seasonal changes
in vegetation, shadow angles, perspective of ground objects, and the existence or absence
of vehicles), and use the rich color and texture information of airborne multi-frame aerial
images obtained by cameras to make use of the spectrum, space, and context. Semantic
and auxiliary information are employed for the semantic description of ground objects,
as well as depth information collected by deep learning, and the feature-based feature
extraction approach is used to generate excellent feature extraction of ground objects in low-
texture environments. After that, with a focus on sparse feature descriptors, we examined
feature invariance and how much a feature depends on the local texture. In a low-texture
environment, the features of each module are reconstructed separately based on the image
data of the retrieved feature points.

The research on feature extraction and modeling of key features in geographic data
is divided primarily into two categories: feature extraction and modeling of key features.
Firstly, the edge contour of the key features is extracted from the original remote sensing
image using plane expansion segmentation technology, and the geometric and attribute
description of the feature contour is employed. Through describing the geometry and
features, the impact of different factors can be exhaustively considered, and the necessary
influence factors can be specified to constrain the contour geometry and separate the image
from the figure. The ground feature identification method can be used to rapidly extract
ground feature meanings based on the retrieved geometric and attribute features. Then,
based on the segmented feature image and after the main feature has been extracted, the
image data are divided into various components based on the feature using the connectivity
of the image data and the module connection segmentation method, and the feature of
each module is reconstructed using the segmentation contour extraction technology and
the topological data editing function, or directly using the simple model function.

6.2. Research on Fast Matching Method of Ground Objects Based on Mapping Base Map

The existing feature matching methods [243–248] suffer from poor real-time perfor-
mance, strict feature point requirements (such as a minimum number of feature points,
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similar lighting, scale, rotation, and viewpoint, etc.), the use of only traditional feature
points, and the absence of deep feature points. The fast matching of ground objects based on
a map is a similarity-based measuring challenge. We explored and analyzed the features of
the geometric and semantic features of RGB images, extracted the deep feature information
through the deep learning method, strengthened the feature efficiency levels, enhanced
the real-time performance of retrieval and matching by reducing the number of features,
and optimized the overall solution for the number of features and time loss. Given the
benefits of the FAST corner point and SIFT descriptor approach, along with the position
and attitude support of inertial sensors, the matching speed of ground objects is sped up,
the accuracy of ground object matching is boosted, and the positioning accuracy of UAVs
is enhanced.

Fast matching of ground features consists primarily of two components: fast extraction
and fast matching of ground features. First, the FAST approach is employed to extract fea-
ture corners, followed by the SIFT method for giving the principal direction and descriptor
for feature points. The output attitude data from various sensors is then combined with
the similarity measure based on the dot product to assist the search strategy in completing
the initial fast matching. Using the statistical feature point distance error method, the
mismatched points are eliminated to generate the final homologous point set. According
to the motion of the UAV, the camera motion between two consecutive images should be
limited, with a limited range of attitude and position changes, and the update frequency
of inertial data is considerably higher than that of the photograph. When comparing two
subsequent image frames, the camera’s position and attitude changes can be determined by
integrating the measured values of the gyroscope and AC-accelerometer. After acquiring
the attitude adjustment, the feature points in the image to be matched can be re-projected,
and the matching search area is demarcated based on the projection position. According to
the camera attitude prediction feature point area, it can effectively minimize the amount
of computation while minimizing the likelihood of mismatched points, enhancing the
algorithm’s accuracy as well as speed. Following the preceding matching of features, the
initial matching point set S is obtained. Unavoidably, there will be a certain number of mis-
matched points. Thus, it is essential to eliminate the mismatched points from the initial set
of matching points. The RANSAC algorithm is a popular method to eliminate mismatched
points. It estimates the model’s parameters by iterating over a collection of observational
information containing “outliers.” Yet, it is an uncertain strategy that enhances the likeli-
hood by increasing the number of rounds and requires expensive computation. Thus, we
are considering just using an approach that counts the mean distance error between feature
points to eliminate mismatched points.

6.3. Research on Pose Fusion Estimation Based on Multi-Sensor

In the UAV cluster, each UAV broadcasts its own measurement and position informa-
tion, receives information from other UAVs in real time, and employs relative measurements
between specific individuals to enhance the UAV’s global positioning capabilities. Due to
the load limit, however, the UAV sensors may be heterogeneous, and the number of UAVs
in the field of vision at different times is not fixed, resulting in time-varying observation
and measurement, which introduces the problem of data obfuscation and complicating
fusion. The conventional optimization model [249,250] is impractical for this distributed,
time-varying system, but the network-wide adjustment that incorporates nonlinear opti-
mization is extremely effective at resolving this issue. In addition, we propose feature-level
fusion based on the existing theory of data fusion, taking into account the difficulty of
fusing data at the data level and the high cost of preprocessing at the decision level. For
the proper positioning of various sensors, fusion data are required. Selecting the nonlinear
optimization adjustment method for the UAV position and attitude fusion estimation at
the feature layer can help reduce the computational complexity of the data fusion and
better adapt to the complex dynamic environment based on the application environment
requirements and the capability of the airborne processing unit. This approach is essentially
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based on the theory of estimating and generates the state space model for various sensor
data before estimating its state so as to do data fusion.

The purpose of multi-sensor data fusion is to estimate the position and attitude of
multiple UAVs accurately. Two processes comprise multi-sensor fusion estimation: multi-
sensor joint calibration and feature layer fusion. The assumption of multi-vision sensor
data fusion is that multiple sensors simultaneously describe the same target. There are
two main methods for calibrating sensor joints. The first step is to install the sensor
in accordance with the specified relative transformation relationship; the second step is
to calculate the relative transformation relationship between two sensors based on the
constraint relationship between distinct sensor data. After sensor failure maintenance, the
first method must be recalibrated, and the relative inaccuracy will probably continue to
be due to the UAV’s movement-induced vibration. Thus, it is proposed that the second
calibration approach be employed for the joint calibration of this project.

The coordinate conversion coefficient matrix equation is generated using geometric
restrictions and the given calibration plate in order to calculate the conversion connection
between multiple camera coordinate systems. In addition, for a monocular camera that has
not been calibrated or exhibits a high calibration error, the global optimization approach
can be employed to optimize the camera’s internal and external calibrations simultaneously.
By analyzing the structure and characteristics of multi-sensors carried by multiple UAVs,
as well as their measurement information and error distribution characteristics, a whole
network adjustment method with non-linear optimization is proposed for UAV position
and attitude fusion estimation at the feature level.

6.4. Research on Absolute Position Estimation Method of Multi-UAV Scale Matching Based on
Ground Features

Given the differences in load and flight speed of heterogeneous UAVs during coop-
erative positioning of multiple UAVs, the number of UAVs that might be observed in the
field of vision of UAVs at different times is unpredictable, and low-altitude UAVs suffer an
obstacle avoidance challenge [20,251]. When an unmanned aerial vehicle (UAV) changes its
altitude, the corresponding camera image’s perspective and imaging parameters fluctuate,
which makes scale matching and recognizing multiple UAVs challenging. By analyzing
the structure and characteristics of the sensors carried by multiple UAVs, the influence
of perspective changes and differences on the characteristics of the images acquired by
the camera at different heights, and the effect of time changes on the light intensity, the
image is de-noised to improve the signal-to-noise ratio and enhance the feature information.
Deep learning is a technique for extracting depth features that is insensitive to shifts in
scale. However, its usefulness is quite poor, and it requires global optimization of attitude
upon initial matching. The goal of image registration is to address the UAV’s unique
localization challenge. With the method of deep learning, the image of the measuring
platform’s common features is learned, and then the UAV’s real-time position is estimated
through matching. Attitude parameter optimization is a SLAM problem. With the process
of attitude optimization, the attitude of the camera or a landmark can be corrected during
camera movement to enhance positioning accuracy.

Scale-matching positioning of multiple UAVs is principally comprised of UAV-satellite
image registration and attitude parameter optimization. At first, when UAV images and
satellite images are matched, CNN is employed to learn the common features (geometry,
color, texture, etc.) between UAV images and satellite images, and then UAV images and
satellite images are registered. The CNN network may be employed to learn the effective
features between the calibrated satellite image and the UAV image under a variety of
illumination conditions (such as seasonal changes, shifts in time, different visual angles,
and the presence of moving objects) and directly align all image pixels because this can
make use of the global texture of the image during image registration, which is crucial for
registration of low-texture images. By aligning the UAV image with the satellite image,
the UAV’s positioning information may be retrieved. Then, by employing the mutual
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measurement information between multiple UAVs, all pose parameters in the whole
image sequence are optimized, and the attitude map optimization technology is utilized to
attempt to optimize the attitude of the camera or landmark when the camera is moving.
The photometric beam is employed to directly optimize the pixel intensity by optimizing
the sum of the square differences between the pixel intensities of adjacent UAV frames and
the sum of the square differences between the UAV frames and the satellite map. The major
advantage of this method is that only a smaller frame set is required to match the satellite
map, enabling the UAV to be accurately localized on all frames.

7. Conclusions

In this paper, we review and evaluate the most emerging advances and advancements
in the study of multi-UAV visual cooperative positioning (including autonomous intelligent
positioning and navigation of UAVs based on vision, distributed cooperative measurement
and fusion in cluster high dynamic topology, group navigation based on active behavior
control, and distributed fusion of multi-source dynamic perception information). While
GNSS signals are denied, the UAV’s only options for position perception are limited
communication and self-carrying sensors (such as inertial navigation and vision). Although
inertial navigation drift is random, its uncertainties can be reduced by adjusting the network
system through the cluster’s information-sharing mechanism. Long-term flight without
a guiding anchor will cause the cluster positioning datum to diverge at the same time.
With the use of data from earth observations, the visual positioning technologies based
on geographic information were employed to extract the invariant feature information
of ground objects. The entire group drift was eliminated by comparing prefabricated
geographic information data and adjusting for multiple-view observations.

The visual odometry approach for earth observation is significantly expanded to
account for the discontinuity and low overlap rate of observed images in the case of fast ma-
neuvering with geographic information, thereby enhancing the cumulative measurement
accuracy and robustness of visual odometry. With the rich color and texture information of
the aerial multi-frame images captured by the camera, the spectral, spatial, contextual, se-
mantic, and auxiliary information in the images, as well as the depth information extracted
by deep learning, may be employed to describe the semantic features of the ground objects,
enabling the effective extraction of the features of the ground objects in the low-texture
environment. A real-time frame can be roughly registered with a satellite image using a
multi-view geographic positioning approach to transform the perspective projection of
a UAV image. A satellite image with a realistic appearance and maintained content is
generated from the corresponding UAV perspective, which can bridge the obvious gap
in perspective between the two domains and enable geographic positioning. In a drone
cluster, each drone broadcasts measurements and positions and receives information from
other drones in real time. The relative measurement between different individuals can
enhance the drone’s capacity to locate itself globally and properly react to the complex and
difficult dynamic environment.

Author Contributions: Conceptualization, P.T. and X.Y.; methodology, P.T. and P.W.; writing—original
draft preparation, P.T.; writing—review and editing, X.Y. and Y.Y.; supervision, X.Y. and W.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Drones 2023, 7, 261 27 of 35

References
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