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Multi-use applications of duval-band infrared (DBIR) thermol imaging
for detecting obscured structural defects

Nancy K. Del Grande and Philip F. Durbin
Lawrence Livermore National Laboratory
P. 0. Box 808, Livermore CA 94550
Telephone: (510) 422-1010
Fax; (310) 422-3834

ABSTRACT

Precise dual-band infrared (DBIR) thermal imaging provides a useful diagnostic tool for wide-area detection of defects from
corrosion damage in metal airframes, heat damage in composite structures and structural damage in concrete bridge decks. We
use DBIR image ratios to enhance surface temperature contrast, remove surface emissivity noise and increase signal-to-clutter
ratios. We clarify interpretation of hidden defect sites by distinguishing remperature differences at defect sites from emissivity
differences at clutter sites, This reduces the probability of false calls associated with misinterpreted image data, For airframe
inspections, we map flash-heated defects in metal structures. The surface temperature rise above ambient at corrosion-thinned
sites correlates with the percentage of material loss from corrosion thinning. For flash-heated composite structures, we
measure the temperature-time history which reiates to the depth and extent of heat damage. In preparation for bridge deck
inspections, we map the natural day and night temperature variations at known concrete slab delamination sites which heat
and cool at different rates than their surroundings. The above-ambient daytime and below-ambient nightime delarnination site
temperature differences correlate with the volume of replaced concrete at the delamination sites.

L0 APPLICATION OF FLASH-HEATED DBIR THERMAL IMAGING FOR AIRFRAMES

During the well-publicized Aloha Airlines accident, damage from corrosion caused the aircraft skin to rip apart from the
Boeging 737 airframe. To maintain aircraft reliability, the Air Force spends over $700M annually for corrosion-related
maintenance actions. To mitigate airframe corrosion damage, the Federal Aviation Administration (FAA) Technical Center
sponsors R&D within the Aging Aircraft Nondestructive Inspection (ND) Technology Research and Development Program.

In 1993, the FAA Aging Aircraft NDI Technology Program supported thermal infrared imaging efforts at Wayne State
University {WSU}) and LLNL. W51J uses a single band infrared (SBIR} technigue for thermal-wave imaging of corrosion and
disbonds within flash-heated aircraft structures.! LLNL uses a dual-band infrared (DBIR) technique to provide quantitative
corrosion damage detection within flash-heated airframes.2"> We use DBIR image ratios, to improve temperature centrast,
remove clutter and quantify corrosion damage within aircraft structures,

Our advanced development approach {patent pending)® would provide an early warning of low-level (5% or 6%) material-loss
effects from corrosion thinning. This approach, if successful, will provide a rapid, safe, reliable, wide-area, corrosion-detection
and imaging tool for in situ, non-intrusive inspections of large structures. This tool does not presently exist. It would address
the need for earty warning signals of incipient corrosion damage and minimize the cost for corrosion repair in airframes.

During 1993, we inspected the Boeing 737 Jetliner at the FAA/JAANC (Aging Aircraft NDI Center) Test Bed Facility at
Sandia’Albuquerque NM. We detected and quantified corrosion-related, thickness losses which occurred within the lap splice of
the flash-beated Boeing 737 aircraft skin. Our dynamic temperature and thermal-inertia maps depicted corrosion pockets. inside
a lap splice, which was situated beneath the galley und the latrine. We photographed "pillowing™ at this site, which inferred
the expansion of corrosion by-producis within the riveted lap splice. Below, we discuss our mapping procedures and the

results of this demonstration.’

2.0 EMISSIVITY-CORRECTED AIRFRAME TEMPERATURE MAPS

Using DBIR image ratios (from DBIR cameras which scan flash-heated targets at infrared wavelengths of 3-5 yum and 8-12
um) we enhance surface temperature contrast and remove the mask of surface emissivity clutter (from dirt, dents, markings,



tape, sealants, uneven paint, paint stripper, exposed metal and roughness variations). This clarifies interpretation of subtle
heat flow anomalies associated with hidden defects and corrosion. We compute DBIR image ratios of high-contrast
temperature (T3) and emissivity-ratio (E-ratio) maps, based on an expansion of Planck's radiation faw,8 which has been used
successfully for other applications; 9-20

foTav)s = {8/8,v) / (L/Lgy) (1
E-ratio = (L/L,,)2 / (§/8,,) (2)

where 5 is the short-wavelength intensity (e.g., I5), Sav is the average value of the pixels in S, L is the long wavelength

intensity (e.g., Ijg) and Lav is the average value of the pixels in L. See Figure | for the Boeing 737 images of the above
ambient lap splice temperature and emissivity-ratio maps which allowed us (o distinguish corrasion-related thickress loss
effects from surface emissivity clutter,

3.0 DYNAMIC AIRFRAME TEMPERATURE CHANGES FOR FLASH-HEATED LAP SPLICE

Corrosion within the Boeing 737 {epoxy-bonded) lap splice causes disbonding. Trapped by-products of cortosion act like an
insulator, delaying heat transfer by conduction from the front te the back surface. This effect is shown in Figure 2 by the
near-constant temperature contrast at 0.4 s, 0.8 s and 1.6 s after onset of the heat flash, based on our measurements of the
FAA/AANC owned Boeing 737 aircraft inspected at the Sandia Test Bed Facility hangar in Albuquerque, New Mexico.

Corrosion-related material loss effects are measured at 0.4 seconds afier the heat flash. Temperatures at 0.4 5 are sensitive to
material loss effects within a lap splice and insensitive to timing uncertainties. The timing is early enough to provide a good
temperature contrast for sites with and without material loss from corrosion. At later times, trapped materials mask the
temperature-time history which characterizes material-loss effects for corrosion sites.

We established the correlation between percent thickness loss and above-ambient surface temperature rise, at 0.4 seconds after
the heat flash, based on our measurements for five specimens which averaged a 24 + 5 % thickness loss per °C temperature
rise. These specimens included a F-18 partially corroded wing box (with & 2.9 mm uncorroded thickness) ard four 1.0 mm to
3.9 mm thickness aluminum panels with millec flat-bottom holes which had thickness losses ranging from 6% to 62%.

4.0 THERMAL INERTIA MAPPING FOR AIRFRAME CORROSION DAMAGE DETECTION

We developed thermal inertia (or effusivity) maps, which have been used previously for other applications, 2122 by
solving the heat transfer eguation for a thick panel with an instantaneous surface heat flux; 23.24

2
=4 _x 3
T(x.6) me“’[ 4m‘J &

where T is temperacure, X is the distance from the surface, k is thermal conductivity, 0 is density, ¢ is heat capacity, & is

thermal diffusivity, ¢ is time and g is the surface heat flux. For a semi-infinite solid approximation, the surface temperature
is proporttonal to the inverse square root of time. In practice, we map the fuselage composite thermal inertia, (kpc)'2, based
on the {inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps
characterize shallow skin defects within the lap splice at early times (<0.3 5) and deeper skin defects within the lap splice at
late times (>0.4 5). Late time composite thermal inertia maps depict where comrosion-related thickness losses occur based on
temperature versus time histories recorded from 0.4 10 3.2 s,

We note in Figure 3 (right side} a butterfly-like pattern at the upper right side. This is where the corrosive activity invaded the
inside (upper lap edge) of the Boeing 737 lap splice on Stringer 26, near station F400.7, beneath the gailey and the latrine.
Typical visible signs of corrosion were also evident (e.g., pillowing) resulting from the increased volume of corrosion by-
praducis within the lap splice, between the rivet heads.
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Figure 3. Seven early-time (tess than (.28 s. on the left) and 159 late-time (1.6 5 10 8.0 s, on the righl) images were used to
produce composite thermal inectia maps of the Boeing 737 aircraft fuselage lap splice shown above, Note the relatively low
thermal inertia for the front-surface cloth tupe and masking tape markers (top center and right corner) and the back surfuce tear
strap {bottom right corner).

50 APPLICATION OF FLASH-HEATED DBIR THERMAL IMAGING FOR COMPOSITES

We investigated heat damage at the upper rim center of o graphite epoxy dume seen at the left side of Figure 4, Two white
(hot) lobes have lemperatures above 70 9C as seen al 0440 5 after anset of the heat flash on the left and again (enlarged) at
the upper lefl corner or four detailed pictures on the right side of Figure 4, The remaining three detailed pictures show changes
in heat dumage with depth inferred by dynamic changes in the relative thermal inertia of the heat-damaged zone. The heal
damage was caused by applying heat from a hot-air gun during a proionged period of tme.
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Figure 4. Thermal inlrared inferred emperature maps of a graphite-cpoxy dumu. at left. with thermal, top center, and thermal
inertia maps. at top right, bottom center and hottom right showing heat dumaged lobes from shallow to deeper dome layers.



Adjacent at the upper right comer is an early-time thermal inertia map showing shallow layer heat damage. This map was a
reconstruction of the temperature-time history taken at early times {rom (.2 5 to 14} § after the heat Mash. The black lobes
have the least thermal inertia (resistance w wemperature change) at heat-damaged sites which reached the hottest iemperaturcs.
Al intermediate times {1 s to 3 5) the low (black) thermal incriia zone had a circular perimeter which enclosed both lobes and a
smallcr undamaged center (lower center). At late times {3 s to 8 5) the diameter of the heat-damaged zone decreased,

6.0 APPLICATION OF DBIR THERMAL IMAGING FOR CONCRETE STRUCTURES

Two square, 1.8 m (6 feet) on-a-side, concrete test slabs A and B were cast with five variable size styrofoam imtplants, 5.1 cm
(2 inches) below the surface, representing delamination sites in surrogate concrele bridge deck structures. Each slab was 19.0
cm (7.5 inches) thick. See Figures 5, 6, 7, 8 and 9. The dimensions and average daytime minus nighttime surface temperature
differences relative to the surroundings, AT, for styrofoam delaminations 1 through 5 (note clockwise positions) were:

(1) 22.9 cm (9 inches) on-a-side, 0.32 cm (1/8 inch) thick, volume = 166.0 em? (10.1 in3); AT =3.631£0.559C
(2} 15.2 ¢cm (6 inches) on-a-side, 0.32 cm (1/8 inch) thick, volume = 731.7 cm? (4.5 in%); AT =2.03+0.249C
{3) 10.2 cm {4 inches) on-a-side, 0.32 cm {1/8 inch} thick, volume = 32.8 cm? (2.0 in3): AT =1.23 +0.499C
{4) 10.2 cm (4 inches) on-a-side, 0.79 cm (5/16 inch}) thick, volume = 81.9 cm? (3.0 in?); AT = 1.73 £ 0.45°C
(5) 10.2 cm (4 inches) on-a-side, 1.43 cm (9/16 inch) thick, volume = 147.0 ¢cm3 (9.0 in%); AT = 1.97 + 0.32 0C

In addition, thermistor probes recorded surface and subsurface temperatures {¢.g., above and below the styrofoam at X, at three
shaliow depths at ¥ and at the surface at Z). Also, consecutive alphabetic letiers shown counterclockwise along the slab
perimeter mark the sites of surface object clutter shown on the diagram of Figure 5.

(&) rusty steel pan with hole at center placed at top left side of slab;

(B) wood painted white at top with greasc at boliom placed at bottom left side of stab;
(C) stainless steel plate placed at botiom center of slab;

(D) plastic road markers placed at bottom right of slah;

(E) rock placed at top right of slab,
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Figure 5, Diagram of concrete slabs used to measure the effects of subsurface delaminadion sites for a concrete bridge deck.




Figure 6. Photos: lelt, showing concrete slab B with five subsurface styroloam delamination sites aad five clutier sites atong
perimeter; and right, showing similar concrete slab A covered by 5.1 cm (2 inches) asphalt with @ delamination sit at the
asphalt-concrele interlace located at 1op. center-left, above the same size concrete delamination site #1 at Lop, center-right.
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Figure 7. Average daytime (above ambient} minus nighttime (below ambient) lemperature differcaces vary as volume of
styrofoam inserts from DBIR data taken for two cencrete slabs, January 29, 1964, and for one concrete slab, April 12, 1994,
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Figure 8, January 29. 1994 DBIR images recorded for congrete Slah A without asphalt and surface clutter. Apparent
termperature maps are in °C, High-contrast DBIR wmperature and emissivity-ratio maps (relative scale) show wurmer than
ambignt daytime delamination site, and cooler thun ambient nighttime delamination site. terperature gradients. Note thal the
emissivity-ratio maps show neither delamination sites nor clutter sites, in the abscnce of surface cluiter.

7.0 IMPLICATIONS OF CONCRETE SLAB DEMONSTRATIONS

The images shown in Figures 8 and 9 have similur temperature maps which differ significantly from their respective DBIR
emissivity-ratio maps. DBIR emissivily-ratio maps do not show surface temperature gradients associated with subsurface
delamination sites. Instead, they locate emissivity-ratio vartations associated with surface clotter (DBIR emissivity variations
on the surface of the conerete from staining or surface objects e.g., in Figure 9). By tagging the sites of surface clutter, we
are able to remove these sites from the high-contrast surtace kemperature maps,

The April 12. 1994 apparent temperature and DBIR high-contrust emperature maps of concrete Slab B images (see Figure 9.
lop twn rows} show the ive clutter siles dlong the perimeter, the five defamination site positions scen in Fig. 5. and one
emissivity-ralio anomaly, near the center of the daytime and nighuime DBIR Images of Slab B. The sites of surface clutter on
these images are tagyed amd reoved using the corresponding positions ol clutter sites tound on the emissivity-ralic maps.

The April 12, 1994 apparent temperature and DBIR high-contrast temperature maps of asphalt-covered concrete Slab A (see
Figure 9, bottom two rows} show one major delamination site for a 23 cm (9 inch) on-a-side delaminarion placed at top, left-
of-center, al the concrete-asphalt interface, but not dircetly above the conerete delamination sites shown in Figure 8. Also,
there are less pronounced indications of at least one of the deeper delamination sites within the concrete, The DBIR
emissivity-ratio maps do not show surface temperaiure gradients associated with subsurface delamination sites. Instead, they
locate emissivity-ratio variations associated with the five large surface objects along the perimeter and asphait-like compounds
encasing three small thermistors.
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Frgure 9. DBER images taken April 12, 1993 with a tower-mounted Agema 380 System. Rows | and 2 show concrete Slab B
at 14:50 and 06:02 respectivety. Rows 3 and 4 show asphalt-covered concrete Slab A at 14:36 and 06:17 respectively.
Apparent temperature mips were recerded at 8-12 ym (column 1) and at 3-5 pm (coiuma 2). High-contrast temperature
maps {¢olumn 3} show both delamination and clutter sites. whereas emissivity-ritio maps (colums 4) show only clutter sites,




8.0 SUMMARY, CONCLUSIONS AND FUTURE PLANS

DBIR ratios of 3-5 and 8-12 um heat-stimulated, corcgistered airframe images, provide separate temperature and emissivity-
ratio maps to improve the defect site signai-to-roise and clarify interpretation of corrosion damage. We established the
relationship between a 1 9C temperature rise (0.4 s after the heat flash) and a 24 % thickness loss from corresion. The
emissivity-ratio map enables us to remove the surface clutter sites which have spatially varying emissivity differences.

Surface clutter occurs from roughness variations, dirt, dents, uneven paint, sealants, stripper materials, cleaner residues, metal
markers, tape and ink. The use of emissivity-ratio maps to identify (then remove) clutter sites on co-registered temperature
maps is unique at LLNL. [t significantly improves the signal-to-noise (S/N) for siting corrosion damage, compared to the
S/N achievable with SBIR methods. It clarifies interpretation of corrosion damage by removing the mask from clurter.

Thermal inertia maps image corrosion damage in metal structures and heat damage in composites. These maps are based on
the temperatore-time history of the flash-heated target described by Eq. (3) where temperatures vary as the inverse square roat
of time. Damage sites have a larger temperature spread and less thermal inertia {1.¢., resistance to temperature change) than
their surrcundings.

Visually, it is difficult to distinguish whether bulges on the airframe skin result from excessive use of sealants, production
ripples or pillowing produced by expansion from corresion by-preducts. To classify defect types, we are studying rapidly-
varying tempetatures which occur at 0 to 30 ms after the heat flash. By correctly classifying defect types, we expect to reduce
the probability of false corrosion calls, which occur when cotrosion damage is confused for something clse,

To inspect composite structures {or uader-curing, over-heating, over-pressurizing or impact damage, we use thermal inertia
maps at early (0.2 to 1.0 s}, intermediate (1 s to 3 3) and fate (3 5 to § 5) times. These maps probe the depth and extent of
delaminations in thermoplastic wing patches, teflon inserts in graphite epoxy domes and heat, pressure and impact damage.

To inspect corcrete bridge decks which are covered (or not) by asphalt. we will adapt DBIR thermal imaging from a moving
vehicle. We expect shailow concrete delamination sites more than 23 cm (9 inches) on-a-side, to produce direct or indirect
surface thermat footpeints gither from vhe displaced volume of concrete or the ensuing damage at the asphalt-concrete interface.
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