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Abstract. In 1998, Blaze, Bleumer, and Strauss suggested a cryptographic primitive termed proxy
re-signature in which a proxy transforms a signature computed under Alice’s secret key into one
from Bob on the same message. The proxy is only semi-trusted in that it cannot learn any signing
key or sign arbitrary messages on behalf of Alice or Bob. At CCS 2005, Ateniese and Hohenberger
revisited this primitive by providing appropriate security definitions and efficient constructions in
the random oracle model. Nonetheless, they left open the problem of constructing a multi-use uni-
directional scheme where the proxy is only able to translate in one direction and signatures can be
re-translated several times.
This paper provides the first steps towards efficiently solving this problem, suggested for the first
time 10 years ago, and presents the first multi-hop unidirectional proxy re-signature schemes. Al-
though our proposals feature a linear signature size in the number of translations, they are the first
multi-use realizations of the primitive that satisfy the requirements of the Ateniese-Hohenberger
security model. The first scheme is secure in the random oracle model. Using the same underlying
idea, it readily extends into a secure construction in the standard model (i.e. the security proof
of which avoids resorting to the random oracle idealization). Both schemes are computationally
efficient but require newly defined Diffie-Hellman-like assumptions in bilinear groups.

Keywords. Digital signatures, multi-use proxy re-cryptography, unidirectionality.

1 Introduction

In 1998, Blaze, Bleumer and Strauss [8] introduced a cryptographic primitive where a semi-
trusted proxy is provided with some information that allows turning Alice’s signature on a
message into Bob’s signature on the same message. These proxy re-signatures (PRS) – not to
be confused with proxy signatures [25] – require that proxies be unable to sign on behalf of
Alice or Bob on their own. The recent years saw a renewed interest of the research community
in proxy re-cryptography [3, 12, 18–20, 13].

This paper presents the first constructions of multi-use unidirectional proxy re-signature
wherein the proxy can only translate signatures in one direction and messages can be re-signed
a polynomial number of times. Our constructions are efficient and demand new (but falsifiable)
Diffie-Hellman-related intractability assumptions in bilinear map groups. One of our contribu-
tions is a secure scheme in the standard model (i.e. without resorting to the random oracle
model).
Related work. Alice – the delegator – can easily designate a proxy translating signatures
computed using the secret key of Bob – the delegatee – into one that are valid w.r.t. her public
key by storing her secret key at the proxy. Upon receiving Bob’s signatures, the proxy can check
them and re-sign the message using Alice’s private key. The problem with this approach is that
the proxy can sign arbitrary messages on behalf of Alice. Proxy re-signatures aim at securely
enabling the delegation of signatures without fully trusting the proxy. They are related to proxy
? This paper has appeared in 2008 ACM Conference on Computer and Communications Security, CCS 2008,

P. Ning, P. F. Syverson & S. Jha eds., ACM, 2008, pp. 511-520.



signatures [25, 21] in that any PRS can be used to implement a proxy signature mechanism but
the converse is not necessarily true.

In 1998, Blaze et al. [8] gave the first example of PRS where signing keys remain hidden
from the proxy. The primitive was formalized in 2005 by Ateniese and Hohenberger [12] who
pinned down useful properties that can be expected from proxy re-signature schemes:

– Unidirectionality: re-signature keys can only be used for delegation in one direction;
– Multi-usability: a message can be re-signed a polynomial number of times;
– Privacy of proxy keys: re-signature keys can be kept secret by honest proxies;
– Transparency: users may not even know that a proxy exists;
– Unlinkability: a re-signature cannot be linked to the signature from which it was generated;
– Key optimality: a user is only required to store a constant amount of secret data;
– Non-interactivity: the delegatee does not act in the delegation process;
– Non-transitivity: proxies cannot re-delegate their re-signing rights.

Blaze et al.’s construction is bidirectional (i.e. the proxy information allows “translating”
signatures in either direction) and multi-use (i.e. the translation of signatures can be performed
in sequence and multiple times by distinct proxies without requiring the intervention of signing
entities). Unfortunately, Ateniese and Hohenberger [12] pinpointed a flaw in the latter scheme:
given a signature/re-signature pair, anyone can deduce the re-signature key that has been used
in the delegation (i.e. proxy keys are not private). Another issue in [8] is that the proxy and
the delegatee can collude to expose the delegator’s secret.

To overcome these limitations, Ateniese and Hohenberger [12] proposed two constructions
based on bilinear maps. The first one is a multi-use, bidirectional extension of Boneh-Lynn-
Shacham (BLS) signatures [11]. Their second scheme is unidirectional (the design of such a
scheme was an open problem raised in [8]) but single-use. It involves two different signature
algorithms: first-level signatures can be translated by the proxy whilst second-level signatures
(that are obtained by translating first level ones or by signing at level 2) cannot. A slightly less
efficient variant was also suggested to ensure the privacy of re-signature keys kept at the proxy.
The security of all schemes was analyzed in the random oracle model [7].
Motivations. A number of applications were suggested in [12] to motivate the search for
unidirectional systems. One of them was to provide a proof that a certain path was taken in a
directed graph: to make sure that a foreign visitor legally entered the country and went through
the required checkpoints, U.S. customs only need one public key (the one of the immigration
service once the original signature on the e-passport has been translated by an immigration
agent). Optionally, the final signature can hide which specific path was chosen and only vouch
for the fact that an authorized one was taken. In such a setting, proxy re-signatures are especially
interesting when they are multi-use.

Another application was the sharing and the conversion of digital certificates: valid signatures
for untrusted public keys can be turned into signatures that verify under already certified keys so
as to save the cost of obtaining a new certificate. As exemplified in [12], unidirectional schemes
are quite appealing for converting certificates between ad-hoc networks: using the public key of
network B’s certification authority (CA), the CA of network A can non-interactively compute a
translation key and set up a proxy converting certificates from network B within its own domain
without having to rely on untrusted nodes of B.

As a third application, PRS can be used to implement anonymizable signatures that hide the
internal organization of a company. Outgoing documents are first signed by specific employees.
Before releasing them to the outside world, a proxy translates signatures into ones that verify
under a corporate public key so as to conceal the original issuer’s identity and the internal
structure of the company.
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Our contributions. Ateniese and Hohenberger left as open challenges the design of multi-use
unidirectional systems and that of secure schemes in the standard security model. This paper
provides solutions to both problems:

– we present a simple and efficient system (built on the short signature put forth by Boneh et
al. [11]) which is secure in the random oracle model under an appropriate extension of the
Diffie-Hellman assumption;

– using an elegant technique due to Waters [31], the scheme is easily modified so as to achieve
security in the standard model. To the best of our knowledge, this actually provides the
first unidirectional PRS that dispenses with random oracles and thereby improves a recent
bidirectional construction [29].

Both proposals additionally preserve the privacy of proxy keys (with an improved efficiency
w.r.t. [12] in the case of the first one). They combine almost all of the above properties. As
in prior unidirectional schemes, proxies are not completely transparent since signatures have
different shapes and lengths across successive levels. The size of our signatures actually grows
linearly with the number of past translations: signatures at level ` (i.e. that have been translated
` − i times if the original version was signed at level i) consist of about 2` group elements. In
spite of this blow-up, we retain important benefits:

– signers may tolerate a limited number (say t) of signature translations for specific messages.
Then, if L distinct signature levels are permitted in the global system, users can directly
sign messages at level L− t.

– the conversion of a `th level signature is indistinguishable from one generated at level `+ 1
by the second signer. The original signer’s identity is moreover perfectly hidden and the
verifier only needs the new signer’s public key.

As a last contribution, we also show how the single-hop restrictions of both schemes can be
modified in such a way that one can prove their security in the stronger plain public key model
(also considered in [4] for different primitives). Prior works on proxy re-cryptography consider
security definitions where dishonest parties’ public keys are honestly generated and the corre-
sponding secret key is known to the attacker. Relying on the latter assumption requires CAs
to ask for a proof of knowledge of the associated private key before certifying a public key. As
exemplified in [4], not all security infrastructures do rigorously apply such an advisable prac-
tice. To address this issue in our setting, we extend the security definitions of [12] to the plain
public key model (a.k.a. chosen-key model) where the adversary is allowed to choose public keys
on behalf of corrupt users (possibly non-uniformly or as a function of honest parties’ public
keys) without being required to reveal or prove knowledge of the underlying private key. In our
model, we are able to construct single-hop unidirectional schemes that are secure in the plain
public key model. The practical impact of this result is that users do not have to demonstrate
knowledge of their secret upon certification. They must only obtain a standard certificate such
as those provided by current PKIs.
Organization. In the forthcoming sections, we recall the syntax of unidirectional PRS schemes
and the security model in section 2. Section 3 explains which algorithmic assumptions we need.
Section 4 describes our random-oracle-using scheme. In section 5, we detail how to get rid of the
random oracle idealization. Section 6 then suggests single-hop constructions in the chosen-key
model.

2 Model and Security Notions

We first recall the syntactic definition of unidirectional PRS schemes from [12].
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Definition 1 (Proxy Re-Signatures). A (unidirectional) proxy re-signature (PRS) scheme
for N signers and L levels (where N and L are both polynomial in the security parameter λ) is a
tuple of (possibly randomized) algorithms (Global-Setup,Keygen,ReKeygen,Sign,Re-Sign,Verify)
where:

Global-Setup(λ): is a randomized algorithm (possibly run by a trusted party) that takes as input
a security parameter λ and produces system-wide public parameters cp.

Keygen(cp): is a probabilistic algorithm that, on input of public parameters cp, outputs a signer’s
private/public key pair (sk, pk).

ReKeygen(cp, pki, skj): on input of public parameters cp, the public key pki of signer i and signer
j’s private key skj, this (possibly randomized but ideally non-interactive) algorithm outputs
a re-signature key Rij that allows turning i’s signatures into signatures in the name of j.

Sign(cp, `, ski,m): on input of public parameters cp, a message m, a private key ski and an
integer ` ∈ {1, . . . , L}, this (possibly probabilistic) algorithm outputs a signature σ on behalf
of signer i at level `.

Re-Sign(cp, `,m, σ,Rij , pki, pkj): given common parameters cp, a level ` < L signature σ from
signer i ∈ {1, . . . , N} and a re-signature key Rij, this (possibly randomized) algorithm first
checks that σ is valid w.r.t pki. If yes, it outputs a signature σ′ that verifies at level ` + 1
under the public key pkj.

Verify(cp, `,m, σ, pki): given public parameters cp, an integer ` ∈ {1, . . . , L}, a message m, an
alleged signature σ and a public key pki, this deterministic algorithm outputs 0 or 1.

For all security parameters λ ∈ N and public parameters cp output by Global-Setup(λ), for
all couples of private/public key pairs (ski, pki), (skj , pkj) produced by Keygen(cp), for any
` ∈ {1, . . . , L} and message m, we should have

Verify(cp, `,m, Sign(cp, `, ski,m), pki) = 1;
Verify(cp, `+ 1,m, σ, pkj) = 1.

whenever σ = ReSign(cp, `,m, Sign(cp, `, ski,m), Rij) and Rij = ReKeygen(cp, pki, skj).

To lighten notations, we sometimes omit to explicitly include public parameters cp that are part
of the input of some of the above algorithms.

The security model of [12] considers the following two orthogonal notions termed external
and insider security.

External security: is the security against adversaries outside the system (that differ from
the proxy and delegation partners). This notion demands that the next probability be a
negligible function of the security parameter λ:

Pr[ {(pki, ski)← Keygen(λ)}i∈[1,N ], (i
?, L,m?, σ?)← AOSign(.),OResign(.)({pki}i∈[1,N ]) :

Verify(L,m?, σ?, pki?) ∧ (i?,m?) 6∈ Q]

where OSign(.) is an oracle taking as input a message and an index i ∈ {1, . . . , N} to return
a 1st-level signature σ ← Sign(1, ski,m); OResign(.) takes indices i, j ∈ {1, . . . , N} and a `th-
level signature σ to output σ′ ← Re-Sign(`,m, σ,ReKeygen(pki, skj), pki, pkj); and Q denotes
the set of (signer,message) pairs (i,m) queried to OSign(.) or such that a tuple (?, j, i,m),
with j ∈ {1, . . . , N}, was queried to OResign(.). This notion only makes sense if re-signing
keys are kept private by the proxy.
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In our setting, the translation of a `th-level signature is perfectly indistinguishable from a signa-
ture produced by the delegator at level `+ 1. Therefore, we can always simulate the OResign(.)
oracle by publicly “sending” outputs of OSign(.) to the next levels. For the sake of generality,
we nevertheless leave OResign(.) in the definition.

Internal security: The second security notion considered in [12] strives to protect users against
dishonest proxies and colluding delegation partners. Three security guarantees should be en-
sured.
1. Limited Proxy security: this notion captures the proxy’s inability to sign messages on

behalf of the delegatee or to create signatures for the delegator unless messages were first
signed by one of the latter’s delegatees. Formally, we consider a game where adversaries
have all re-signing keys but are denied access to signers’ private keys. The following
probability should be negligible:

Pr
[
{(pki, ski)← Keygen(λ)}i∈[1,N ], {Rij ← ReKeygen(pki, skj)}i,j∈[1,N ],

(i?, L,m?, σ?)← AOSign(.,.)
(
{pki}i∈[1,N ], {Rij}i,j∈[1,N ]

)
:

Verify(L,m?, σ?, pki?) ∧m? 6∈ Q
]

where OSign(., .) is an oracle taking as input a message and an index i ∈ {1, . . . , N} to
return a first level signature σ ← Sign(1, ski,m) and Q stands for the set of messages m
queried to the signing oracle.

2. Delegatee Security: informally, this notion protects the delegatee from a colluding
delegator and proxy. Namely, the delegatee is assigned the index 0. The adversary is
provided with an oracle returning first level signatures on behalf of 0. Knowing corrupt
users’ private keys, she can compute re-signature keys {Rij}i∈{0,...,N},j∈{1,...,N} on her
own3 from pki and skj , with j 6= 0. Obviously, she is not granted access to Ri0 for any
i 6= 0. Her probability of success

Pr
[
{(pki, ski)← Keygen(λ)}i∈[0,N ], (L,m

?, σ?)← AOSign(0,.)
(
pk0, {pki, ski}i∈[1,N ]

)
:

Verify(L,m?, σ?, pk0) ∧m? 6∈ Q
]
,

where Q is the set of messages queried to OSign(0, .), should be negligible.

3. Delegator Security: this notion captures that a collusion between the delegatee and
the proxy should be harmless for the honest delegator. More precisely, we consider a
target delegator with index 0. The adversary is given private keys of all other signers
i ∈ {1, . . . , N} as well as all re-signature keys including Ri0 and R0i for i ∈ {1, . . . , N}.
A signing oracle OSign(0, .) also provides her with first level signatures for 0. Yet, the
following probability should be negligible,

Pr
[
{(pki, ski)← Keygen(λ)}i∈[0,N ], {Rij ← ReKeygen(pki, skj)}i,j∈[0,N ],

(1,m?, σ?)← AOSign(0,.)
(
pk0, {pki, ski}i∈[1,N ], {Rij}i,j∈[0,N ],

)
:

Verify(1,m?, σ?, pk0) ∧m? 6∈ Q
]
,

meaning she has little chance of framing user 0 at the first level.

3 This is true in in non-interactive schemes, which we are focusing on. In the general case, those keys should be
generated by the challenger and explicitly provided as input to the adversary.
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An important difference between external and limited proxy security should be underlined. In
the former, the attacker is allowed to obtain signatures on the target message m? for signers
other than i?. In the latter, the target message cannot be queried for signature at all (knowing
all proxy keys, the attacker would trivially win the game otherwise).

Chosen-Key Model Security. As in other papers on proxy re-cryptography [3, 13], the
above model assumes that users only publicize a public key if they hold the underlying private
key. This actually amounts to use a trusted key generation model or the so-called knowledge-
of-secret-key model (KOSK), introduced in [9], that demands attackers to reveal the associated
private key whenever they create a public key for themselves. This model (sometimes referred
to as the registered key model) mirrors the fact that, in a PKI, users should prove knowledge of
their private key upon certification of their public key.

As argued by Bellare and Neven in a different context [4], relying on the registered key
model can be quite burdensome in real world applications if one is willing to actually implement
the requirements of that model. Although some kinds of proof of private key possession [27] are
implemented by VeriSign and other security infrastructures, they are far from sufficing to satisfy
assumptions that are implicitly made by the KOSK model. To do so, CAs should implement
complex proofs of knowledge that allow for the online extraction of adversarial secrets so as
to remain secure in a concurrent setting like the Internet, where many users may be willing
to register at the same time. Hence, whenever it is possible, one should preferably work in a
model called chosen-key model (a.k.a. plain public key model) that leaves adversaries choose
their public key as they like (possibly as a function of honest parties’ public keys and without
having to know or reveal the underlying secret whatsoever).

If we place ourselves in the chosen-key model, the notions of external security and limited
proxy security are not altered as they do not involve corrupt users. On the other hand, we need to
recast the definitions of delegatee and delegator security and take adversarially-generated public
keys into account. As to the delegatee security, the only modification is that the adversary is
challenged on a single public key. No other change is needed since A can generate re-signature
keys on her own. In the notion of delegator security, A is also challenged on a single public key
pk0 for which she is granted access to a first level signing oracle. In addition, we introduce a
delegation oracle Odlg(.) that delegates on behalf of user 0. When queried on a public key pki
supplied by the adversary, Odlg(.) responds with Ri0 = ReKeygen(pki, sk0).

We stress that we are not claiming that the schemes of [12] are insecure in such a model.
However, their security is not guaranteed any longer with currently known security proofs. In
section 6, we will explain how to simply modify the single-hop versions of our schemes so as to
prove them secure without making the KOSK assumption.

3 Bilinear Maps and Complexity Assumptions

Bilinear groups. Groups (G,GT ) of prime order p are called bilinear map groups if there is
an efficiently computable mapping e : G×G→ GT with these properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. non-degeneracy: e(g, h) 6= 1GT

whenever g, h 6= 1G.

Flexible Diffie-Hellman problems. Our signatures rely on new generalizations of the
Computational Diffie-Hellman (CDH) problem which is to compute gab given (ga, gb) in a group
G = 〈g〉. To motivate them, let us first recall the definition of the 2-out-of-3 Diffie-Hellman
problem [22].
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Definition 2. In a prime order group G, the 2-out-of-3 Diffie-Hellman problem (2-3-CDH)
is, given (g, ga, gb), to find a pair (C,Cab) ∈ G×G with C 6= 1G.

We introduce a potentially harder version of this problem that we call 1-Flexible Diffie-Hellman
problem:

Definition 3. The 1-Flexible Diffie-Hellman problem (1-FlexDH) is, given (g,A = ga, B =
gb) ∈ G3, to find a triple (C,Ca, Cab) ∈ (G\{1G})3.

We shall rely on a relaxed variant of this problem where more flexibility is permitted in the
choice of the base C for the Diffie-Hellman computation.

Definition 4. The `-Flexible Diffie-Hellman problem (`-FlexDH) is, given (g,A = ga, B =
gb) ∈ G3, to find a (2`+ 1)-uple

(C1, . . . , C`, D
a
1 , . . . , D

a
` , D

ab
` ) ∈ G2`+1

where logg(Dj) =
∏j
i=1 logg(Ci) 6= 0 for j ∈ {1, . . . `}.

A given instance has many publicly verifiable solutions: a candidate 2`+ 1-tuple

(C1, . . . , C`, D
′
1, . . . , D

′
`, T )

is acceptable if e(C1, A) = e(D′1, g), e(D′j , g) = e(D′j−1, Cj) for j = 2, . . . , ` and e(D′`, B) =
e(T, g). The `-FlexDH assumption is thus falsifiable according to Naor’s classification [26].

In generic groups, the general intractability result given by theorem 1 of [22] by Kunz-Jacques
and Pointcheval implies the generic hardness of `-FlexDH. Section 8 gives an adaptation of this
result in generic bilinear groups.

Remark The knowledge-of-exponent assumption (KEA1) [5] was introduced by Damg̊ard [15].
Roughly speaking, it captures the intuition that any algorithm A which, given elements (g, gx)
in G2, computes a pair (h, hx) ∈ G2 must “know” logg(h). Hence, it must be feasible to recover
the latter value using A’s random coins. In [6], Bellare and Palacio defined a slightly stronger
variant (dubbed DHK1 as a shorthand for “Diffie-Hellman knowledge”) of this assumption.
DHK1 essentially says that, given a pair (g, gx), for any adversary A that outputs pairs (hi, hxi ),
there exists an extractor that can always recover logg(hi) using A’s random coins. The latter
is allowed to query the extractor on polynomially-many pairs (hi, hxi ). For each query, A first
obtains logg(hi) from the extractor before issuing the next query. Under DHK1, the intractabil-
ity of the `-Flexible Diffie-Hellman problem is easily seen to boil down to the Diffie-Hellman
assumption. Given a pair (g, ga), a polynomial adversary that outputs (C1, D

a
1) = (C1, C

a
1 ) nec-

essarily “knows” t1 = logg C1 and thus also (C2, C
a
2 ) = (C2, (Da

2)1/t1) as well as t2 = logg C2,
which in turn successively yields logarithms of C3, . . . , C`. Although DHK1-like assumptions
are inherently non-falsifiable, they hold in generic groups [16, 1] and our results can be seen as
resting on the combination CDH+DHK1.

Modified Diffie-Hellman problem. The second assumption that we need is that the CDH
problem (ga, gb) remains hard even when g(a2) is available.

Definition 5. The modified Computational Diffie-Hellman problem (mCDH) is, given
(g, ga, g(a2), gb) ∈ G4, to compute gab ∈ G.

In fact, we use an equivalent formulation of the problem which is to find hxy given (h, hx, h1/x, hy)
(where we set g = h1/x, x = a, y = b/a).
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4 A Multi-Hop Scheme in the Random Oracle Model

To provide a better intuition of the underlying idea of our scheme, we first describe its single-hop
version before extending it into a multi-hop system.

Our approach slightly differs from the one in [12] where signers have a “strong” secret and
a “weak” secret that are respectively used to produce first and second level signatures. In our
scheme, users have a single secret but first and second level signatures retain different shapes.
Another difference is that our re-signature algorithm is probabilistic.

We exploit the idea that, given gb ∈ G = 〈g〉 for some b ∈ Z, one can hardly generate a
Diffie-Hellman triple (ga, gb, gab) without knowing the corresponding exponent a [15]. A valid
BLS signature [11] (σ = H(m)x, X = gx) can be blinded into (σ′1, σ

′
2) = (σt, Xt) using a random

exponent t. An extra element gt then serves as evidence that (σ′1, σ
′
2) actually hides a valid pair.

This technique can be iterated several times by adding two group elements at each step. To
translate signatures from signer i to signer j, the key idea is to have the proxy perform an
appropriate change of variable involving the translation key during the blinding.

The scheme is obviously not strongly unforgeable in the sense of [2] (since all but first level
signatures can be publicly re-randomized) but this “malleability” of signatures is not a weak-
ness whatsoever. It even turns out to be a desirable feature allowing for the unlinkability of
translated signatures w.r.t. original ones.

4.1 The Single Hop Version

In this scheme, signers’ public keys consist of a single group element X = gx ∈ G. Their well-
formedness is thus efficiently verifiable by the certification authority that just has to check their
membership in G. This already improves [12] where public keys (X1, X2) = (gx, h1/x) ∈ G2 (g
and h being common parameters) must be validated by testing whether e(X1, X2) = e(g, h).

Global-setup(λ): this algorithm chooses bilinear map groups (G,GT ) of prime order p > 2λ. A
generator g ∈ G and a hash function H : {0, 1}∗ → G (modeled as a random oracle in the
security proof) are also chosen. Public parameters only consist of cp := {G,GT , g,H}.

Keygen(λ): user i’s public key is set as Xi = gxi for a random xi
R← Z∗p.

ReKeygen(xj , Xi): this algorithm outputs the re-signature key Rij = X
1/xj

i = gxi/xj which
allows turning signatures from i into signatures from j.

Sign(1, xi,m): to sign m ∈ {0, 1}∗ at level 1, compute σ(1) = H(m)xi ∈ G.
Sign(2, xi,m): to sign m ∈ {0, 1}∗ at level 2, choose t R← Z∗p and compute

σ(2) = (σ0, σ1, σ2) = (H(m)xit, Xt
i , g

t). (1)

Re-Sign(1,m, σ(1), Rij , Xi, Xj): on input of m ∈ {0, 1}∗, the re-signature key Rij = gxi/xj , a
signature σ(1) ∈ G and public keys Xi, Xj , check the validity of σ(1) w.r.t signer i by testing
e(σ(1), g) = e(H(m), Xi). If valid, σ(1) is turned into a signature on behalf of j by choosing
t R← Z∗p and computing

σ(2) = (σ′0, σ
′
1, σ
′
2) = (σ(1)t, Xt

i , R
t
ij) = (H(m)xit, Xt

i , g
txi/xj )

If we set t̃ = txi/xj , we have

σ(2) = (σ′0, σ
′
1, σ
′
2) = (H(m)xj t̃, X t̃

j , g
t̃). (2)

Verify(1,m, σ(1), Xi): accept σ(1) if e(σ(1), g) = e(H(m), Xi).
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Verify(2,m, σ(2), Xi): a 2nd level signature σ(2) = (σ0, σ1, σ2) is accepted for the public key Xi

if the following conditions are true.

e(σ0, g) = e(σ1, H(m)) e(σ1, g) = e(Xi, σ2)

Relations (1) and (2) show that translated signatures have exactly the same distribution as
signatures directly produced by signers at level 2.

In comparison with the only known unidirectional PRS with private re-signing keys (sug-
gested in section 3.4.2 of [12]), this one features shorter second level signatures that must include
a Schnorr-like [28] proof of knowledge in addition to 3 group elements in [12]. On the other hand,
signatures of [12] are strongly unforgeable unlike ours.

It is also worth mentioning that the above scheme only requires the 1-Flexible Diffie-Hellman
assumption which is more classical than the general `-FlexDH.

4.2 How to Obtain Multiple Hops

The above construction can be scaled up into a multi-hop PRS scheme if we iteratively apply
the same idea several times. To prevent the linkability of signatures between successive levels
`+1 and `+2, the re-signature algorithm performs a re-randomization using random exponents
r1, . . . , r`.

Sign(`+ 1, xi,m): to sign m ∈ {0, 1}∗ at the (`+ 1)th level, user i chooses (t1, . . . , t`)
R← (Z∗p)`

and outputs σ(`+1) = (σ0, . . . , σ2`) ∈ G2`+1 where
σ0 = H(m)xit1···t`

σk = gxit1···t`+1−k for k ∈ {1, . . . , `}
σk = gtk−` for k ∈ {`+ 1, . . . , 2`}.

Re-Sign(`+ 1,m, σ(`+1), Rij , Xi, Xj): on input of a message m ∈ {0, 1}∗, the re-signature key
Rij = gxi/xj , a valid (`+ 1)th-level signature

σ(`+1) = (σ0, . . . , σ2`)
= (H(m)xit1···t` , gxit1···t` , gxit1···t`−1 , . . . , gxit1 , gt1 , . . . , gt`) ∈ G2`+1

and public keys Xi, Xj , check the validity of σ(`+1) under Xi. If valid, it is turned into a
(` + 2)th-level signature on behalf of j by drawing (r0, . . . , r`)

R← (Z∗p)`+1 and computing
σ(`+2) = (σ′0, . . . , σ

′
2`+2) ∈ G2`+3 where

σ′0 = σr0···r`0

σ′k = σ
r0···r`+1−k

k for k ∈ {1, . . . , `}
σ′`+1 = Xr0

i

σ′`+2 = Rr0ij
σ′k = σ

rk−`−2

k−2 for k ∈ {`+ 3, . . . , 2`+ 2}.

If we define t̃0 = r0xi/xj and t̃k = rktk for k = 1, . . . , `, we observe that

σ(`+2) = (H(m)xj t̃0 t̃1···t̃` , gxj t̃0 t̃1···t̃` , gxj t̃0 t̃1···t̃`−1 , . . . , gxj t̃0 , gt̃0 , . . . , gt̃`) ∈ G2`+3

Verify(`+ 1,m, σ(`+1), Xi): at level (` + 1), the validity of σ(`+1) = (σ0, . . . , σ2`) ∈ G2`+1 is
checked by testing if these equalities simultaneously hold:

e(σ0, g) = e(H(m), σ1),
e(σ`, g) = e(Xi, σ`+1)
e(σk, g) = e(σk+1, σ2`−k+1) for k ∈ {1, . . . , `− 1}
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We note that the speed of the verification algorithm can be increased by computing a product
of O(`) pairings, which is significantly faster than O(`) independent pairing calculations [17].
The idea is to choose ω0, . . . , ω`

R← Z∗p at random and check whether

e
(
g,
∏̀
k=0

σωk
k

)
= e(H(m), σ1

ω0) · e(Xi, σ
ω`
`+1) ·

`−1∏
k=1

e(σk+1, σ
ωk
2`−k+1).

With high probability, invalid signatures fail to satisfy the above randomized verification algo-
rithm.

4.3 Security

Theorem 1. The L-level scheme is a secure unidirectional proxy re-signature under the (L−1)-
FlexDH and mCDH assumptions in the random oracle model.

Proof. We first prove security against dishonest proxies.

Limited proxy security From an adversary A1 with advantage ε, we can construct an algorithm
B1 that solves a (L − 1)-FlexDH instance (g,A = ga, B = gb) with probability O(ε/qs), where
qs is the number of signing queries.

System parameters: A1 is challenged on public parameters {G,GT , g,OH} where OH is the
random oracle controlled by the simulator B1.

Public key generation: when A1 asks for the creation of user i ∈ {1, . . . , N}, B1 responds
with a newly generated public key Xi = Axi = gaxi , for a random xi

R← Z∗p, which virtually
defines user i’s private key as axi. For all pairs (i, j), re-signature keys Rij are calculated as
Rij = gxi/xj = gaxi/axj .

Oracle queries: A1’s queries are tackled with as follows. Following a well-known technique
due to Coron [14], a binary coin c ∈ {0, 1} with expected value 1− ζ ∈ [0, 1] decides whether
B1 introduces the challenge in the output of the random oracle or an element of known
signature. For the optimal value of ζ, this introduces the loss factor O(qs) in the success
probability.
• Random oracle queries: to answer these queries, B1 maintains a list (referred to as the
H-List) of tuples (m,h, µ, c) as follows:
1. If the query m already appears in the H-List, then B1 returns h;
2. Otherwise, B1 generates a random bit c such that Pr[c = 0] = ζ;
3. It picks µ R← Z∗p at random and computes h = gµ if c = 0 and h = Bµ otherwise;
4. It adds the 4-uple (m,h, µ, c) to the H-List and returns h as the random oracle

output.
• Signing queries: when a signature of signer i is queried for a message m, B1 runs the

random oracle to obtain the 4-uple (m,h, µ, c) contained in the H-List. If c = 1 then B1

reports failure and aborts. Otherwise, the algorithm B1 returns hxia = Axiµ as a valid
signature on m.

After a number of queries, A1 comes up with a message m?, that was never queried for signature
for any signer, an index i? ∈ {1, . . . , N} and a Lth level forgery σ?(L) = (σ?0, . . . , σ2L−2

?) ∈
G2L−1. At this stage, B1 runs the random oracle to obtain the 4-uple (m?, h?, µ?, c?) contained
in the H-List and fails if c? = 0. Otherwise, if σ?(L) is valid, it may be written

(σ?0, . . . , σ2L−2
?) =

(
Bµ?xi?at1...tL−1 , At1,...tL−1 , . . . , At1 , gt1 , . . . , gtL−1

)
10



which provides B1 with a valid tuple

(C1, . . . , CL−1, D
a
1 , . . . , D

a
L−1, D

ab
L−1),

where Dab
L−1 = σ?0

1/µ?xi? , so that logg(Dj) =
∏j
i=1 logg(Ci) for j ∈ {1, . . . , L − 1}. A similar

analysis to [14, 11] gives the announced bound on B1’s advantage if the optimal probability
ζ = qs/(qs + 1) is used when answering hash queries.

Delegatee security We also attack the (L − 1)-FlexDH assumption using a delegatee security
adversary A2. Given an input pair (A = ga, B = gb), the simulator B2 proceeds as B1 did in the
proof of limited proxy security.

System parameters and public keys: the target delegatee’s public key is X0 = A = ga.
For i = 1, . . . , n, other public keys are set as Xi = gxi with xi

R← Z∗p.
Queries: A2’s hash and signing queries are handled exactly as in the proof of limited proxy

security. Namely, B2 fails if A2 asks for a signature on a message m for which H(m) = Bµ

and responds consistently otherwise.

WhenA2 outputs her forgery σ?(L) = (σ?0, . . . , σ
?
2L−2) at level L, B2 is successful ifH(m?) = Bµ?

,
for some µ? ∈ Z∗p, and extracts an admissible (2L−1)-uple as done in the proof of limited proxy
security.

Delegator security This security property is proven under the mCDH assumption. Given an
adversary A3 with advantage ε, we outline an algorithm B3 that has probability O(ε/qs) of
finding gab given (g,A = ga, A′ = g1/a, B = gb).

Public key generation: as previously, the target public key is defined as X0 = A = ga.
Remaining public keys are set as Xi = gxi for a random xi

R← Z∗p for i = 1, . . . , n. This time,
A3 aims at producing a first level forgery and is granted all re-signature keys, including
R0j and Rj0. For indexes (i, j) s.t. i, j 6= 0, B3 sets Rij = gxi/xj . If i = 0, it calculates
R0j = A1/xj = ga/xj . If j = 0 (and thus i 6= 0), B3 computes Ri0 = A′xi = gxi/a to A3.

A3’s queries are dealt with exactly as for previous adversaries. Eventually, A3 produces a first
level forgery σ?(1) for a new message m?. Then, B3 can extract gab if H(m) = (gb)µ

?
for some

µ? ∈ Z∗p, which occurs with probability O(1/qs) using Coron’s technique [14]. Otherwise, B3

fails.

External security We finally show that an external security adversary A4 also allows breaking
the (L − 1)-FlexDH assumption almost exactly as in the proof of limited proxy security. The
simulator B4 is given an instance (g,A = ga, B = gb). As previously, B4 must “program” the
random oracle H hoping that its output will be H(m?) = Bµ?

(where µ? ∈ Z∗p is known) for
the message m? that the forgery σ?(L) pertains to. The difficulty is that B4 must also be able
to answer signing queries made on m? for all but one signers. Therefore, B4 must guess which
signer i? will be A4’s prey beforehand. At the outset of the game, it thus chooses an index
i? R← {1, . . . , N}. Signer i?’s public key is set as Xi? = A = ga. All other signers i 6= i? are
assigned public keys Xi = gxi for which B4 knows the matching secret xi and can thus always
answer signing queries.

Hash queries and signing queries involving i? are handled as in the proof of limited proxy
security. When faced with a re-signing query from i to j for a valid signature σ(`) at level
` ∈ {1, . . . , L}, B4 ignores σ(`) and simulates a first level signature for signer j. The resulting
signature σ′(1) is then turned into a (`+ 1)th-level signature and given back to A4. A re-signing
query thus triggers a signing query that only causes failure if H(m) differs from gµ for a known
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µ ∈ Z∗p.
When A4 forges a signature at level L, B4 successfully extracts a (2L − 1)-Flexible Diffie-

Hellman tuple (as B1 and B2 did) if H(m?) = (gb)µ
?

and if it correctly guessed the identity i?

of the target signer. If A4’s advantage is ε, we find O(ε/(N(qs + qrs + 1))) as a lower bound on
B4’s probability of success, qs and qrs being the number of signature and re-signature queries
respectively. ut

5 A Scheme in the Standard Model

Several extensions of BLS signatures have a standard model counterpart when Waters’ technique
supersedes random oracle manipulations (e.g. [24]). Likewise, we can very simply twist our
method and achieve the first unidirectional PRS scheme (even including single hop ones) that
avoids resorting to the random oracle model.

The scheme is, mutatis mutandis, quite similar to our first construction. Standard model
security thus comes at the expense of a trusted setup to generate system parameters.

5.1 The Single Hop Variant

As in [31], n denotes the length of messages to be signed. Arbitrary long messages can be signed
if we first apply a collision-resistant hash function with n-bit outputs, in which case n is part
of the security parameter.

The scheme requires a trusted party to generate common public parameters. However, this
party can remain off-line after the setup phase.

Global-setup(λ, n): given security parameters λ, n, this algorithm chooses bilinear groups (G,GT )
of order p > 2λ, generators g, h R← G and a random (n + 1)-vector u = (u′, u1, . . . , un) R←
Gn+1. The latter defines a function F : {0, 1}n → G mapping n-bit strings m = m1 . . .mn

(where mi ∈ {0, 1} for all i ∈ {0, 1}) onto F (m) = u′ ·
∏n
i=1 u

mi
i . The public parameters are

cp := {G,GT , g, h, u}.

Keygen(λ): user i sets his public key as Xi = gxi for a random xi
R← Z∗p.

ReKeygen(xj , Xi): given user j’s private key xj and user i’s public key Xi, generate the uni-
directional re-signature key Rij = X

1/xj

i = gxi/xj that will be used to translate signature
from i into signatures from j.

Sign(1,m, xi): to sign a message m = m1 . . .mn ∈ {0, 1}n at level 1, pick r R← Z∗p at random
and compute

σ(1) = (σ0, σ1) = (hxi · F (m)r, gr)

Sign(2,m, xi): to generate a second level signature on m = m1 . . .mn ∈ {0, 1}n, choose r, t R← Z∗p
and compute

σ(2) = (σ0, σ1, σ2, σ3) = (htxi · F (m)r, gr, Xt
i , g

t)

Re-Sign(1,m, σ(1), Rij , Xi, Xj): on input of a message m ∈ {0, 1}n, the re-signature key Rij =
gxi/xj , a signature σ(1) = (σ0, σ1) and public keys Xi, Xj , check the validity of σ(1) w.r.t
signer i by testing if

e(σ0, g) = e(Xi, h) · e(F (m), σ1) (3)
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If σ(1) is a valid, it can be turned into a signature on behalf of j by choosing r′, t R← Z∗p and
computing

σ(2) = (σ′0, σ
′
1, σ
′
2, σ
′
3) = (σt0 · F (m)r

′
, σt1 · gr

′
, Xt

i , R
t
ij)

= (htxi · F (m)r
′′
, gr
′′
, Xt

i , g
txi/xj )

where r′′ = tr + r′. If we set t̃ = txi/xj , we have

σ(2) = (σ′0, σ
′
1, σ
′
2, σ
′
3) = (ht̃xj · F (m)r

′′
, gr
′′
, X t̃

j , g
t̃).

Verify(1,m, σ(1), Xi): the validity of a 1st level signature σ(1) = (σ1, σ2) is checked by testing if
(3) holds.

Verify(2,m, σ(2), Xi): a signature σ(2) = (σ0, σ1, σ2, σ3) at level 2 is accepted for the public key
Xi if the following conditions are true.

e(σ0, g) = e(σ2, h) · e(F (m), σ′1)
e(σ2, g) = e(Xi, σ3).

To the best of our knowledge, the above scheme is the first unidirectional PRS in the standard
model and solves another problem left open in [12] where all constructions require the random
oracle model. Like the scheme of section 4, it can be scaled into a multi-hop system.

5.2 The Multi-Hop Extension

At levels ` ≥ 2, algorithms Sign, Re-Sign and Verify are generalized as follows.

Sign(`+ 1,m, xi): to sign m ∈ {0, 1}n at level ` + 1, user i picks r R← Z∗p, (t1, . . . , t`)
R← (Z∗p)`

and outputs σ(`+1) = (σ0, . . . , σ2`+1) ∈ G2`+2 where
σ0 = hxit1···t` · F (m)r

σ1 = gr

σk = gxit1···t`+2−k for k ∈ {2, . . . , `+ 1}
σk = gtk−`−1 for k ∈ {`+ 2, . . . , 2`+ 1}.

Re-Sign(`+ 1,m, σ(`+1), Rij , Xi, Xj): on input of a message m ∈ {0, 1}∗, the re-signature key
Rij = gxi/xj , a purported (`+ 1)th-level signature

σ(`+1) = (σ0, . . . , σ2`+1)
= (hxit1···t` · F (m)r, gr, gxit1···t` , gxit1···t`−1 , . . . , gxit1 , gt1 , · · · , gt`) ∈ G2`+2

and public keys Xi, Xj , check the correctness of σ(`+1) under Xi. If valid, σ(`+1) is translated
for Xj by sampling r′ R← Z∗p, (r0, r1, . . . , r`)

R← (Z∗p)`+1 and setting σ(`+2) = (σ′0, . . . , σ
′
2`+3) ∈

G2`+4 where 

σ′0 = σr0···r`0 · F (m)r
′

σ′1 = σr0···r`1 · gr′

σ′k = σ
r0···r`+2−k

k for k ∈ {2, . . . , `+ 1}
σ′`+2 = Xr0

i

σ′`+3 = Rr0ij
σ′k = σ

rk−`−3

k−2 for k ∈ {`+ 4, . . . , 2`+ 3}.

If we define t̃0 = r0xi/xj , r′′ = r0 · · · r` + r′ and t̃k = rktk for k = 1, . . . , `, we observe that

σ(`+2) = (hxj t̃0 t̃1···t̃` · F (m)r
′′
, gr
′′
, gxj t̃0 t̃1···t̃` , gxj t̃0 t̃1···t̃`−1 , . . . , gxj t̃0 , gt̃0 , . . . , gt̃`).
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Verify(`+ 1,m, σ(`+1), Xi): a candidate signature σ(`+1) = (σ0, . . . , σ2`+1) is verified by testing
if the following equalities hold:

e(σ0, g) = e(h, σ3) · e(F (m), σ1)
e(σk, g) = e(σk+1, σ2`+3−k) for k ∈ {2, . . . , `}

e(σ`+1, g) = e(Xi, σ`+2).

5.3 Security

Theorem 2. The scheme with L levels (and thus at most L−1 hops) is a secure unidirectional
PRS under the (L− 1)-FlexDH and mCDH assumptions.

Proof. The proof is very similar to the one of theorem 1 and is detailed in the full version of
the paper [23]. ut

6 Single-Hop Schemes in the Chosen Key Model

This section shows a simple way to modify the single-hop versions of our schemes so as to prove
their security in the plain public key model and dispense with the knowledge of secret key
assumption. We outline the required modifications in our first scheme but they can be applied
to our standard model system as well.

The idea is to randomize the generation of re-signature keys, the shape of which becomes
reminiscent of Waters signatures. Using techniques that were initially proposed for identity-
based encryption [10], we can then prove security results without positioning ourselves in the
KOSK model.

Global-setup(λ): is as in section 4.
Keygen(λ): user i’s public key is pki = (Xi = gxi , Yi = gyi) for random xi, yi

R← Z∗p.
ReKeygen(xj , yj , pki): given xj , yj and pki = (Xi, Yi), this algorithm outputs the re-signature

key
Rij = (Rij1, Rij2) = (X1/xj

i · Y r
j , X

r
j )

for a random r R← Z∗p and where (Xj , Yj) = (gxj , gyj ).
Sign(1, xi,m): outputs σ(1) = H(m)xi ∈ G as in section 4.
Sign(2, xi,m): to sign m ∈ {0, 1}∗ at level 2, user i chooses s, t R← Z∗p and computes

σ(2) = (σ0, σ1, σ2, σ3)
= (H(m)xit, Xt

i , g
t · Y s

i , X
s
i ).

Re-Sign(1,m, σ(1), Rij , pki, pkj): given the re-signature keyRij = (Rij1, Rij2), a signature σ(1) ∈
G and public keys pki = (Xi, Yi), pkj = (Xj , Yj), check the validity of σ(1) w.r.t signer i by
testing e(σ(1), g) = e(H(m), Xi). If valid, σ(1) is turned into a signature on behalf of j by
choosing s′, t R← Z∗p and computing

σ(2) = (σ′0, σ
′
1, σ
′
2, σ
′
3)

= (σ(1)t, Xt
i , R

t
ij1 · Y s′

j , R
t
ij2 ·Xs′

j )

= (H(m)xit, Xt
i , g

txi/xj · Y rt+s′

j , Xrt+s′

j )

If we set t̃ = txi/xj and s̃ = rt+ s′, we have

σ(2) = (H(m)xj t̃, X t̃
j , g

t̃ · Y s̃
j , X

s̃
j ).
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Verify(1,m, σ(1), pki): accept σ(1) if e(σ(1), g) = e(H(m), Xi).
Verify(2,m, σ(2), pki): accept σ(2) = (σ0, σ1, σ2, σ3) w.r.t. pki = (Xi, Yi) if the following relations

hold.

e(σ0, g) = e(σ1, H(m)) e(σ2, Xi) = e(g, σ1) · e(Yi, σ3)

The above scheme features a comparable efficiency to the one of section 4 with signatures
that are only slightly longer at level 2. We were unfortunately unable to turn it into a multi-hop
system.

From a security standpoint, we also need fewer assumptions in the proofs since the 1-Flexible
Diffie-Hellman assumption suffices.

Theorem 3. The single-hop scheme is secure in the chosen-key model under the 1-FlexDH
assumption.

Proof. We can prove the result without resorting to the modified CDH assumption and using
only the 1-Flexible Diffie-Hellman problem. Let (g,A = ga, B = gb) be a given instance of the
latter.

External security and limited proxy security For these notions, the proofs work out almost
exactly as in the proof of theorem 1. The only difference is in the generation of users’ public
keys pki = (Xi, Yi): the first component Xi is chosen as in the proof of theorem 1 whilst Yi is set
as Yi = Xyi

i for randomly drawn exponents yi
R← Z∗p. When the adversary eventually outputs a

forgery
(σ?0, σ

?
1, σ

?
2, σ

?
3) = (H(m?)axt, Xt, gt · Y r, Xr),

w.r.t. to a honest user’s public key (X = Ax, Y = Xy) (where x, y ∈ Z∗p are random exponents
initially chosen by the simulator), one can compute (σ?0, σ

?
1, σ

?
2/σ

?
3
y) and use it as a forgery

against our scheme of section 4. Namely, if H(m?) = Bµ?
and X = Ax for known values

x, µ? ∈ Z∗p, the simulator obtains a triple

(Cab, Ca, C) =
(
σ?0, σ

?
1
µ?

, (
σ?2
σ?3

y )xµ
?
)
,

which solves the problem instance.

Delegatee security The proof is as in theorem 1 but the adversary is given a single honest user’s
public key.

Delegator security From an adversary A with advantage ε and making qs signing queries, we
build an algorithm B that finds gab with probability O(ε/qs).

System parameters: A is provided with public parameters {G,GT , g,OH} where OH is the
random oracle.

Key generation: the delegator’s public key is defined as pk0 = (X0, Y0) = (A, gy0) for a
random y0

R← Z∗p.
Oracle queries:

• A’s random oracle queries and signing queries are handled using Coron’s technique [14]
as in the proof of theorem 1 (we have thus again a degradation factor of O(qs) in the
reduction).
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• Delegation queries: at any time A can supply a public key pk = (X,Y ) (without having
to reveal the underlying secret) and ask oracle Odlg(.) to generate a re-signature key on
behalf of the delegator 0 using pk as the delegatee’s public key. Since we have (X0 =
A, Y0 = gy0) for a known exponent y0, B picks r R← Z∗p and returns

(R1, R2) = (gry0 , Xr
0 ·X−1/y0). (4)

If we define r̃ = r − x/(ay0), where x = logg(X), we see that (R1, R2) has the correct
shape since

X1/a · Y r̃
0 = X1/a · Y r

0 · (gy0)−
x

ay0 = gry0

and X r̃
0 = Xr

0 · A
− x

ay0 = Xr
0 ·X−1/y0 . We observe that B can compute both parts of (4)

without knowing x = logg(X) or y = logg(Y ).

After a number of queries, A comes up with a first level forgery that allows computing gab as
in the proof of theorem 1. Unlike what happens in the latter, B does not need g1/a at any time
during the simulation and we only need the 1-Flexible Diffie-Hellman assumption. ut

7 Can one achieve constant-size multi-hop signatures?

While highly desirable, unidirectional multi-hop PRS with constant-size signatures turn out to
be very hard to construct. We give arguments explaining why they seem out of reach with the
current state of knowledge.

Trivially, if the Re-Sign algorithm increases the size of signatures (even by a single bit),
then we inevitably end up with a linear size in the number of delegations. Intuitively, multi-hop
unidirectional systems therefore provide either constant or linear sizes. It seems very unlikely
that one will be able to come up with logarithmic-size signatures for instance. This apparently
indicates that, regardless of how many times signatures get translated, they should remain in
the same signature space (which sounds hardly compatible with the pursued unidirectionality).
Nonetheless, not all unidirectional schemes do lengthen signatures upon translation: if imple-
mented with appropriate parameters, the first proposal of [12] features the same signature size
at both levels (though signatures have different shapes). However, it does not lend itself to a
multi-use extension: to translate a signature, the proxy uses a piece of it as an exponent to
exponentiate the re-signature key, which hampers length-preserving re-iterations of the process.

Up to now, all known unidirectional proxy re-cryptography primitives make use of bilinear
maps. Unfortunately, those tools still fall short of reaching the aforementioned purpose. Pairing-
based schemes often let proxies replace a component of the original ciphertext or signature by its
pairing with the proxy key. Multiple hops are impossible if we leave the resulting pairing value
inside the re-signature since no bilinear map is defined over the target group GT . To circum-
vent this issue, our approach postpones the computation of the pairing until the verification by
blinding its arguments and introducing them into transformed signatures. Unfortunately, this
inevitably increases their length at each conversion.

We are not claiming that constant signature sizes are impossible to obtain. But it turns out
that new ideas and techniques should be developed to reach this goal.

8 Generic hardness of `-FlexDH in bilinear groups

To provide more confidence in the `-FlexDH assumption we give a lower bound on the compu-
tational complexity of the `-FlexDH problem for generic groups equipped with bilinear maps.
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In [22], Kunz-Jacques and Pointcheval define a family of computational problems that enables
to study variants of the CDH problem in the generic group model. Let A be an adversary in
this model and ϕ(X1, . . . , Xk, Y1, . . . , Y`) be a multivariate polynomial whose coefficients might
depend on A’s behavior. For values of x1, . . . , xk chosen by the simulator, and knowing their
encodings, the goal of A is to compute the encodings of y1, . . . , y` such that

ϕ(x1, . . . , xk, y1, . . . , y`) = 0.

All elements manipulated by A are linear polynomials in x1, . . . , xk and some new random
elements introduced via the group oracle. Let us denote Pi the polynomial corresponding to yi
(it is a random variable), Kunz-Jacques and Pointcheval proved the following result.

Theorem 4 ([22]). Let d = deg(ϕ) and Pm be an upper bound for the probability

Pr[ϕ(X1, . . . , Xk, P1(X1, . . . , Xk), . . . , P`(X1, . . . , Xk)) = 0]

Then the probability that A wins after qG queries satisfies

Succ(qG) ≤ Pm +
(3qG + k + 2)

2p
+
d

p
.

The choice φ(X1, X2, Y1, . . . , Y`+1) = Y`+1−X1X2Y1 . . . Y` implies the generic hardness of the `-
FlexDH problem. It is almost straightforward to prove that the Kunz-Jacques-Pointcheval result
also holds in generic bilinear groups where the `-FlexDH problem thus remains intractable. The
details are given in the full version of the paper.

Theorem 5. Let d = deg(ϕ) and Pm be an upper bound for the probability

Pr[ϕ(X1, . . . , Xk, P1(X1, . . . , Xk), . . . , P`(X1, . . . , Xk)) = 0]

Then the probability that A wins after qG oracle queries to the group operations in G, GT to
the bilinear map e satisfies

Succ(qG) ≤ Pm +
(3qG + k + 2)

p
+
d

p
.

9 Conclusions and Open Problems

We described the first multi-use unidirectional proxy re-signatures, which solves a problem left
open at CCS 2005. Our random-oracle-based proposal also offers efficiency improvements over
existing solutions at the first level. The other scheme additionally happens to be the first uni-
directional PRS in the standard model. We finally showed how to construct single-hop schemes
in the chosen-key model.

Two major open problems remain. First, it would be interesting to see if multi-level uni-
directional PRS have efficient realizations under more classical intractability assumptions. A
perhaps more challenging task would be to find out implementations – if they exist at all – of
such primitives where the size of signatures and the verification cost do not grow linearly with
the number of translations.
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