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Abstract 
 
 
This book was intended to discuss some paradoxes in Quantum Mechanics 
from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a 
recent concept Neutrosophic Logic. Essentially, this new concept offers new 
insights on the idea of ‘identity’, which too often it has been accepted as 
given. 
 
Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic 
introduced by L. Zadeh. While some aspects of theoretical foundations of 
logic are discussed, this book is not intended solely for pure mathematicians, 
but instead for physicists in the hope that some of ideas presented herein will 
be found useful.  
 
The book is motivated by observation that despite almost eight decades, 
there is indication that some of those paradoxes known in Quantum Physics 
are not yet solved. In our knowledge, this is because the solution of those 
paradoxes requires re-examination of the foundations of logic itself, in par-
ticular on the notion of identity and multi-valuedness of entity.  
 
The book is also intended for young physicist fellows who think that some-
where there should be a ‘complete’ explanation of these paradoxes in Quan-
tum Mechanics. If this book doesn’t answer all of their questions, it is our 
hope that at least it offers a new alternative viewpoint for these old ques-
tions.   

 
 
 

Florentin Smarandache 
University of New Mexico 
Gallup, NM 87301, USA 
smarand@unm.edu 
 
V. Christianto 
http://www.sciprint.org 

email: vxianto@yahoo.com 
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Foreword 
 

It comes me a bit inappropriate to praise this book, since some of the deriva-
tions in it are based on my modest contribution to science.  But this is the 
kind of work that is truly worthy of praise. Florentin Smarandache and V. 
Christianto are two distinguished scientists and great authors. The idea of 
linking multi-valued logic to quantum mechanics is an excellent, new idea 
that, as far as I know, has not been considered before in physics.  
 
Smarandache and Christianto prove that multi-valued logic can lead to the 
resolution of long standing paradoxes in quantum mechanics, such as the 
Schrödinger cat paradox, the quantum Sorites paradox, etc.  Most impor-
tantly, they convincingly explain -with Schrödinger's equation- that the or-
bits of planets are quantized! (i.e., the same sets of rules that apply to an 
atomic system also apply to a planetary system). This argument, as they 
show, is supported by recent astronomical observations.  
 
Throughout the book, the authors make a number of important predictions 
that can be tested experimentally. For key arguments and conclusions, they 
reinforce their points of view with a mountain of citations and irrefutable 
experimental evidence.   
 
The book is written in a refreshing, humorous style that makes it a truly 
delightful piece of reading. This is a highly recommended book for research-
ers and graduate students who are looking for potentially new, breakthrough 
ideas in physics or applied mathematics. 
 
 
Ezzat G. Bakhoum 
Dec. 2005 
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1 Introduction: Paradoxes, Lukasiewicz Multi-Valued logic 

”This statement is false.” Supposed we write like this in the beginning of 
this book, and then can you prove it really false? We doubt it, because the 
statement reveals contradiction in formal system of logic: If the statement is 
false, then we cannot believe in its own claim, and vice versa. Sometimes it 
is called ‘self-referential’ statement. In programming language, for instance, 
a ‘self-referential’ code would mean a program which duplicates itself. For 
an example, see Appendix I.  

It is known that there are limitations to the present accepted axiomatic 
foundations of logic. Some of these limitations are known in the form of 
paradoxes. For instance, there are paradoxes [2] known to logicians: 

- Russell paradox--- Consider the set of all sets are not members of 
themselves. Is this set a member of itself? 

- Epimenidean paradox--- Consider this statement: “This statement is 
false.” Is this statement is true?  

- Berry paradox --- Consider this statement: “Find the smallest positive 
integer which to be specified requires more characters then there are 
in this sentence.” Does this sentence specify an integer?   

While there are of course other paradoxes known mostly by mathemati-
cians, including Zeno paradox, Banach-Tarski paradox, etc., those aforemen-
tioned paradoxes delimit what can be proved [2]. The first, devised by Ber-
trand Russell, indicated that informal reasoning in mathematics can yield 
contradictions, and it led to the creation of formal systems. The second, 
attributed to Epimenides, was adapted by Gödel to prove that within a for-
mal system there are true statements that are unprovable. The third leads to 
specify that a specific number cannot be proved random. 

In the meantime, it is not an understatement if Weinberg wrote in his 
book “The discovery of quantum mechanics in the mid-1920s was the most 
profound revolution in physical theory since the birth of modern physics in 
the seventeenth century”. And it is known that Quantum Mechanics is at the 
core of more recent theories intended to describe the nature of elementary 
particles, including Quantum Field Theory, Quantum Electrodynamics, 
Quantum Chromodynamics, and so forth.         

But quantum mechanics in its present form also suffers from the same 
limitations of the foundations of logic; therefore it is not surprising that there 
are difficult paradoxes that astonished physicists’ mind for almost eight 
decades. Some of these known paradoxes are: 

- Wigner’s friend; 
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- Einstein-Podolski-Rosen paradox; 
- Schrödinger’s cat paradox. 
While numerous attempts have been made throughout the past eight dec-

ades to solve all these paradoxes, it seems that only few of the present theo-
ries take these paradoxes into consideration as an inherent contradiction (or, 
to be more precise: ‘logic inexactness’) in the conceptual foundation of 
physical theories. It is perhaps because most discussions on these paradoxes 
are only given as an afterthought. 

This book was intended to discuss these problems from the viewpoint of 
Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutro-
sophy. Essentially, this new concept offers new insights on the idea of ‘iden-
tity’, which too often it has been accepted as given. Neutrosophy itself was 
developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. 
While some aspects of theoretical foundations of logic are discussed, this 
book is not intended solely for pure mathematicians, but instead for physi-
cists in the hope that some of ideas presented herein will be found useful. 
Therefore we have made our best attempt to present our arguments in an 
understandable manner. But in some chapters, we should have to introduce a 
new language to make our presentation clear. Of course, it is recommended 
to verify our propositions outlined herein via proper experiments [8]. 

The book is motivated by observation that despite almost eight decades, 
there is strong indication that some of those paradoxes known in quantum 
physics are not yet solved. In our knowledge, this is because the solution of 
those paradoxes requires re-examination of the foundations of logic itself, in 
particular on the notion of identity and multi-valuedness of entity. Therefore, 
by elucidating this axiomatic basis of logic, perhaps we could offer a new 
viewpoint for rethinking those paradoxes, in the same way Frege had to 
rethink his own propositions on the concept of ‘extension’ after reading 
Russell’s book [3].  

In Chapter 2, we discuss history of Multi-Valued logic and Lukasiewicz’s 
historical contribution on this issue. We also discuss previous attempts to 
include Multi-Valued-logic in Quantum Mechanics. 

In Chapter 3, we will introduce Neutrosophic Logic and its elementary 
notations. This chapter will be useful for subsequent discussion of solution 
of Quantum Paradox (Chapter 5). For a sense of balance we also discuss, 
albeit only in introduction manner, a few other present theories to describe 
those quantum paradoxes.   

In Chapter 4 we discuss Schrödinger’s equation and its interpretations. 
In Chapter 6 we discuss Quantum Sorites Paradox. 
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In Chapter 7 we discuss Epistemological aspects of Multi Valued logic 
and how Neutrosophic Logic treats the real sets. 

In Chapter 8 we discuss how Schrödinger equation could be generalized 
to describe quantization of celestial systems.   

Here and there, along this book we put some known paradoxes and hu-
mours in order to elucidate the concepts discussed. Our conviction is that 
paradoxes and humours serve not only for delight, but also to illustrate limi-
tation of the human language in particular in the context of ‘multi-
valuedness’ [5a]. 

As we know, some people think that paradoxes are like 'curse' to human 
language, while others think they are blessing. This is somewhat similar to 
'imperfection' in geometry. It is natural to suppose that imperfection is 'de-
fect' that human does while doing something practical, but we know that 
great architects like Le Corbusier made some great design based on the no-
tion of 'imperfection' [11]. In the same way Neutrosophy takes 'indetermi-
nacy' seriously into the truth-value system, therefore extends Lukasiewicz’s 
trivalent logic [12].  

Interestingly, via Smarandache’s paradox we can even prove that hu-
mours are also serious things. Let’s write Smarandache’s paradox: “Let A be 
some attribute (e.g., possible, present, perfect, etc.). If all is A, then the non-
A must also be A.” Therefore we can deduce that non-serious things (hu-
mours) are also serious. Using similar approach we can prove some nontriv-
ial results, such as: Non-language is also part of language (watch your ges-
ture); Non-spirit is also part of spirit (hence body-mind-spirit is unity). To 
summarize, we can re-phrase Wheeler’s paradox: “The question is: What is 
the question?” to become “The question is: What is non-What?” The reader 
will also find numerous examples of non-trivial assertions in this book. 

All in all, this book is also intended for young physicist fellows who think 
that somewhere there should be a ‘complete’ explanation of these paradoxes 
in Quantum Mechanics. If this book doesn’t answer all of their questions, it 
is our hope that at least it offers a new alternative viewpoint for these old 
questions.   

 
 
December 2005 
 
FS, VC 
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The mathematician may be compared to a designer of garments, who is utterly 
oblivious of the creatures whom his garments may fit.  To be sure, his 

art originated in the necessity for clothing such creatures, but this 
was long ago; to this day a shape will occasionally appear which will 

fit into the garment as if the garment had been made for it.  Then there 
is no end of surprise and delight. 

D'Alembert, Jean Le Rond (1717-1783) 
 [French mathematician and encyclopedist] 

 
 

2 Lukasiewicz Multi-Valued-logic: History and Introduction to Mul-
ti-Valued Algebra 

2.1 Introduction to trivalent logic and plurivalent logic 

We all have heard of typical binary logic, Yes or No. Or in a famous 
phrase by Shakespeare: “To be or not to be.” In the same way all computer 
hardwares from early sixties up to this year are built upon the same binary 
logic. 

It is known that the Classical Logic, also called Bivalent Logic for taking 
only two values {0, 1}, or Boolean Logic from British mathematician 
George Boole (1815-64), was named by the philosopher Quine (1981) 
“sweet simplicity.” [57] But this typical binary logic is not without problems. 
In the light of aforementioned ‘garment analogue’, we can compare this 
binary logic with a classic black-and-white tuxedo. It is timeless design, but 
of course you will not wear it for all occasions. Aristotle himself apparently 
knew this problem; therefore he introduced new terms ‘contingency’ and 
‘possibility’ into his modal logic [5]. And then American logician Lewis first 
formulated these concepts of logical modality. [5]. 

Throughout history, numereous mathematicians attempted to improve this 
‘classical’ logic, but the most prominent logician for introducing non-binary 
logic was Lukasiewicz. He developed the {0, a1, ..., an, 1} Multi-Valued, or 
Plurivalent Logic, while Post originated the  m-valued calculus. In simple 
words, Lukasiewicz introduced trivalent truth using his truth-value tables. 
Furthermore he used the symbols 1,  ½ and 0 to denote the three truth-values 
of his trivalent logic. Unlike Boolean binary digits, these symbols are nu-
merical, but not algebraic. Therefore one cannot perform operations with 
them. They are only used to display truth-values: 1=true, 0=false, a=2/1  
third truth-value, equidistant from both (perhaps true and perhaps false). [5]  
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For introduction, it is worth to summarize here other approaches known 
in history. 

Peirce [56], before 1910, developed semantics for three-valued logic in an 
unpublished note, but Emil Post’s dissertation (1920s) is cited for originating 
the three-valued logic [12].  Here “1” is used for truth, “1/2” for indetermi-
nacy, and “0” for falsehood.  Also, Reichenbach, leader of the logical em-
piricism, studied it. 

Halldon [52], Korner [53], Tye [58] make use of three-valued logic to 
solve Sorites Paradoxes.  They used truth tables, such as Kleene’s, but eve-
rything depended on the definition of validity. 

A three-valued paraconsistent system has the values: ‘true’, ‘false’, and 
‘both true and false’ [12]. The ancient Indian metaphysics considered four 
possible values of a statement: ‘true (only)’, ‘false (only)’, ‘both true and 
false’, and ‘neither true nor false’; J. M. Dunn [50] formalized this in a four-
valued paraconsistent system as his First Degree Entailment semantics; The 
Buddhist logic added a fifth value to the previous ones, ‘none of these’ 
(called catushkoti).   

The idea of tripartition (truth, falsehood, indeterminacy) appeared in 1764 
when J. H. Lambert investigated the credibility of one witness affected by 
the contrary testimony of another [43]. He generalized Hooper’s rule of 
combination of evidence (1680s), which was a Non-Bayesian approach to 
find a probabilistic model. Koopman in 1940s introduced the notions of 
lower and upper probability, followed by Good, and Dempster (1967) gave a 
rule of combining two arguments [38]. Shafer [46] extended it to the Demp-
ster-Shafer Theory of Belief Functions by defining the Belief and Plausibil-
ity functions and using the rule of inference of Dempster for combining two 
evidences proceeding from two different sources. Belief function is a con-
nection between fuzzy reasoning and probability. The Dempster-Shafer 
Theory of Belief Functions is a generalization of the Bayesian Probability 
(Bayes 1760s, Laplace 1780s); this uses the mathematical probability in a 
more general way, and it is based on probabilistic combination of evidence 
in artificial intelligence. 

In Lambert “there is a chance p that the witness will be faithful and exact, 
a chance q that he will be mendacious, and a chance 1-p-q that he will sim-
ply be careless” (according to Shafer [46]).  Therefore three components add 
up to 1. 

Van Fraassen [47] introduced the supervaluation semantics in his attempt 
to solve the sorites paradoxes, followed by Dummett [41] and Fine [42].  
They all tripartitioned, considering a vague predicate which having border 
cases is undefined for these border cases.  Van Fraassen took the vague 
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predicate ‘heap’ and extended it positively to those objects to which the 
predicate definitively applies and negatively to those objects to which it 
definitively doesn’t apply.  The remaining objects border was called penum-
bra.  A sharp boundary between these two extensions does not exist for a 
soritical predicate.  Inductive reasoning is no longer valid too; if S is a 
Sorites predicate, the proposition “∃n(San&¬San+1)” is false. Thus, the 
predicate Heap (positive extension) = true, Heap (negative extension) = 
false, Heap (penumbra) = indeterminate. 

Narinyani (1980) used the tripartition to define what he called the “in-
definite set” [44], and Atanassov (1982) continued on tripartition and gave 
five generalizations of the fuzzy set, studied their properties and applications 
to the neural networks in medicine [43]: 
a) Intuitionistic Fuzzy Set (IFS): Given an universe E, an IFS A over E is a 
set of ordered triples <universe_element, degree_of_membership_to_A(M), 
degree_of_non-membership_to_A(N)> such that M+N ≤ 1 and M, N ∈ [0, 
1].  When M + N = 1 one obtains the fuzzy set, and if M + N < 1 there is an 
indeterminacy I = 1-M-N. 

   b) Intuitionistic L-Fuzzy Set (ILFS): Is similar to IFS, but M and N belong 
to a fixed lattice L. 

   c) Interval-valued Intuitionistic Fuzzy Set (IVIFS): Is similar to IFS, but M 
and N are subsets of [0, 1] and sup M + sup N ≤ 1. 

   d) Intuitionistic Fuzzy Set of Second Type (IFS2): Is similar to IFS, but M2 
+ N2 ≤ 1.  M and N are inside of the upper right quarter of unit circle. 

 We will discuss a generalization of fuzzy set in the form of Neutrosophy 
in the subsequent chapter. Now it seems worth to take a look first at Lu-
kasiewicz’s initial method, and a few subsequent developments.   

2.2 History of Lukasiewicz and Multi-Valued logic 

The research of Polish thinker Lukasiewicz can be regarded as a fresh de-
parture from Aristotelian binary logic [5]. He was a leading member of War-
saw school of logic, and published his paper "0 logice trojwartoscioweJ" 
("On Trivalent Logic") in 1920. 

In fact, our intuition perhaps has told us numerous times that something is 
not quite right with binary logic, Yes or No. It seems like there is no sunrise 
or sunset, because all we observe is only ‘pure dark’ in the middle of the 
night, or ‘pure bright’ like in the high noon without cloud. Yet, we find sun-
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set and sunrise always looks beautiful. In the same way, the ordinary use 
of Aristotelian logic seems to be too restrictive. This is why Lukasiewicz 
argued that the traditional Aristotelian logic goes “against all our intuitions.” 
Various subsequent developments after Lukasiewicz are also called ‘in-
tuitionistic logic’. 

It would be better to begin with a short biography of Jan Lukasiewicz 
[10a], one of the most notable pioneers of Multi-Valued-logic. Jan Lu-
kasiewicz was born at 21 December 1878 in Lvov, Austrian Galicia (now 
Ukraine). He died at 13 February 1956 in Dublin, Ireland. Jan’s father, Luke 
Lukasiewicz was a captain in the Austrian army, because Lvov was attached 
to Austria in the 1772 partition of Poland. Jan’s mother, Leopoldine Holtzer, 
was the daughter of an Austrian civil servant. 

Young Lukasiewicz was interested in mathematics at school and entered 
the University of Lvov where he studied mathematics and philosophy. Then 
he continued to work for his doctorate, which was awarded in 1902 with the 
highest distinction possible. Wishing to lecture in universities, Lukasiewicz 
continued to study, submitting his thesis to the University of Lvov in 1906. 
Then in 1911 he was promoted to an extraordinary professor at Lvov. And 
there were large changes, which would open new possibilities to Lu-
kasiewicz. At the outbreak of World War I, Germany and Austrian-Hungary 
took control of most of his country.  And it resulted in refounding of the 
University of Warsaw, which began to operate as a Polish University in 
November 1915.  

Lukasiewicz was invited to the new University of Warsaw when it re-
opened in 1915. It was an exciting time in Poland, and a new Kingdom of 
Poland was declared on 5 November 1916. Lukasiewicz became Polish 
Minister of Education in 1919 and a professor at Warsaw University from 
1920-1939; during this period Lukasiewicz was twice rector of Warsaw 
University. 

During this time Lukasiewicz and Lesniewski founded the Warsaw 
School of Logic. Tarski, who was a student of Lesniewski, would make this 
school internationally famous. Lukasiewicz published his famous text Ele-
ments of Mathematical Logic in Warsaw in 1928 (the English translation 
appeared in 1963).                 

In 1930, Lukasiewicz published his paper "Philosophische Bemerkungen 
zu mehrwertigen Systemen des Aussagenkalkuels" (Philosophical Observa-
tions on Polyvalent Systems of Propositional Logic). In this paper the author 
explains his ideas, from the point of view of both logic and philosophy.[5] In 
order to give illustrations of Lukasiewicz’s own arguments, let use quote his 
paragraphs from this cited paper: 
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“When I became aware of the incompatibility of traditional theorems of modal 
propositions in 1920, I was in the process of establishing a normal bivalent pro-
positional calculus based on the matrix method. At that time I was convinced that 
it was possible to demonstrate all the thesis of the ordinary propositional calculus 
assuming that propositional variables could take on only two values, "0" (false), 
and "1" (true). This assumption corresponds to the basic theorem that every 
proposition is either true or false. For brevity's sake, I will refer to it as the law of 
bivalence. Although it is sometimes referred to as the law of excluded middle, I 
prefer to restrict this latter term to the well known principle of classical logic 
which states that two contradictory propositions cannot both be false at the same 
time."  

"Our whole system of logic is based on the law of bivalence,  though it has been 
fiercely disputed since ancient times. Aristotle knew this law, but he questioned its 
validity as it referred to future contingent propositions. The law of bivalence was 
flatly rejected by the Epicureans. Chrysippus and the Stoics were the first ones to 
develop it fully and incorporate it as a principle of their dialectic, the equivalent 
of modern day propositional calculus. The arguments regarding the law of biva-
lence have metaphysical overtones: its supporters are resolute determinists; 
whereas its opponents generally have an indeterministic Weltanschauung. Thus, 
we are once again in the area of concepts of possibility and necessity.” 
Lukasiewicz’s trivalent logic is known as infinite-value logic º, and it has 

been developed further in fuzzy-logic. It has definitions and axioms that can 
be summarized as follows [48]: 

D~  ⊃⊥= AA~         (1.1) 
Dt ⊥=~t          (1.2) 
º1 ( )ABA ⊃⊃         (1.3) 

º2 ( ) ( ) ( )( )CACBBA ⊃⊃⊃⊃⊃         (1.4) 

∨D  ( ) BBABA ⊃⊃=∨        (1.5) 
⊕D   BABA ⊃=⊕ ~        (1.6) 

º3 ( )( ) ( )( )AABBBA ⊃⊃⊃⊃⊃      (1.7) 

º4 ( ) ( )( ) ( )ABBA ⊃⊃⊃⊥⊃⊃⊥      (1.8) 
For description and discussion of some notations used above, the reader is 

referred to [49]. Of course, it is not the only possible approach, as we shall 
see subsequently.  

Nowadays, trivalent logic has been applied to various fields, including for 
practical purposes. While the impact of Multi-Valued Logic to hardware 
design remains sluggish, there are already some attempts to bring this con-
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cept of multi-valued logic into circuit design, resulting in a few US pat-
ents. [125] 

2.3 Introduction to Multi-Valued-Algebra, Chang’s Notation 

A natural path for development of Lukasiewicz’s trivalent logic leads us 
to Multi-Valued-algebra. Of course, it is not the only possible approach, as 
we shall see subsequently. Multi-Valued-algebra is to Boolean algebra paral-
lel as Lukasiewicz to bivalent logic. It was devised in order to introduce non-
standard binary logic into Boolean algebra. In the end we find a much more 
profound system of algebra. 

Multi-Valued-algebra was developed by Chang [9] as the algebraic coun-
terpart of Lukasiewicz logic. They are extensions of Boolean algebras just as 
Lukasiewicz logic is an extension of classical logic: boolean algebras coin-
cide with idempotent Multi-Valued-algebras. As a summary of Multi-
Valued-algebra, we wrote here a few theorems developed by Chang [9][48]. 
A Multi-Valued-algebra is a structure ( )1,0,,, ¬⊕= AA satisfying the 
following equations [9]: 

 zyxzyx ⊕⊕=⊕⊕ )()(     (1.9) 
 yxyx ⊕=⊕       (1.10) 
 xx =⊕⊥       (1.11) 
 ⊥¬⊥=¬⊕x      (1.12) 
  xx =¬¬       (1.13) 

xxyyyx ⊕⊕¬¬=⊕⊕¬¬ )()(    (1.14) 
There are of course, other possible approaches to extend trivalued logic, 

like ‘syntactic theory’ [5a]. Some authors argue that syntactic theory offers 
advantages over modal logic. But we will discuss in the next chapter another 
recent development, which is intended as generalization of fuzzy-logic, i.e. 
Neutrosophic logic. 

2.4 Linkage between Multi-Valued Logic and Quantum Mechanics 

At this point a physicist fellow could waive his hand and ask a question: 
“Hello, anybody here? Why after all should we include this messy Multi-
Valued-logic into our theories? I could predict elementary particles without 
any reference to this multi-valuedness, and we could live happily ever af-
ter.”[132a][132b] Excellent question, it’s great to hear that at least some of 
our fellows could realize how deep the problem is. Now, here’s our com-
ment. (As Gauss would say: “Let’s forget clamour of Boetians for a while.”) 
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First of all, the use of Multi-Valued-logic to describe quantum systems 
has been proposed by at least dozen of quantum physicists (including 
Heisenberg, as we will describe in subsequent chapter). Other physicists 
have noted that conventional statistical theories cannot describe quantum 
phenomena sufficiently. This is because of some reasons: 

(i) Conventional statistic theories are inadequate to describe more 
realistic systems, because it is mainly based on Boolean logic. 
Primas wrote [17d]: 

“…we summarize the traditional axiomatization of calculus of 
probability in terms of Boolean algebras and its set-theoretical re-
alization in terms of Kolmogorov probability spaces. Since the axi-
oms of mathematical probability theory say nothing about the con-
ceptual meaning of “randomness” one considers probability as 
property of the generating conditions of a process so that one can 
relate randomness with predictability (or retrodictability). In the 
measure-theoretical codification of stochastic processes genuine 
chance processes can be defined rigorously as so-called regular 
processes which do not allow a long-term prediction.” 

(ii) Conventional statistic theories cannot describe all aspects of ‘un-
certainty’. Therefore it is required to extend this theory to gener-
alized concept, using trivalent logic, such as Fuzzy-Logic and 
Neutrosophy. For instance, Zwick noted:  

“…set theory and probability theory are inadequate frameworks to 
capture the full scope of the concept of “uncertainty.” Uncertainty 
in set theory means nonspecificity; in probability theory it derives 
from conflicting likelihood claims. Generalizations of set and 
probability theories, for example, fuzzy set theory and fuzzy meas-
ure theory, expand the concept of uncertainty while encompassing 
these standard connotations; they are thus potentially of great value 
for science.” [17a, p.1] 

(iii)      Quantum phenomena are quite different from other phenomena 
we used to know in daily experience. 

Nonetheless, the use of Multi-Valued-logic remains unpopular, because 
thus far only very few physicists seem to care if Multi-Valued-logic offers 
any real advantage toward better understanding of quantum phenomena. But 
let us point out here a few arguments in favour of the use of Multi-Valued-
logic to describe quantum systems. 

For instance Zwick noted [17a, p. 7]: 
“Quantum mechanics is important for Nicolescu beyond its implications 
concerning levels of reality. Nicolescu advocates a “logic of included mid-
dles,” … and illustrates his position by pointing to the wave-particle dual-
ity, in which a contradiction at a classical level is reconciled at the quantum 
level. If A is a wave and non-A a particle, then the [A, non-A] contradic-
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tion at the classical (lower) level is resolved by T, the system at the quantum 
higher level. Nicolescu argues that this logical structure is open-ended, that 
new contradictions emerge at the upper level which can be resolved by a 
still higher level. This implies the existence of a “level of reality” higher 
than quantum theory, but no suggestion is given about what this higher 
level might be. Contradictory pairs abound in quantum theory, but exam-
ples from domains other than physics are unfortunately not offered. 
For systems theorists, the view that classical 2-valued logic may not be 
adequate to describe reality needs no justification from quantum theory, as 
it is well-articulated in the systems -- especially the fuzzy -- literature, 
though this is not mentioned in the essay…, which goes back at least to 
Lukasiewicz (1930).” 

 
Furthermore, Slavnov [17b] has argued that it is possible to describe 

Quantum Mechanical systems without the use of quantum logic, i.e. by using 
Multi-Valued-logic. This is quite similar with Jammer’s discussion of Rei-
chenbach’s theory [118]. Reichenbach tackled probability as an approach 
and weighed its value dealing with indeterminacy and pondered its massive 
philosophical issues. He attempted to apply probability to logical proposi-
tions. Essentially, Reichenbach innovated this: trichon(true, mu, false). His 
critics responded, quintessentially, "tertium non datur." Von Weizsäcker's 
infinite valued logic is better than any three valued approach, but von 
Weizsäcker, like many of his colleagues, via his apparent assumption of 
analytic stoppability, seemed to fail to see quantum reality as emergent and 
unstoppable process [118]. 

In the mean time, Burkhard Heim also considered Multi-Valued-logic in 
his syntrometry/quantum geodynamics [17c]. 

Therefore it could be summarized here, while the notion of Multi-Valued-
logic is not so common yet, at least there are some fundamental reasons to 
consider its use seriously, in particular when describing paradoxical aspects 
of Quantum Phenomena.  We will discuss implications of using Multi-
Valued-logic if subsequent chapters, in particular in our discussion of solu-
tion of Schrödinger’s cat paradox. 

2.5 Exercise 

This exercise section is in particular intended for physicist fellows who 
keep on thinking that a revision to classical logic is merely a matter of 
choice (like the 'Axiom of Choice') or only another mathematical technique.  

Some of these examples will illustrate clearly that somehow the basic 
logic we use to derive conclusions has inherent 'imperfection.' These exam-
ples are where mathematics becomes look bizarre. Perhaps someday mathe-
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maticians would call this subject as different category like 'The art of 
absurd mathematics and weird algebra.” 

If you can find out where the logic slippery is in these examples, then you 
can go on to the next chapters. If you don't find it, please take a look again 
more carefully.    

The most part of these examples is from scijokes forum [13]. 
 
No. Example Source 

1 Theorem: All numbers are equal to zero. 

Proof: Suppose that a=b. Then 

a = b 

a^2 = ab 

a^2 - b^2 = ab - b^2 

(a + b)(a - b) = b(a - b) 

a + b = b 

a = 0 

Benjamin Tilly 

2 Theorem : 3=4 

Proof: 

Suppose: 

        a    +    b    =    c 

This can also be written as: 

     4a - 3a + 4b - 3b = 4c - 3c 

After reorganizing: 

     4a + 4b - 4c = 3a + 3b - 3c 

Take the constants out of the brackets: 

Michael Ketzlick 
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No. Example Source 

     4 * (a+b-c) = 3 * (a+b-c) 

Remove the same term left and right: 

            4 = 3 

3 Theorem: 1$ = 1c. 

Proof: 

1$ = 100c 

   = (10c)^2 

   = (0.1$)^2 

   = 0.01$ 

   = 1c 

Here $ means dollars and c means cents.  

Benjamin Tilly 

4 Theorem: e=1 

Proof: 

 2*e = f 

  2^(2*pi*i)e^(2*pi*i) = f^(2*pi*i) 

  e^(2*pi*i) = 1 

so: 

  2^(2*pi*i) = f^(2*pi*i) 

  2=f 

thus: 
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No. Example Source 

  e=1 

5 Theorem: 1 + 1 = 2 

Proof: 

n(2n - 2) = n(2n - 2) 

n(2n - 2) - n(2n - 2) = 0 

(n - n)(2n - 2) = 0 

2n(n - n) - 2(n - n) = 0 

2n - 2 = 0 

2n = 2 

n + n = 2 

or setting n = 1 

1 + 1 = 2 

(Comment: what if n > 1 ?) 

John Baez 

6 Theorem: 1 = 0 

Proof: 

x=1 

x^2=x 

x^2-1=x-1 

(x+1)(x-1)=(x-1) 

(x+1)=(x-1)/(x-1) 
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No. Example Source 

x+1=1 

x=0 

0=1 

7 Theorem: All numbers are equal. 

Proof: 

Choose arbitrary a and b, and let t = a + b. Then 

a + b = t 

(a + b)(a - b) = t(a - b) 

a^2 - b^2 = ta - tb 

a^2 - ta = b^2 - tb 

a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 

(a - t/2)^2 = (b - t/2)^2 

a - t/2 = b - t/2 

Therefore:  

                                 a = b 

J. Jamison 

8 Theorem: n=n+1 

Proof: 

(n+1)^2 = n^2 + 2*n + 1 

Bring 2n+1 to the left: 

(n+1)^2 - (2n+1) = n^2 
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No. Example Source 

Substract n(2n+1) from both sides and factoring, 

we have: 

(n+1)^2 - (n+1)(2n+1) = n^2 - n(2n+1) 

Adding 1/4(2n+1)^2 to both sides yields: 

(n+1)^2 - (n+1)(2n+1) + 1/4(2n+1)^2 = n^2 - 

n(2n+1) + 1/4(2n+1)^2 

This may be written: 

[ (n+1) - 1/2(2n+1) ]^2 = [ n - 1/2(2n+1) ]^2 

Taking the square roots of both sides: 

(n+1) - 1/2(2n+1)  = n - 1/2(2n+1) 

Add 1/2(2n+1) to both sides: 

                      n+1 = n 

9 Theorem: It is possible to square the circle. 

Proof: 

No mathematician has squared the circle. 

Therefore: No one who has squared the circle is a 

mathematician. 

Therefore: All who have squared the circle are 

non-mathematicians. 

Therefore: Some non-mathematician has squared 

 



  23 

No. Example Source 

the circle. 

Therefore: It is possible to square to circle. [QED] 

10  Theorem: ln(2) = 0 

Proof: 

Consider the series equivalent of ln 2: 

ln 2 = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 ... 

Rearange the terms: 

ln 2 = (1 + 1/3 + 1/5 + 1/7 ...) - (1/2 + 1/4 + 1/6 + 

1/8 ...) 

Thus: 

ln 2 = (1 + 1/3 + 1/5 + 1/7 ...) + (1/2 + 1/4 + 1/6 + 

1/8 ...) - 2 * (1/2 + 1/4 + 1/6 + 1/8 ...) 

Combine the first to series: 

ln 2 = (1 + 1/2 + 1/3 + 1/4 + 1/5 ...) - (1 + 1/2 + 1/3 

+ 1/4 + 1/5 ...) 

Therefore: 

                 ln 2 = 0     

 

11 All dogs are animals. 

All cats are animals. 

Therefore, all dogs are cats. 

 



  24

No. Example Source 

12 Alternative to #11: “…all dogs are pets and all 

dogs bark, and cats are pets, too, and therefore cats 

bark.”  

From Umberto’s 

book, Foucault 

Pendulum, p. 50 

13 A statistician can have his head in an oven and his 

feet in ice, and he will say that on the average he 

feels fine. 

Comment: An 

example, which 

could be regarded 

as (much better) 

simplified version 

of Schrödinger 's 

cat paradox. 

14 Feynman's joke: “We decide that trivial mean 

'proved.' So we start making joke with mathemati-

cian colleagues: You mathematicians could only 

prove 'trivial' theorems.” 

From G. Johnson's 

book 'Strange 

beauty' (1999). 
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A logical theory may be tested by its capacity for dealing with puzzles, and it is a whole-
some plan, in thinking about logic, to stock the mind with as many puzzles as possible, since 

these serve much the same purpose as is served by experiments in physical science. 
---Bertrand Russell 

 
 

3 Neutrosophy  

In this chapter we discuss how Neutrosophy offers a better alternative 
than Lukasiewicz’s trivalent logic, in particular because it offers freedom in 
the value of ‘indeterminacy’. Essentially, Neutrosophy is an attempt to gen-
eralize Fuzzy Logic introduced by L. Zadeh. 

The multi-valued logic of Lukasiewicz was replaced by Goguen [51] and 
Zadeh [59][60] with an Infinite-Valued Logic (of continuum power, as in the 
classical mathematical analysis and classical statistics) called Fuzzy Logic, 
where the truth-value can be any number in the closed unit interval [0, 1].  
The Fuzzy Set was introduced by Zadeh in 1975. 

Therefore, we could generalize the fuzzy logic to a transcendental logic, 
called “neutrosophic logic” [12]: where the interval [0, 1] is exceeded, i.e. , 
the percentages of truth, indeterminacy, and falsity are approximated by non-
standard subsets – not by single numbers, and these subsets may overlap and 
exceed the unit interval in the sense of the non-standard analysis; also the 
superior sums and inferior sum, nsup = sup T + sup I + sup F ∈ ]-0, 3+[, may 
be as high as 3 or 3+, while ninf = inf T + inf I + inf F ∈ ]-0, 3+[, may be as 
low as 0 or –0.   

This chapter starts with an introduction and formalization of Neutrosophy 
concepts, and then we discuss non-standard analysis because it is necessary 
in defining non-standard real subsets and especially the non-standard unit 
interval ]-0, 1+[, all used by neutrosophic logic. Thereafter the neutrosophic 
logic components are introduced followed by the definition of neutrosophic 
logic and neutrosophic logic connectors, which are based on set operations.  
Original work consists in the definition of neutrosophic logic and neutroso-
phic connectors as an extension of intuitionistic fuzzy logic and the compari-
son between NL and other logics, especially the IFL. 

3.1 Introduction to Neutrosophy [12a] 

Neutrosophy studies the origin, nature, and scope of neutralities, as well as 
their interactions with different ideational spectra. It considers that every 
idea <A> tends to be neutralized, balanced by <Non-A> ideas - as a state of 
equilibrium. Neutrosophy is the base of neutrosophic logic, neutrosophic set 
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that generalizes the fuzzy set, and of neutrosphic probability and neutro-
sophic statistics, which generalize the classical and imprecise probability 
and statistics respectively. From etymology viewpoint, Neutro-sophy comes 
from [French neutre < Latin neuter, neutral, and Greek sophia, 
skill/wisdom] means knowledge of neutral thought. 

Neutrosophy is a branch of philosophy that studies the origin, nature, and 
scope of neutralities, as well as their interactions with different ideational 
spectra. Neutrosophic Logic is a multiple-valued logic in which each propo-
sition is estimated to have the percentages of truth, indeterminacy, and fal-
sity in T, I, and F respectively, where T, I, F are standard or non-standard 
subsets included in the non-standard unit interval ] -0, 1+[.  It is an extension 
of fuzzy, intuitionistic, paraconsistent logics. 

This mode of thinking: 
- proposes new philosophical theses, principles, laws, methods, formulas, 

movements; 
- reveals that world is full of indeterminacy; 

- interprets the uninterpretable { i.e. to deal with paradoxes [55] and 
paradoxism [61] }; 

- regards, from many different angles, old concepts, systems: showing 
that an idea, which is true in a given referential system, may be false 
in another one, and vice versa; 

- attempts to make peace in the war of ideas; 

- measures the stability of unstable systems, and instability of stable 
systems. 

3.2 Introduction to Non-Standard Analysis [12a] 

In 1960s Abraham Robinson has developed the non-standard analysis, a 
formalization of analysis and a branch of mathematical logic, which rigorously 
defines the infinitesimals. Informally, an infinitesimal is an infinitely small 
number.  Formally, x is said to be infinitesimal if and only if for all positive 
integers n one has |x| < 1/n.  Let ε>0 be a such infinitesimal number.  The hy-
per-real number set is an extension of the real number set, which includes 
classes of infinite numbers and classes of infinitesimal numbers.  Let’s consider 
the non-standard finite numbers 1+ = 1+ε, where “1” is its standard part and “ε” 
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its non-standard part, and –0 = 0-ε, where “0” is its standard part and “ε” its 
non-standard part.   

Then, we call ] -0, 1+ [ a non-standard unit interval.  Obviously, 0 and 1, and 
analogously non-standard numbers infinitely small but less than 0 or infinitely 
small but greater than 1, belong to the non-standard unit interval.  Actually, by 
“-a” one signifies a monad, i.e. a set of hyper-real numbers in non-standard 
analysis: 

      (-a)= {a-x: x0R*, x is infinitesimal}, 
     and similarly “b+” is a monad: 
      (b+)= {b+x: x0R*, x is infinitesimal}. 
Generally, the left and right borders of a non-standard interval ] -a, b+ [ are 

vague, imprecise, themselves being non-standard (sub)sets (-a) and (b+) as de-
fined above. Combining the two before mentioned definitions one gets, what 
we would call, a binad of  “-c+”: 

(-c+)= {c-x: x0R*, x is infinitesimal} c {c+x: x0R*, x is infinitesimal}, which 
is a collection of open punctured neighborhoods (balls) of c.  

Of course, –a < a and b+ > b.  No order between –c+ and c. 
Addition of non-standard finite numbers with themselves or with real 

numbers: 
-a + b    = -(a + b) 
 a + b+  = (a + b)+ 

-a + b+  = -(a + b)+ 

-a + -b  = -(a + b)  (the left monads absorb themselves) 
-a + -b  = -(a + b)  (the left monads absorb themselves) 
 a+ + b+ = (a + b)+  (analogously, the right monads absorb themselves). 
Similarly for subtraction, multiplication, division, roots, and powers of 

non-standard finite numbers with themselves or with real numbers. 
By extension let inf ] -a, b+ [ = -a and sup ] -a, b+ [ = b+. 

3.3 Definition of Neutrosophic Components [12a] 

Let T, I, F be standard or non-standard real subsets of ] -0, 1+ [,  
 with    sup T = t_sup, inf T = t_inf, 
            sup  I = i_sup,   inf I = i_inf, 
            sup F = fsup,  inf F = finf, 
            and     nsup = tsup+isup+fsup,  
            ninf  = tinf+iinf+finf. 
The sets T, I, F are not necessarily intervals, but may be any real sub-unitary 

subsets:  discrete or continuous; single-element, finite, or (countably or un-
countably) infinite; union or intersection of various subsets; etc. 
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They may also overlap.  The real subsets could represent the relative er-
rors in determining t, i, f (in the case when the subsets T, I, F are reduced to 
points). 

In the next stage of development, T, I, F, called neutrosophic components, 
will represent the truth value, indeterminacy value, and falsehood value respec-
tively referring to neutrosophy, neutrosophic logic, neutrosophic set, neutroso-
phic probability, and neutrosophic statistics.     

This representation is closer to the human mind reasoning.  It character-
izes/catches the imprecision of knowledge or linguistic inexactitude received 
by various observers (that’s why T, I, F are subsets - not necessarily single-
elements), uncertainty due to incomplete knowledge or acquisition errors or 
stochasticity (that’s why the subset I exists), and vagueness due to lack of 
clear contours or limits (that’s why T, I, F are subsets and I exists; in particu-
lar for the appurtenance to the neutrosophic sets). 

One has to specify the superior (x_sup) and inferior (x_inf) limits of the 
subsets because in many problems arises the necessity to compute them. 

3.4 Formalization [12a] 

Let's note by <A> an idea, or proposition, theory, event, concept, entity, by 
<Non-A> what is not <A>, and by <Anti-A> the opposite of <A>.  Also, 
<Neut-A> means what is neither <A> nor <Anti-A>, i.e. neutrality in between 
the two extremes.  And <A'> a version of <A>. 
     <Non-A> is different from <Anti-A>.   

For example: 

     If <A> = white, then <Anti-A> = black (antonym), 
but <Non-A> = green, red, blue, yellow, black, etc. (any color, except 

white), 
while <Neut-A> = green, red, blue, yellow, etc. (any color, except white 

and black),  
and <A'> = dark white, etc. (any shade of white). 
<Neut-A> η <Neut-(Anti-A)>, neutralities of <A> are identical with neu-

tralities of <Anti-A>. 
<Non-A> includes <Anti-A>, and <Non-A> includes <Neut-A> as well,  

also 

     <A> intersected with <Anti-A> is equal to the empty set, 
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     <A> intersected with <Non-A> is equal to the empty set. 

<A>, <Neut-A>, and <Anti-A> are disjoint two by two. 

<Non-A> is the completeness of <A> with respect to the universal set.   
Fundamental Theory of Neutrosophy can be summarized as follows: 

Every idea <A> tends to be neutralized, diminished, balanced by 
<Non-A> ideas (which includes, besides Hegel’s <Anti-A>, the 
<Neut-A> too) - as a state of equilibrium.  In between <A> and 
<Anti-A> there are infinitely many <Neut-A> ideas, which may 
balance <A> without necessarily <Anti-A> versions. 

To neuter an idea one must discover all its three sides:  of sense (truth), of non-
sense (falsity), and of undecidability (indeterminacy) - then reverse/ combine 
them.  Afterwards, the idea will be classified as neutrality. 

     Furthermore, Neutrosophy can be viewed as delimitation of other phi-
losophical theories: 
a) Neutrosophy is based not only on analysis of oppositional propositions, as 
dialectic does, but on analysis of neutralities in between them as well.  

b) While epistemology studies the limits of knowledge and justification, 
neutrosophy passes these limits and takes under magnifying glass not only 
defining features and substantive conditions of an entity <E> - but the whole 
<E'> derivative spectrum in connection with <Neut-E>.  Epistemology stud-
ies philosophical contraries, e.g. <E> versus <Anti-E>, neutrosophy studies 
<Neut-E> versus <E> and versus <Anti-E> which means logic based on 
neutralities. 
c-d) Neutral monism asserts that ultimate reality is neither physical nor men-
tal.  Neutrosophy considers a more than pluralistic viewpoint:  infinitely 
many separate and ultimate substances making up the world. 
e) Hermeneutics is the art or science of interpretation, while neutrosophy 
also creates new ideas and analyzes a wide range ideational field by balanc-
ing instable systems and unbalancing stable systems. 

f) Philosophia Perennis tells the common truth of contradictory viewpoints; 
neutrosophy combines with the truth of neutral ones as well. 

g) Fallibilism attributes uncertainty to every class of beliefs or propositions, 
while neutrosophy accepts 100% true assertions, and 100% false assertions as 
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well - moreover, checks what referential systems the percent of uncertainty 
approaches zero or 100. 

3.5 Evolution of an idea [12a] 

<A> in the world is not cyclic, but discontinuous, knotted, boundless: 
<Neut-A> = existing ideational background, before arising <A>; 

<Pre-A> = a pre-idea, a forerunner of <A>; 

<Pre-A'> = spectrum of <Pre-A> versions; 

<A> = the idea itself, which implicitly gives birth to  

<Non-A> = what is outer <A>; 

<A'> = spectrum of <A> versions after (mis)interpretations      

       (mis)understanding by different people, schools, cultures; 

<A/Neut-A> = spectrum of <A> derivatives/deviations, because <A> par-
tially mixes/melts first with neuter ideas; 

<Anti-A> = the straight opposite of <A>, developed inside of <Non-A>; 

<Anti-A'> = spectrum of <Anti-A> versions after                
            (mis)interpretations (mis)understanding by different 
            people, schools, cultures;   

<Anti-A/Neut-A> = spectrum of <Anti-A> derivatives/deviations,    

which means partial <Anti-A> and partial <Neut-A> combined in 
various percentage; 

<A'/Anti-A'> = spectrum of derivatives/deviations after mixing    

               <A'> and <Anti-A'> spectra;  

<Post-A> = after <A>, a post-idea, a conclusiveness; 

<Post-A'> = spectrum of <Post-A> versions; 
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<Neo-A> = <A> retaken in a new way, at a different level, in new   condi-
tions, as in a non-regular curve with inflection points, in evolute and involute 
periods, in a recurrent mode; the life of <A> restarts. 

<Neo-A> has a larger sphere (including, besides parts of old <A>, parts 
of <Neut-A> resulted from previous combinations), more characteristics, is 
more heterogeneous (after combinations with various <Non-A> ideas).  But, 
<Neo-A>, as a whole in itself, has the tendency to homogenize its content, 
and then to de-homogenize by mixture with other ideas. 

And so on, until the previous <A> gets to a point where it paradoxically 
incorporates the entire <Non-A>, being indistinct of the whole.  And this is 
the point where the idea dies, cannot be distinguished from others. The 
Whole breaks down, because the motion is characteristic to it, in a plurality 
of new ideas (some of them containing grains of the original <A>), which 
begin their life in a similar way.   

Thus, in time, <A> arrives to mix with <Neut-A> and <Anti-A>. 
 

3.6 Definition of Neutrosophic Logic [12][22] 

As an alternative to the existing logics we propose a non-classical one, 
which represents a mathematical model of uncertainty, vagueness, ambigu-
ity, imprecision, undefined, unknown, incompleteness, inconsistency, redun-
dancy, contradiction.   

A logic in which each proposition is estimated to have the percentage of 
truth in a subset T, the percentage of indeterminacy in a subset I, and the per-
centage of falsity in a subset F, where T, I, F are defined above, is called Neu-
trosophic Logic. 

We use a subset of truth (or indeterminacy, or falsity), instead of a number 
only, because in many cases we are not able to exactly determine the percent-
ages of truth and of falsity but to approximate them: for example a proposition 
is between 30-40% true and between 60-70% false, even worst: between 30-
40% or 45-50% true (according to various analyzers), and 60% or between 66-
70% false. 

The subsets are not necessary intervals, but any sets (discrete, continuous, 
open or closed or half-open/half-closed interval, intersections or unions of the 
previous sets, etc.) in accordance with the given proposition. 

A subset may have one element only in special cases of this logic. 
Constants: (T, I, F) truth-values, where T, I, F are standard or non-standard 

subsets of the non-standard interval ] -0, 1+ [, where ninf = inf T + inf I + inf F     
≥ -0, and nsup = sup T + sup I + sup F ≤ 3+. 



  32

Atomic formulas: a, b, c, …..  
Arbitrary formulas: A, B, C, … 
The neutrosophic logic is a formal frame trying to measure the truth, inde-

terminacy, and falsehood.  There are many neutrosophic rules of inference 
[39]. 

Let’s make use from the modal logic the notion of  “world”, which is a 
semantic device of what the world might have been like.  Then, one says that 
the neutrosophic truth-value of a statement A, NLt(A) = 1+ if A is ‘true in all 
possible worlds’ (syntagme first used by Leibniz) and all conjunctures, that 
one may call “absolute truth” (in the modal logic it was named necessary 
truth, Dinulescu-Campina [40] names it ‘intangible absolute truth’), whereas 
NLt(A) = 1 if A is true in at least one world at some conjuncture, we call this 
“relative truth” because it is related to a ‘specific’ world and a specific con-
juncture (in the modal logic it was named possible truth).   

Similarly for absolute and relative falsehood and absolute and relative in-
determinacy. The neutrosophic inference [38], especially for plausible and 
paradoxist information, is still a subject of intense research today. 

3.7 Differences between Neutrosophic Logic (NL) and Intuitionistic 
Fuzzy Logic (IFL) 

The differences between IFL and NL (and the corresponding intuitionistic 
fuzzy set and neutrosophic set) are [12]: 

a) Neutrosophic Logic can distinguish between absolute truth (truth in all 
possible worlds, according to Leibniz) and relative truth (truth in at least one 
world), because NL(absolute truth)=1+ while NL(relative truth)=1.  This has 
application in philosophy (see the neutrosophy).  That’s why the unitary 
standard interval [0, 1] used in IFL has been extended to the unitary non-
standard interval ]-0, 1+[ in NL. Similar distinctions for absolute or relative 
falsehood, and absolute or relative indeterminacy are allowed in NL. 

b) In NL there is no restriction on T, I, F other than they are subsets of ]-0, 
1+[, thus:    

           -0 ≤ inf T + inf I + inf F ≤ sup T + sup I +  sup F ≤ 3+.  
This non-restriction allows paraconsistent, dialetheist, and incomplete in-

formation to be characterized in NL {i.e. the sum of all three components if 
they are defined as points, or sum of superior limits of all three components 
if they are defined as subsets can be >1 (for paraconsistent information com-
ing from different sources) or < 1 for incomplete information}, while that 
information can not be described in IFL because in IFL the components T 
(truth), I (indeterminacy), F (falsehood) are restricted either to t+i+f=1 or to 



  33 

t2 + f2 ≤ 1, if T, I, F are all reduced to the points t, i, f respectively, or to 
sup T + sup I + sup F = 1 if T, I, F are subsets of [0, 1]. 

 
c) In NL the components T, I, F can also be non-standard subsets in-

cluded in the unitary non-standard interval ]-0, 1+[, not only standard subsets 
included   in the unitary standard interval [0, 1] as in IFL. 

 
d) NL, like dialectism, can describe   paradoxes, NL(paradox) = (1, I, 1), 

while IFL can not describe a paradox because the sum of components should 
be 1 in IFL([11],[12],[13]). 

 

3.8 Operations with Sets [12] 

We will present these set operations in order to be able to introduce the 
neutrosophic connectors. 
         Let S1 and S2 be two (unidimensional) real standard or non-standard 
subsets, then one defines: 

3.8.1  Addition of Sets: 
S1rS2 = {x | x=s1+s2, where s10S1 and s20S2},            
with inf (S1rS2)= inf S1 + inf S2, sup (S1rS2) = sup S1 + sup S2; 
and, as some particular cases, we have 
{a}rS2  = {x | x=a+s2, where s20S2} 
with inf ({a}rS2) = a + inf S2, sup ({a}rS2) = a + sup S2. 
 
3.8.2  Subtraction of Sets: 
S1sS2 = {x | x=s1-s2, where s10S1 and s20S2}. 
For real positive subsets (most of the cases will fall in this range) one 
gets        
inf (S1sS2) = inf S1 - sup S2, sup (S1sS2) = sup S1 - inf S2; 
and, as some particular cases, we have 
{a}sS2  = {x | x=a-s2, where s20S2}, 
with inf ({a}sS2) = a - sup S2, sup ({a}sS2) = a - inf S2; 
also {1+}sS2  = {x | x=1+-s2, where s20S2}, 
with (inf {1+}sS2) = 1+ - sup S2, sup ({1+}sS2) = 1 - inf S2. 
 
3.8.3  Multiplication of Sets: 
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S1uS2 = {x | x=s1⋅s2, where s10S1 and s20S2}. 
For real positive subsets (most of the cases will fall in this range) one 
gets  
inf (S1uS2) = inf S1 ⋅ inf S2, sup (S1uS2) = sup S1 ⋅ sup S2; 
and, as some particular cases, we have 
{a}uS2  = {x | x=a⋅s2, where s20S2}, 
with inf ({a}uS2) = a ⋅ inf S2, sup ({a}uS2) = a ⋅ sup S2; 
also ({1+}uS2 ) = {x | x=1+ ⋅s2, where s20S2}, 
with inf ({1+}uS2) = 1+ ⋅ inf S2, sup ({1+}uS2) = 1+ ⋅ sup S2. 
 
3.8.4  Division of a Set by a Number: 
Let k 0R*, then S1ik = {x | x=s1/k, where s10S1}. 
 

3.9 Generalizations [12] 

When all neutrosophic logic set components are reduced to one element, 
then tsup = tinf = t, isup = iinf = i, fsup = finf = f, and nsup = ninf = n = t+i+f, there-
fore neutrosophic logic generalizes: 
– the intuitionistic logic, which supports incomplete theories (for 0 < n < 

1 and i=0, 0 ≤ t, i, f < 1); 
– the fuzzy logic (for n = 1 and i = 0, and 0 ≤ t, i, f ≤ 1);  from "CRC Con-

cise Encyclopedia of Mathematics" [36], the fuzzy logic is "an exten-
sion of two-valued logic such that statements need not to be True or 
False, but may have a degree of truth between 0 and 1"; 

– the intuitionistic fuzzy logic (for n=1); 
– the Boolean logic (for n = 1 and i = 0, with t, f either 0 or 1); 
– the multi-valued logic (for 0 ≤ t, i, f ≤ 1). 

Definition of <many-valued logic> from "The Cambridge Dictionary 
of Philosophy" [editor R. Audi, 1995, p. 461]: "propositions may take 
many values beyond simple truth and falsity, values functionally de-
termined by the values of their components". As we have discussed in 
the preceding chapter, Lukasiewicz considered three values (1, 1/2, 0).  
Post considered m values, etc.  But they varied in between 0 and 1 
only.  In the neutrosophic logic a proposition may take values even 
greater than 1 (in percentage greater than 100%) or less than 0. 
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– the paraconsistent logic, which support conflicting information 
(for n > 1 and i = 0, with both t, f < 1); 

– the dialetheism, which says that some contradictions are true (for t = f = 1 
and i = 0; 

– some paradoxes can be denoted this way too); 
– the faillibilism, which says that uncertainty belongs to every 

proposition (for i > 0); 
Compared with all other logics, the neutrosophic logic and intuitionistic 

fuzzy logic introduce a percentage of "indeterminacy" - due to unexpected 
parameters hidden in some propositions, or unknowness, but neutrosophic 
logic let each component t, i, f be even boiling over 1 (overflooded), i.e. be 
1+, or freezing under 0 (underdried), i.e. be –0 in order to be able to make 
distinction between relative truth and absolute truth, and between relative 
falsity and absolute falsity in philosophy. 

 
To summarize this chapter, this Neutrosophic Logic is an attempt to unify 

many logics in a single field. Yet, a too large generalization may sometimes 
have no practical impact. But we have discussed throughout this chapter that 
such unification attempts have been done in the history of sciences.  

In recent years, Neutrosophy has impacts in various different fields, in-
cluding artworks like poetry, drama, and painting. A few examples of Sma-
randache’s painting (or perhaps ‘non-painting’ term is more appropriate) are 
given below [132]: 
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Picture 3.1. Example 1 of Smarandache’s Outer Art 
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Picture 3.2. Example 2 of Smarandache’s Outer Art. 
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Picture 3.3. Example 3 of Smarandache’s Outer Art. 

 
The essence of Smarandache’s non-Art can be summarized as follows: 

“non-A is also part of A, therefore non-Art is also Art.” More or less, per-
haps this could be related to the logic behind Zen’s humble teaching: daily 
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life is also part of doing Zen. (‘Non-Zen is also part of Zen’, if daily life 
can be described as part of ‘non-Zen’ activities.). 

In the subsequent chapter, we will discuss how Neutrosophic Logic could 
offer a plausible solution for paradoxes in Quantum Mechanics, in particular 
Schrödinger’s paradox. But in order to do so, first we should introduce a 
review on the Schrödinger wave equation, and discuss where the problem 
begins.      
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“The law of the excluded middle either rules or does not rule, O.K.?” 
 
 

4 Schrödinger equation 

4.1 Introduction 

As we all perhaps already know, Schrödinger equation is the most well-
known equation to describe non-relativistic quantum systems. Its relativistic 
version was developed by Klein-Gordon and Dirac, but Schrödinger equa-
tion has wide applicability in particular because it resembles classical wave 
dynamics. For an introduction to non-relativistic quantum mechanics, see 
[62].  

As we all know, Schrödinger equation begins with definition of total en-
ergy mpE 2/2r= . Then, by using a known substitution: 

 tiE ∂∂= /.h , ip /∇= h ,                                (4.1) 
one gets [4a]: 

[ ] 0)(2// 2 =Ψ−∇+∂∂ xUmti hh      (4.2) 
or 

Ψ=Ψ∂∂ .)/( Hti                                                       (4.2a) 
Historically, this equation began when Schrödinger was giving a lecture 

on wave interpretation of quanta. At the end of presentation Debye made a 
short remark: “If there is wave, then there should be wave equation.” There-
after, Schrödinger came up with equation mentioned above. His equation 
appeared for the first time in a paper published in 1926 in Ann. Phys. Vol. 79 
(See Picture 4.1). The paper began with a remarkable note [113]: 

“In this article I should like to show, first of all for the simplest case of the 
(non-relativistic and unperturbed) hydrogen atom, that the usual rule for 
quantization can be replaced by another requirement in which there is no 
longer any mention of 'integers'. The integral property follows, rather, in 
the same natural way that, say, the number of nodes of a vibrating string 
must be an integer. The new interpretation …strikes very deeply into the 
true nature of the quantization rules."1  

                                                                  

1 Some string theorists perhaps would find this remark interesting. Equally likely, as 
part of 21st century theory, perhaps we could expect some improved versions of the 
present string theories, like banjo theories, violin theories, cello theories, guitar theo-
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Picture 4.1. Original paper by Schrödinger in 1926 edition of Ann.Phys.[115] 

 
Other physicists found this equation (4.2) is very near to what they knew 

from classical dynamics; therefore they could embrace to the new quantum 
dynamics quickly. The basic assertion here is the use of Operator Schema 
[70]: 

                                                                                                                                             

ries etc. See also: http://www.newscientist.com/channel/fundamentals/quantum-
world/mg18825293.700 
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While this equation seems quite clear to represent quantum dynamics, the 

physical meaning of the wavefunction itself is not clear. Soon thereafter 
Born came up with hypothesis that the square of the wavefunction has the 
meaning of chance to find the electron in the region defined by dx (Copen-
hagen School). While so far his idea was quickly adopted as ‘standard inter-
pretation’, his original ‘guiding field’ interpretation has been dropped after 
criticism by Heisenberg over its physical meaning [4b]. Nonetheless, a defi-
nition of ‘Copenhagen interpretation’ is that it gives the wavefunction a role 
in the actions of something else, namely of certain macroscopic objects, 
called ‘measuremet instruments’, therefore it could be related to phenome-
nological formalism [4b]. This phenomenological viewpoint is so typical in 
Bohr’s argument, which asserted that nothing but what we could measure 
should be considered. 

Schrödinger apparently also didn’t like this statistical interpretation of his 
equation, and also phenomenological viewpoint, so he came up with his Cat 
paradox in 1935 (see the next chapter). In a formal and complete rebuttal, 
Schrödinger once was quoted to have remarked, “I am opposing, as it were, 
the whole of quantum mechanics.” [68] This problem apparently has not yet 
been solved up to this time. And this is perhaps why he didn’t contribute 
anymore to the subsequent development of (Copenhagen’s) Quantum Me-
chanics.  

It is not difficult to imagine why Schrödinger did not accept easily the sta-
tistical interpretation of his wave mechanics equation. Like Einstein (which 
inspired him with EPR paradox in 1935 paper), Schrödinger saw clearly that 
accepting statistical interpretation would not only make God as the player of 
quantum dice, but in world scale it would mean an assertion that God is 
running a quantum Las Vegas [70]. In his later lectures, documentation 
showed that Schrödinger apparently expected to extend his wave theory to a 
complete theory where the notion of ‘particle’ in classical sense is aban-
doned completely in favor of his ‘wave-function’ [70].  

Nonetheless, we should also note here that there are other approaches dif-
ferent from Born hypothesis which was accepted as ‘the standard interpreta-
tion’, including: 
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- The square of the wavefunction represents a measure of the density 
of matter in region defined by dx (Determinism school). Schrödinger 
apparently preferred this argument, albeit his attempt to prove this 
idea has proved to be wrong;  

- The square of the wavefunction of Schrödinger equation as the vor-
ticity distribution (including topological vorticity defects) in the fluid 
[69]; 

- The wavefunction in Schrödinger equation represents tendency to 
make structures; 

- The wavemechanics can also be described in terms of topological 
Aharonov effect, which then it could be related to the notion of topo-
logical quantization [4]. 

We will discuss solution of this paradox in the subsequent chapter. But 
first let us discuss how the classical dynamics could also be treated in ‘quan-
tum mechanical’ way, so it could serve to illustrate how Schrödinger equa-
tion resembles neatly the classical dynamics equation. Meanwhile, other 
physicists may argue that there is clear departure from Classical Mechanics 
to Quantum Mechanics. 

4.2 Quantum wave dynamics and classical dynamical system 

One of the deep questions related to the physical meaning of wavefunc-
tion of the Schrödinger equation is whether there is neat linkage between 
Schrödinger equation and classical wave dynamics. In other words, whether 
there is coherent picture to describe electron from these different ap-
proaches: quantum wave dynamics and classical electrodynamics. There are 
opponents of this ‘reconciliation’ program, of course, who emphasize that 
these two camps are so different like the sky from the earth. Some propo-
nents of quantum mechanics could go so far by noting that quantum mechan-
ics defy any attempt to describe physical meaning in classical sense. Bohr 
himself summarized Copenhagen viewpoint as follows:2 

“In quantum mechanics we are not dealing with an arbitrary renunciation of 
a more detailed analysis of of atomic phenomena, but with recognition that 
such an analysis is in principle excluded.” 
   

Nonetheless, some proponents of ‘realism’ interpretation of Quantum 
Mechanics predict that there should be a complete ‘realism’ description of 
                                                                  

2 Goldstein, S., Quantum Theory without Observers – Part One, Physics Today, 
March 1998, p. 42-46 
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physical model of electron, where non-local hidden variables could be 
included [4][1a]. We consider that this question remains open for discussion, 
in particular in the context of plausible analogue between classical electro-
dynamics and non-local quantum interference effect, in particular via 
Aharonov effect [8]. Hofer has also argued in the same direction, noting that 
it is possible to find physical meaning of wavefunction in classical electro-
dynamics sense [8a]. 

Similar program has been proposed recently by ‘t Hooft using term ‘De-
terminism beneath Quantum Mechanics.’ [8b]. His argument was based on 
dissipative system. Interestingly, Blasone et al. also argued that it is possible 
to derive quantum mechanical wave from classical dissipative system, via 
damped harmonic oscillators [8c].  

In this section we will only discuss ‘t Hooft’s deterministic argument 
[8b], which emphasize that there is neat connection between the quantum 
harmonic oscillator and the classical particle moving along a circle. When 
time is assumed to be discrete (with step τ ), then the evolution operator can 
be written as [8b]: 

 ττ iHetU −==∆ )(        (4.4) 
After introducing a few assumptions, one gets conventional quantum 

harmonic oscillator [8b]: 
  :]ˆ,ˆ[ ipx →   2/ˆ2/ˆ 222 pxH +→ω     (4.5) 
Alternatively, it is possible to find a generalization of Schrödinger equa-

tion from Nottale’s approach [103]. In order to do this, first we could rewrite 
Nottale’s generalized Schrödinger equation via diffusion approach 
[103][107]: 

( )( )[ ]
( ) )(//).(

/ln/2/)(2
22

22

xaxtai
txtaimi

+Φ=∂∂+

∂∂+∂∂+− −

ψψγ

ψψψγγ
                 (4.6) 

where ψ , )(xa , Φ , γ  each represents classical wave function, an arbi-
trary constant, scalar potential, and a constant, respectively. If the function 
f(t) is such that  
 γ2)( ita −= , 0)( =xα ,   m2/h=γ                   (4.7) 
then one recovers the Schrödinger equation (10.1). 

In other words, one could expect to find a neat link between Schrödinger 
equation and classical wave dynamics. Another way to put forth the idea is 
to preserve that ‘particles’ mean particles, regardless we use classical dy-
namics method or Schrödinger equation; this would lead us to introduce 
‘quantum potential’ term [4b].  
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At this point, suffice it to say that perhaps one of the great questions in 
order to answer quantum paradoxes is to define the relationship between 
classical dynamics and quantum wave dynamics. We will return to this issue 
in Postscript chapter. 

4.3 A new derivation of Schrödinger-type equation 

In this section we will make an attempt to re-derive a Schrödinger-type 
equation, but with a new definition of total energy.  

In this regard, it seems worthnoting here that it is more proper to use No-
ether’s expression of total energy in lieu of standard derivation of 
Schrödinger’s equation ( mpE 2/2r= ). According to Noether’s theorem 
[111], the total energy of the system corresponding to the time translation 
invariance is given by: 

 ( ) 2

0

222 .4.).2/( ckdrrcwmcE µπγ =+= ∫
∞

                        (4.8) 

where k is dimensionless function. It could be shown, that for low-energy 
state the total energy could be far less than 2mcE = . In this regard, inter-
estingly Bakhoum [79] has also argued in favor of using 2mvE = for ex-
pression of total energy, which expression could be traced back to Leibniz. 
Therefore it seems possible to argue that expression 2mvE = is more gen-
eralized than the standard expression of special relativity, in particular be-
cause the total energy now depends on actual velocity [111].  

We start with Bakhoum’s assertion 2mvE = , instead of more convenient 

form 2
smcE = . This notion would imply [79]: 

222222 ... vcmcpH o−= .                   (4.9) 
Therefore, for phonon speed in the limit p 0, we write [112]: 
  pcpE s .)( ≡ .                        (4.10) 
In the first approximation, we could derive Klein-Gordon-type relativistic 

equation from equation (4.9), as follows. By introducing a new parameter: 
 )/( cvi=ζ ,      (4.11) 

then we can rewrite equation (4.9) in the known procedure of Klein-Gordon 
equation: 
 422222 .. cmcpE oζ+= ,                 (4.12) 

where 2mvE = . [79] By using known substitution: 
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 tiE ∂∂= /.h , ip /∇= h ,                              

(4.13) and dividing by ( )2ch , we get Klein-Gordon-type relativistic equa-
tion: 

 Ψ=Ψ∇+∂Ψ∂− − ./. 2'22
oktc ,                 (4.14) 

where 
 h/' cmk oo ζ= .      (4.15) 
One could derive Dirac-type equation using similar method, but we leave 

this problem as an exercise to the reader. Nonetheless, the use of new pa-
rameter (4.11) seems to be indirect solution, albeit it simplifies the solution, 
because here we can use the same solution from Klein-Gordon equation.  

Alternatively, one could derive a new quantum relativistic equation, by 
noting that expression of total energy 2mvE = is already relativistic equa-
tion. We will derive here an alternative approach using Ulrych’s [7] method 
to get relativistic wave function from this expression of total energy [111]. 

 vpmvE .2 ==      (4.16) 
Taking square of this expression, we get [111a]: 
 222 .vpE =       (4.17) 

or 
 222 / vEp =                    (4.18) 
Now we use Ulrych’s substitution [7]: 

( ) ( )[ ] 2pqAPqAP =−− µ
µ ,                       (4.19) 

and introducing standard substitution in Quantum Mechanics (4.13), one 
gets: 

 ( ) ( )[ ] Ψ∂∂=Ψ−− − 22 )/..( tivqAPqAP h
µ

µ ,                   (4.20) 
or 

( )( )[ ] 0)/./( 2 =Ψ∂∂−−∇−−∇− tviqAiqAi hhh µµ
µµ .         (4.21) 

This equation is comparable to Schrödinger equation for a charged parti-
cle interacting with an external electromagnetic field [69]: 

( )( )[ ] [ ]Ψ+∂∂−=Ψ−∇−−∇− )(2/.2 xmUtmiqAiqAi µµ
µµ hh .  (4.22) 

In other words, we could re-derive Schrödinger-type equation for a 
charged particle from Ulrych’s approach [7]. 
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Goso said, "When you meet a Man of the Way on the road, greet him  

not with words, nor with silence. Tell me, how will you greet him?" 
--A Zen teaching 

 

5 Solution to Schrödinger’s Cat paradox 

5.1 Standard interpretation 

It is known that Quantum Mechanics could be regarded more as a 
‘mathematical theory’ rather than a physical theory [62, p. 2]. It is wave 
mechanics allowing a corpuscular duality. Already here one could find prob-
lematic difficulties: i.e. while the quantity of wavefunction itself could be 
computed, the physical meaning of wavefunction itself remains ‘indefinable’ 
[62]. Furthermore, this notion of wavefunction corresponds to another fun-
damental indefinable in euclidean geometry: the point [62, p.2]. It is always 
a baffling question for decades, whether the electron could be regarded as 
wave, a point, or we should introduce a non-zero finite entity [8a]. Attempts 
have been made to describe wave equation in such non-zero entity but the 
question of the physical meaning of wavefunction itself remains mystery. 

The standard Copenhagen interpretation advertised by Bohr and col-
leagues (save DeBroglie, Einstein, Schrödinger who advocated ‘realistic’ 
interpretation) asserts that it is practically impossible to know what really 
happens in quantum scale. The quantum measurement itself only represents 
reading in measurement apparatus, and therefore it is difficult to separate the 
object to be measured and the measurement apparatus itself. Bohr’s phe-
nomenological viewpoint perhaps could be regarded as pragmatic approach, 
starting with the request not to attribute a deep meaning to the wave function 
but immediately go over to statistical likelihood [67]. Consequently, how the 
process of ‘wave collapse’ could happen remains mystery. In the end, one 
could say that Copenhagen interpretation rejects the notion of objective 
reality. 

Heisenberg himself once emphasized this viewpoint when asked directly 
the question: ‘Is there a fundamental level of reality?” He replied as follows: 

“This is just the point: I do not know what the words fundamental reality 
mean. They are taken from our daily life situation where they have a good 
meaning, but when we use such terms we are usually extrapolating from 
our daily lives into an area very remote from it, where we cannot expect the 
words to have a meaning. This is perhaps one of the fundamental difficul-
ties of philosophy: that our thinking hangs in the language. Anyway, we are 
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forced to use the words so far as we can; we try to extend their use to the 
utmost, and then we get into situations in which they have no meaning.”3  

 
A modern version of this interpretation suggests that at the time of meas-

urement, the wave collapses instantaneously into certain localized object 
corresponding to the action of measurement. In other words, the measure-
ment processes define how the wave should define itself. At this point, the 
wave ceases to become coherent, and the process is known as ‘decoherence.’ 
Decoherence may be thought of as a way of making real for an observer in 
the large scale world only one possible history of the universe which has a 
likelihood that it will occur. Each possible history must in addition obey the 
laws of logic of this large-scale world. The existence of the phenomenon of 
decoherence is now supported by laboratory experiments. [63]  It is worth-
noting here, that there are also other versions of decoherence hypothesis, for 
instance by Tegmark [65] and Vitiello [64]. 

In the meantime, the ‘standard’ Copenhagen interpretation emphasizes the 
role of observer where the ‘decoherence viewpoint’ may not. In fact, one 
could say that Copenhagen’s viewpoint could be interpreted as a variation of 
Raven’s paradox: “Observing a red apple increases the likelihood of all 
ravens being black.” See Appendix 3 for more complete list of known para-
doxes. 

The problem becomes more adverse because the axioms of standard sta-
tistical theory themselves are not fixed forever [62][124, chapter 17]. And 
here is perhaps the source of numerous debates concerning the interpretation 
and philosophical questions implied by Quantum Mechanics. From this 
viewpoint, Neutrosophic Logic offers a new viewpoint to problems where 
indeterminacy presents. We will discuss this subsequently. 

5.2 Schrödinger’s cat paradox 

To make the viewpoint on this paradox a bit clearer, let us reformulate the 
paradox in its original form. According to Uncertainty Principle, any meas-
urement of a system must disturb the system under investigation, with a 
resulting lack of precision in the measurement. Soon after reading Einstein- 
Podolsky-Rosen’s paper discussing incompleteness of Quantum Mechanics, 
Schrödinger in 1935 came up with a series of papers in which he used ‘the 

                                                                  

3 Buckley, P., & F.D. Peat, A question of Physics: Conversations in Physics and 
Biology, Routledge and Kegan Paul, London and Henley (1979) 9. 



  49 

Cat paradox’ to give an illustration of the problem of viewing these parti-
cles in a "thought experiment" [113]: 

“One can even set up quite ridiculous cases. A cat is penned up in a steel 
chamber, along with the following diabolical device (which must be se-
cured against direct interference by the cat): in a Geiger counter there is a 
bit of radioactive substance, so small, that perhaps in the course of one 
hour one of the atoms decays, but also, with equal probability, perhaps 
none; if it happens, the counter tube discharges and through a relay releases 
a hammer which shatters a small flask of hydrocyanic acid. If one has left 
this entire system to itself for an hour, one would say that the cat still lives 
if meanwhile no atom has decayed. The first atomic decay would have poi-
soned it. The wave-function of the entire system would express this by hav-
ing in it the living and the dead cat (pardon the expression) mixed or 
smeared into equal parts." 
 

In modern version, we can re-phrase this problem as follows:  
"Let suppose we put a cat in a cage with a radioactive atom, a Geiger 
counter, a hammer, and a poison bottle; further suppose that the atom in the 
cage has a half-life of one hour, a fifty-fifty chance of decaying within an 
hour. If the atom decays, the Geiger counter will tick; the triggering of the 
counter will activate the hammer, which will break the poison bottle, which 
will kill the cat. If the atom doesn't decay, none of the above things happen, 
and the cat will be alive. Now the question: What is the state of the cat after 
an hour?" 
 

In principle, Schrödinger's thought experiment asks whether the cat is 
dead or alive after an hour. The most logical solution would be to wait an 
hour, open the box, and see if the cat is still alive. However once you open 
the box to determine the state of the cat you have viewed and hence dis-
turbed the system and introduced a level of uncertainty into the results. The 
answer, in quantum mechanical terms, is that before you open the box the 
cat is in a state of being half-dead and half-alive.[67] 

Of course, at this point one could ask whether it is possible to find out the 
state of the cat without having to disturb its wavefunction via action of ‘ob-
servation’. If the meaning of word ‘observation’ here is defined by ‘to open 
the box and see the cat’, and then it seems that we could argue whether it is 
possible to propose another equally possible experiment where we introduce 
a pair of twin cats, instead of only one. A cat is put in the box while another 
cat is located in a separate distance, let say 1 meter from the box. If the state 
of the cat inside the box altered because of poison reaction, it is likely that 
we could also observe its effect to its twin, perhaps something like ‘sixth 
sense’ test (perhaps via monitoring frequency of the twin cat’s brain). This 
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plausible experiment could be viewed as a ‘thought experiment’ an alter-
native of Bell-Aspect-type experiment. 

 

5.3 Hidden-variable hypothesis 

It would be incomplete to discuss quantum paradoxes, in particular 
Schrödinger's cat paradox, without mentioning hidden-variable hypothesis. 
There are various versions of this argument, but it could be summarised as 
an assertion that there is ‘something else’ which should be included in the 
Quantum Mechanical equations in order to explain thoroughly all qauntum 
phenomena. Sometimes this assertion can be formulated in question form: 
“Can quantum mechanics be considered complete?”[17f] Interestingly, how-
ever, the meaning of ‘complete’ itself remains quite abstract (fuzzy).  

An interpretation of this cat paradox suggests that the problem arises be-
cause we mix up the macroscopic systems (observer’s wavefunction and 
apparatus’ wavefunction) from microscopic system to be observed. In order 
to clarify this, it is proposed that “the measurement apparatus should be 
described by a classical model in our approach, and the physical system 
eventually by a quantum model.” [114] 

  

5.4 Hydrodynamic viewpoint and diffusion interpretation 

In attempt to clarify the meaning of wave collapse and decoherence phe-
nomenon, one could consider the process from (dissipative) hydrodynamic 
viewpoint [66]. 

Historically, the hydrodynamic/diffusion viewpoint of Quantum Mechan-
ics has been considered by some physicists since the early years of wave 
mechanics. Already in 1933, Fuerth showed that Schrödinger equation could 
be written as a diffusion equation with an imaginary diffusion coefficient 
[62]: 

 miDqm 2/h=         (5.1) 
But the notion of imaginary diffusion is quite difficult to comprehend. Al-

ternatively, one could consider a classical Markov process of diffusion type 
to consider wave mechanics equation. Consider a continuity equation: 

 ).(/ vt ρρ −∇=∂∂ ,       (5.2) 
where [62]: 
 ρln.0 ∇−= Dvv ,       (5.3) 
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which is a Fokker-Planck equation. Then the expectation value for the 
energy of particle can be written as [62]: 
 ( )[ ]∫ ++>=< xdeVDmDmvE 3222 .ln2/2/ ρρ            (5.4) 

      Alternatively, it could be shown that there is exact mapping between 
Schrödinger equation and viscous dissipative Navier-Stokes equations  [69], 
where the square of the wavefunction of Schrödinger equation as the vortic-
ity distribution (including topological vorticity defects) in the fluid [69]. 
This Navier-Stokes interpretation differs appreciably from more standard 
Euler-Madelung fluid interpretation of Schrödinger equation [62], because in 
Euler method the fluid is described only in its inviscid limit. 

5.5 Other less known interpretations 

A slightly different interpretation could be described as follows. One 
could say that Copenhagen interpretation asserts that what does exist is only 
wave function, which then collapses because of an action of observer (to 
observe). Therefore it is equally possible to say that once the box is closed, 
the cat disappears and becomes wave function again until an observer opens 
the box to see the cat’s state. In this way the cat’s wave function ceases to be 
coherent, decoherence process happens and the cat pops out to our ‘window 
of observation.’ To extrapolate this question to our daily observation, there 
are academic discussions suggesting that ontological implications of this 
Copenhagen interpretation would mean that ‘the moon is not there when 
nobody looks at it.’ [17e] Now, one could imagine an hour, let suppose  for 
an hour United Nations declare a ‘Moon disappearance’ hour, when no body 
on Earth should look at the Moon. The question is: “Will the Moon remain 
there or not?” 

One could also mention here an alternative interpretation called ‘mul-
tiverses hypothesis,’ which says (more or less) that all the different possibili-
ties happen, each in a separate "parallel" universe, i.e. there are at least 2 
parallel universes, one with the particle emitted and detected and one were it 
has not. The multiverse hypothesis could be viewed as an attempt to general-
ize Feynman’s path integral method to large-scale implications. In other 
words, it implies that the entire Universe splits into multiple copies of itself 
when the entangled particles are emitted. The moment the first measurement 
is made, a particular universe is selected. Now we can ask another question: 
Let suppose an observer opens the box twice, does he observe the same cat, 
or he observes different cats from different part of multiverses? 

While it's too early to conclude that Multiverse hypothesis does not work, 
it seems that there are ontological questions awaiting to be clarified, if one 
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demands this hypothesis should be considered as a serious alternative. In 
the mean time, there is a somewhat better alternative of ‘multiverse view-
point’, i.e. to use trivalent logic similar to Lukasiewicz’s hypothesis, but this 
time the trivalent logic is used to describe the ‘potentia’ of wave-function. In 
other words, instead of describing ‘perhaps false and perhaps true’, we sup-
pose there is a state of ‘half real and half not-real’. Apparently, Heisenberg 
proposed this hypothesis for the first time, i.e. “he took quantum theory's 
vibratory possibilities literally: the attributes of unobserved objects exist, 
according to Heisenberg, exactly as represented in the theory--as possibili-
ties, not actualities. The unobserved atom does not really have a definite 
position, for instance, but only a tendency, an inclination, to be in several 
possible positions all at the same time. In Heisenberg's view an atom is cer-
tainly real, but its attributes dwell in an existential limbo ‘halfway between 
an idea and a fact’, a quivering state of attenuated existence that Heisenberg 
called "potentia", a world devoid of single-valued actuality but teeming with 
unrealized possibilities.” [135]. It shall be noted here that throughout the 
book, we discuss multi-valuedness to describe likelihood without the use of 
the Principle of Excluded Middle. But whether this state of ‘halfway between 
an idea and a fact’ could be ascribed physical meaning, remains another 
philosophical question.     

 

5.6 How Neutrosophy could offer solution to Schrödinger’s paradox 

Neutrosophic Logic finds an interesting application in the context of 
Schrödinger's cat paradox. It could explain how the ‘mixed’ state could be. 

For example the Schrödinger’s Cat Theory says that the quantum state of 
a photon can basically be in more than one place in the same time which, 
translated to the neutrosophic set, means that an element (quantum state) 
belongs and does not belong to a set (a place) in the same time; or an ele-
ment (quantum state) belongs to two different sets (two different places) in 
the same time. It is a question of “alternative worlds” theory very well repre-
sented by the neutrosophic set theory. 

In Schrödinger’s equation on the behavior of electromagnetic waves and 
“matter waves” in quantum theory, the wave functionΨ , which describes 
the superposition of possible states, may be simulated by a neutrosophic 
function, i.e. a function whose values are not unique for each argument from 
the domain of definition (the vertical line test fails, intersecting the graph in 
more points). 

Interpretation in our daily experience could be somewhat more practical. 
Here are a few examples:  
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1. The likelihood that tomorrow it will rain is say 50-54% true ac-
cording to meteorologists who have investigated the past years' 
weather, 30 or 34-35% false according to today's very sunny and 
droughty summer, and 10 or 20% undecided (indeterminate). 

2. The likelihood that Yankees will win tomorrow versus Cowboys is 
60% true (according to their confrontation's history giving Yankees' 
satisfaction), 30-32% false (supposing Cowboys are actually up to 
the mark, while Yankees are declining), and 10 or 11 or 12% inde-
terminate (because of the hazard: sickness of players, referee's mis-
takes, atmospheric conditions during the game). These parameters 
act on players' psychology. 

3. The likelihood that candidate C will win an election is say 25-30% 
true (percent of people voting for him), 35% false (percent of people 
voting against him), and 40% or 41% indeterminate (percent of peo-
ple not coming to the ballot box, or giving a blank vote – not select-
ing anyone, or giving a negative vote). 

4. From a pool of refugees, waiting in a political refugee camp in Tur-
key to get the American visa, a% have the chance to be accepted - 
where a varies in the set A, r% to be rejected – where r varies in the 
set R, and p% to be in pending (not yet decided) - where p varies in 
P. Say, for example, that the chance of someone Michael in the pool 
to emigrate to USA is (between) 40-60% (considering different cri-
teria of emigration one gets different percentages, we have to take 
care of all of them), the chance of being rejected is 20-25% or 30-
35%, and the chance of being in pending is 10% or 20% or 30%. 
Then the neutrosophic probability that Michael emigrates to the 
Unites States is NP(Michael) = ( (40-60), (20-25)U(30-35), 
{10,20,30} ), closer to the life’s thinking. This is a better approach 
than the classical probability, where 40 [ P(Michael) [ 60, because 
from the pending chance - which will be converted to acceptance or 
rejection - Michael might get extra percentage in his will to emigra-
tion, and also the superior limit of the subsets sum 60+35+30 > 100 
and in other cases one may have the inferior sum < 0, while in the 
classical fuzzy set theory the superior sum should be 100 and the in-
ferior sum m 0. In a similar way, we could say about the element 
Michael that Michael( (40-60), (20-25)U(30-35), {10,20,30} ) be-
longs to the set of accepted refugees. 

As we have shown, Neutrosophic probability is useful to those events, 
which involve some degree of indeterminacy (unknown) and more criteria of 
evaluation - as quantum physics. This kind of probability is necessary be-
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cause it provides a better representation than classical probability to uncer-
tain events. 

Now let’s return to our cat paradox. Let’s consider a neutrosophic set of a 
collection of possible locations (positions) of particle x. And let A and B be 
two neutrosophic sets. One can say, by language abuse, that any particle x 
neutrosophically belongs to any set, due to the percentages of 
truth/indeterminacy/falsity involved, which varies between - 0 and 1 + . For 
example: x(0.5, 0.2, 0.3) belongs to A (which means, with a probability of 
50% particle x is in a position of A, with a probability of 30% x is not in A, 
and the rest is undecidable); or y(0, 0, 1) belongs to A (which normally 
means y is not for sure in A); or z(0, 1, 0) belongs to A (which means one 
does know absolutely nothing about z's affiliation with A). More general, x( 
(0.2-0.3), (0.40-0.45)4[0.50-0.51], {0.2, 0.24, 0.28} ) belongs to the set A, 
which mean: 

- with a likelihood in between 20-30% particle x is in a position of A 
(one cannot find an exact approximate because of various sources 
used); 

- with a probability of 20% or 24% or 28% x is not in A; 
- the indeterminacy related to the appurtenance of x to A is in between 

40-45% or between 50-51% (limits included). 
- The subsets representing the appurtenance, indeterminacy, and falsity 

may overlap, and n_sup = 30%+51%+28% > 100% in this case.  
To summarize our proposition, given the Schrödinger's cat paradox is de-

fined as a state where the cat can be dead, or can be alive, or it is undecided 
(i.e. we don't know if she is dead or alive), then herein the Neutrosophic 
Logic, based on three components, truth component, falsehood component, 
indeterminacy component (T, I, F), works very well. In Schrödinger’s cat 
problem the Neutrosophic Logic offers the possibility of considering the cat 
neither dead nor alive, but undecided, while the fuzzy logic does not do this. 
Normally indeterminacy (I) is split into uncertainty (U) and paradox (con-
flicting) (P).  

We could expect that someday this proposition based on Neusotrophic 
Logic could be transformed into a useful guide for experimental verification 
of quantum paradox [67][68]. 
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The french scientist Ampere was on his way to an important meeting at the 
Paris Academy. In the carriage he got a brilliant idea which he 

immediately wrote down ... on the wand of the carriage: dH=ipdl/r^2. As he 
arrived he payed the driver and ran into the building to tell everyone. 

Then he found out his notes were on the carriage and he had to hunt through 
the streets of Paris to find his notes on wheels. 

 

6 Sorites Quantum paradox and Quantum Quasi-paradox 

There can be generated many paradoxes or quasi-paradoxes that may oc-
cur from the combination of quantum and non-quantum worlds in physics.  
Even the passage from the micro-cosmos to the macro-cosmos, and recipro-
cally, can generate unsolved questions or counter-intuitive ideas.  We define 
a quasi-paradox as a statement which has a prima facie self-contradictory 
support or an explicit contradiction, but which is not completely proven as a 
paradox.  

We present herein four elementary quantum quasi-paradoxes and their 
corresponding quantum Sorites paradoxes, which form a class of quantum 
quasi-paradoxes. 

6.1 Introduction 

Dictionary of Mathematics (Borowski & Borwein, 1991), the paradox is 
“an apparently absurd or self-contradictory statement for which there is 
prima facie support, or an explicit contradiction derived from apparently 
unexceptionable premises”.  Some paradoxes require the revision of their 
intuitive conception (Russell’s paradox, Cantor’s paradox), others depend on 
the inadmissibility of their description (Grelling’s paradox), others show 
counter-intuitive features of formal theories (Material implication paradox, 
Skolem Paradox), others are self-contradictory [Smarandache Paradox: “All 
is <A> the <Non-A> too!”, where <A> is an attribute and <Non-A> its op-
posite; for example “All is possible the impossible too!” [36]. Paradoxes are 
normally true and false in the same time. 

The Sorites paradoxes are associated with Eubulides of Miletus (fourth 
century B.C.) and they say that there is not a clear frontier between visible 
and invisible matter, determinist and indeterminist principle, stable and un-
stable matter, long time living and short time living matter. Generally, be-
tween <A> and <Non-A> there is no clear distinction, no exact frontier. 
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Where does <A> really end and <Non-A> begin?  One extends Zadeh's 
“fuzzy set” concept to the “neutrosophic set” concept. 

Let’s now introduce the notion of quasi-paradox: A quasi-paradox is a 
statement which has a prima facia self-contradictory support or an explicit 
contradiction, but which is not completely proven as a paradox.  A quasi-
paradox is an informal contradictory statement, while a paradox is a formal 
contradictory statement. 

Some of the below quantum quasi-paradoxes can later be proven as real 
quantum paradoxes. 

6.2 Quantum Paradox and Quantum Sorites Paradox 

It is the interaction of the quantum world with this "environment", associ-
ated with the large-scale world, which is thought to cause wave function 
collapse. For this reason we do not perceive the quantum behavior of every 
particle inside Schrödinger's cat; the presence of such an "environment" (the 
body of the cat) is thought to cause the cat to be seen to be either dead or 
alive, even though it may be poisoned as a result of a quantum phenomenon.  

The below quasi-paradoxes and Sorites paradoxes are based on the an-
tinomies: visible/invisible, determinist/indeterminist, stable/unstable, long 
time living/short time living, as well as on the fact that there is not a clear 
separation between these pairs of antinomies. 

6.2.1.1. Invisible Quasi-Paradox: Our visible world is composed of a to-
tality of invisible particles 

6.2.1.2. Invisible Sorites Paradox: There is not a clear frontier between 
visible matter and invisible matter. 

a) An invisible particle does not form a visible object, nor do two 
invisible particles, three invisible particles, etc.  
However, at some point, the collection of invisible particles 
becomes large enough to form a visible object, but there is ap-
parently no definite point where this occurs.  

b) A similar paradox is developed in an opposite direction. It is 
always possible to remove a particle from an object in such a 
way that what is left is still a visible object. However, repeat-
ing and repeating this process, at some point, the visible object 
is decomposed so that the left part becomes invisible, but 
there is no definite point where this occurs. 

6.2.2.1. This Uncertainty Quasi-Paradox: Large matter, which is at 
some degree under the  'determinist principle', is formed by a totality of 
elementary particles, which are under Heisenberg's 'indeterminacy principle'.  
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6.2.2.2. Uncertainty Sorites Paradox: Similarly, there is not a clear 
frontier between the matter under the ‘determinist principle’ and the matter 
under ‘indeterminist principle’. 

6.2.3.1. Unstable Quasi-Paradox: ‘Stable’ matter is formed by ‘unsta-
ble’ elementary particles (elementary particles decay when free). 

6.2.3.2. Unstable Sorites Paradox: Similarly, there is not a clear frontier 
between the ‘stable matter’ and the ‘unstable matter’. 

6.2.4.1. Short-Time-Living Quasi-Paradox: ‘Long-time-living’ matter 
is formed by very ‘short-time-living’ elementary particles. 

6.2.4.2. Short-Time-Living Sorites Paradox: Similarly, there is not a 
clear frontier between the ‘long-time-living’ matter and the ‘short-time-
living’ matter. 

More such quantum quasi-paradoxes and paradoxes can be designed, all 
of them forming a class of Smarandache quantum quasi-paradoxes.” (Dr. M. 
Khoshnevisan, Griffith University). 
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The truth, as always, will be far stranger 
Arthur C. Clarke. 2001 - A Space Odyssey. 

7 Epistemological Aspects of Multi-Valued Logic 

It seems worth to consider here an introduction to epistemelogical aspects 
of Multi-Valued logic and Neutrosophic Logic, albeit for more precise dis-
cussions the readers are recommended to find literature on Logic. 

As Gell-Mann often remarked, being physicists is more like a sailor who 
has to sail between Scylla and Charybdis.4 In other words it always requires 
a great effort to find a balanced comprehension between abstraction (pure 
thought, logical formalism) and observation (experimental data).  

Similarly, throughout history mankind has attempted to find an absolute 
and objective truth, which does not suffer from either relative views or sub-
jective biases. In the meantime, the experimental data often displays some-
thing different than what he expects via pure comprehension; despite of 
course Nature should be in essence the same truth. In other words, if deduc-
tion belongs to set of Theories (T), and data belongs to set of Observation 
(O), and then ideally one expects that someday they would be the same: 

ba = , where  Ta∈  and Ob∈  
The problem begins when one recognizes that our theories are always 

bounded by some categorization, like mathematical truth, religious truth, 
political truth, therefore it becomes much more difficult to find out whether 
a=b for all subjects of interests. It is more likely that we could define a=b for 
a limited scope of interests. But more problems arise from the fact that most 
of these categorizations of truth are also bounded by confusion [119]. This is 
why we should say that for most cases we could only deal with a ‘partial 
truth’.  

Another problem may arise, for instance if a group of smart but ‘mad’ 
scientists attempt to create a new purely-idealistic kind of reality, and make 

                                                                  

4 G. Johnston, Strange Beauty, (1999). In Greek Myth: Odysseus spent nine years 
returning home. Along his voyage by sea, he came upon Scylla and Charybdis. Scylla 
was an enormous sea monster with numerous hands and six dog heads sprouting 
from her body; she ate men alive. Charybdis was a tremendous whirlpool that di-
gested ships whole. Since the only way to get home was to choose either route, 
Odysseus had to decide on one horror or the other. He chose Scylla, losing six crew-
men to Scylla's hunger. (Source: http://www.areopagus.net/grkterms.htm) 
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specific observations which are designed such that they will support their 
idea. Such a typically Berkeleian- theory while sounds strange could happen 
(or as Sherlock Holmes would say: “It is a capital mistake to theorise before 
one has data. Insensibly one begins to twist facts to suit theories instead of 
theories to suit facts.”). This possibility is also discussed in Borges’ story of 
a new planet which cannot be observed, and the only remnant could be 
found is an encyclopaedia [123]. Therefore it is required that our scientific 
discourse is intended to describe the phenomena corresponding to the Uni-
verse of discourse (U), i.e. a=b=c, where c belongs to the set U. 

Furthermore, a part of categorization process is how to make distinction. 
By distinction here we mean “Distinction is a process that separates a unity 
into 'something that is' and 'something that isn't the something that is.” 
[119]. Therefore a fundamental principle of logic is to make distinction: A 
'is', then not-A is not A. Not-A is usually denoted as ~A. 

Now we come to the notion of The Principle of Contradiction, which 
states that a proposition is necessarily true if its negation entails a contradic-
tion. The negation of A != ~A is to say that A = ~A but A is not ~A, hence 
we have a contradiction. In other words, this principle excludes the possibil-
ity of blurred area where ~A merges with A. This basic assertion of this 
exclusion is known as principle of Excluded Middle.  

Because in our daily life, normally we can only find incomplete informa-
tion, therefore our theories could have some level of indeterminacy. (This is 
not the same with uncertainty, if uncertainty is defined as random part of the 
experimental data). In Neutrosophic Logic this indeterminacy becomes part 
of truth-value. Neutrosophic Logic also offers significant advantage over the 
previous ‘classical’ notion set, by allowing breaking of principle of Excluded 
Middle.  

A criticism could arise at this point: Does the broken Excluded Middle 
really happen? Or is it merely the result of our own perception? 

While at first glance it is not so easy to find examples of daily condition 
where the Excluded Middle is broken, you don’t have to be a Tibetan monk 
to understand that sometimes the identity of some members of a particular 
set is not too strictly defined. Sometimes the problem comes from the use of 
language to define the set itself. For example, have you heard someone says 
something like this phrase: “You have your mother’s eyes, your father’s hair, 
and your grandfather’s brain.” Doesn’t it indicate that our identity is also 
‘defined’ by other’s identity (set of family members)? Similarly we can say 
that the phrase: “The set of Indian people,” is quite blurred, because one 
could always argue whether someone who was born in New Delhi but then 
moved to Europe could be counted as ‘Indian people’. Therefore, to reduce 
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indeterminacy level, it is required to define the set more specifically, for 
example: ‘The set of Indian people who were born in India, and now live in 
India.”  

Similarly the set of “all young people who often wear blue T-shirt,” has a 
large degree of indeterminacy. First, the notion ‘young’ is not clearly de-
fined, and also we could always argue ‘how often’ he/she wears T-shirt 
(once in a week, or each day), and also ‘how blue’ is the T-shirt. Should it be 
light-blue, dark-blue etc. To speak more precise, in standard ‘set’ theory, the 
set of A (the set of young people), B (the set of people wear T-Shirt), C (the 
set of people wear blue clothes) are defined as follows: 

 
Picture 7.1. Standard sets. 

 
But in daily life most real sets are not clearly defined. Let suppose we de-

fine the set of “all young Indian people who wear blue T-shirt often,” which 
has four sets, and then the set diagram should be as follows (see Picture 7.2). 
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Picture 7.2. Real sets diagram. 

        
Similarly, a common question in daily life is to make association between 

obscure groupings of data, such as: “Which one of these pictures does not 
belong to the others?” 

 

 
Picture 7.3. A question to make association 

 
For other example to comparison in genome data, see [132c]. 
In the following sections, we consider some basic assertions of real sets in 

Neutrosophic Logic. This analysis belongs to non-standard analysis. For 
other possible non-standard analysis, see Appendix 2. 
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7.1 Non-standard real numbers and real sets [121] 

Let T, I, F be standard or non-standard real subsets  ] -0, 1+ [, 
with sup T = t_sup,  inf T = t_inf, 
              sup I  = i_sup,  inf I  = i_inf, 

          sup F = f_sup,  inf F = f_inf, 
and n_sup = t_sup + i_sup + f_sup,  

               n_inf  = t_inf + i_inf + f_inf. 
              Obviously: t_sup, i_sup, f_sup ≤ 1+, and t_inf, i_inf, f_inf ≥ -0,  

         whereas n_sup  ≤ 3+ and n_inf ≥ -0. 
The subsets T, I, F are not necessarily intervals, but may be any real subsets:  

discrete or continuous; single-element, finite, or (either countably or uncounta-
bly) infinite; union or intersection of various subsets; etc. They may also over-
lap.  These real subsets could represent the relative errors in determining t, i, f 
(in the case when the subsets T, I, F are reduced to points). 

This representation is closer to the human mind reasoning.  It character-
izes/catches the imprecision of knowledge or linguistic inexactitude received 
by various observers (that’s why T, I, F are subsets - not necessarily single-
elements), uncertainty due to incomplete knowledge or acquisition errors or 
stochasticity (that’s why the subset I exists), and vagueness due to lack of 
clear contours or limits (that’s why T, I, F are subsets and I exists; in particu-
lar for the appurtenance to the neutrosophic sets).  

One has to specify the superior (x_sup) and inferior (x_inf) limits of the 
subsets because in many problems arises the necessity to compute them. 

It is also possible to describe how to make addition of non-standard finite 
numbers.  

Addition of non-standard finite numbers with themselves or with real 
numbers: 

-a + b    = -(a + b) 
 a + b+  = (a + b)+ 

-a + b+  = -(a + b)+ 

-a + -b  = -(a + b)  (the left monads absorb themselves) 
 a+ + b+ = (a + b)+  (analogously, the right monads absorb themselves) 
Similarly for subtraction, multiplication, division, roots, and powers of non-

standard finite numbers with themselves or  with real numbers. 

7.2 Epimenidean Paradox and Grelling Paradox [121] 

Lukasiewicz, together with Kotarbinski and Leniewski from the Warsaw 
Polish Logic group (1919-1939), questioned the status of truth: eternal, sempi-
ternal (everlasting, perpetual), or both? 
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Let’s use the notion of “world” from the modal logic, which is a semantic 
device of what the world might have been like.  Then, one says that the neutro-
sophic truth-value of a statement A, NLt(A) = 1+ if A is ‘true in all possible 
worlds’ (syntagme first used by Leibniz) and all conjunctures, that one may call 
“absolute truth” (in the modal logic it was named necessary truth, Dinulescu-
Campina [128] names it ‘intangible absolute truth’ ), whereas NLt(A) = 1 if A 
is true in at least one world at some conjuncture, we call this “relative truth” 
because it is related to a ‘specific’ world and a specific conjuncture (in the 
modal logic it was named possible truth).  Because each ‘world’ is dynamic, 
depending on an ensemble of parameters, we introduce the sub-category ‘con-
juncture’ within it to reflect a particular state of the world. 

How can we differentiate <the truth behind the truth>?  What about the 
<metaphoric truth>, which frequently occurs in the humanistic field?   

One attempts to formalize.  For n µ1 one defines the “n-level relative truth” 
of the statement A if the statement is true in at least n distinct worlds, and simi-
larly “countably-“ or “uncountably-level relative truth” as gradual degrees 
between “first-level relative truth” (1) and “absolute truth” (1+) in the monad  
:(1+).  Analogue definitions one gets by substituting “truth” with “falsehood” 
or “indeterminacy” in the above.   

In largo sensu the notion “world” depends on parameters, such as: space, 
time, continuity, movement, modality, (meta-)language levels, interpretation, 
abstraction, (higher-order) quantification, predication, complement construc-
tions, subjectivity, context, circumstances, etc.  Pierre d’Ailly upholds that the 
truth-value of a proposition depends on the sense, on the metaphysical level, on 
the language and meta-language; the auto-reflexive propositions (with reflec-
tion on themselves) depend on the mode of representation (objective/subjective, 
formal/informal, real/mental).   

In a formal way, let’s consider the world W as being generated by the formal 
system FS.  One says that statement A belongs to the world W if A is a well-
formed formula (wff) in W, i.e. a string of symbols from the alphabet of W that 
conforms to the grammar of the formal language endowing W.   The grammar 
is conceived as a set of functions (formation rules) whose inputs are symbols 
strings and outputs “yes” or “no”.  A formal system comprises a formal lan-
guage (alphabet and grammar) and a deductive apparatus (axioms and/or rules 
of inference).   In a formal system the rules of inference are syntactically and 
typographically formal in nature, without reference to the meaning of the 
strings they manipulate. 

Similarly for the neutrosophic falsehood-value, NLf(A) = 1+ if the statement 
A is false in all possible worlds,  we call it “absolute falsehood”, whereas 
NLf(A) = 1 if the statement A is false in at least one world,  we call it “relative 
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falsehood”.   Also, the neutrosophic indeterminacy-value NLi(A) = 1+ if the 
statement A is indeterminate in all possible worlds,  we call it “absolute inde-
terminacy”, whereas NLi(A) = 1 if the statement A is indeterminate in at least 
one world,  we call it “relative indeterminacy”. 

On the other hand, NLt(A) = -0 if A is false in all possible world, whereas 
NLt(A) = 0 if A is false in at least one world; NLf(A) = -0 if A is true in all 
possible world, whereas NLf(A) = 0 if A is true in at least one world; and 
NLi(A) = -0 if A is  indeterminate in no possible world, whereas NLi(A) = 0 
if A is not indeterminate in at least one world. 

The –0 and 1+ monads leave room for degrees of super-truth (truth whose 
values are greater than 1), super-falsehood, and super-indeterminacy. 

Here there are some corner cases: 
There are tautologies, some of the form “B is B”, for which NL(B) = (1+, -

0, -0), and contradictions, some of the form “C is not C”, for which NL(B) = 
(-0, -0, 1+). 

While for a paradox, P, NL(P) = (1,1,1).  Let’s take the Epimenides Para-
dox, also called the Liar Paradox, “This very statement is not true”.  If it is 
true then it is false, and if it is false then it is true.  But the previous reason-
ing, due to the contradictory results, indicates a high indeterminacy too. The 
paradox is the only proposition true and false in the same time in the same 
world, and indeterminate as well! 

Let’s take the Grelling’s Paradox, also called the heterological paradox 
[Suber, 1999], “If an adjective truly describes itself, call it ‘autological’, 
otherwise call it ‘heterological’.  Is ‘heterological’ heterological?” Similarly, 
if it is, then it is not; and if it is not, then it is. 

For a not well-formed formula, nwff, i.e. a string of symbols which do not 
conform to the syntax of the given logic, NL(nwff) = n/a (undefined).  A propo-
sition which may not be considered a proposition was called by the logician 
Paulus Venetus flatus voci.  NL(flatus voci) = n/a. 

7.3 Neutrosophic Statistics and Neutrosophic Probability Space 

Neutrosophic Probability is a generalization of the classical probability in 
which the chance that an event A occurs is t% true - where t varies in the 
subset T, i% indeterminate - where i varies in the subset I, and f% false - 
where f varies in the subset F.   

One notes NP(A) = (T, I, F). 
It is also a generalization of the imprecise probability, which is an inter-

val-valued distribution function. 
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Neutrosophic Statistic is the analysis of the events described by the 
neutrosophic probability. This is also a generalization of the classical statis-
tics and imprecise statistics. 

Neutrosophic Probabilistic Space is the universal set, endowed with a 
neutrosophic probability defined for each of its subset, forms a neutrosophic 
probability space.  

Let A and B be two neutrosophic events, and NP(A) = (T1, I1, F1), NP(B) 
= (T2, I2, F2) their neutrosophic probabilities.  Then we define: 

NP(A∩B) = NP(A) u NP(B). 
NP(¬A)  = {1} s NP(A). 
NP(AcB) = NP(A) r NP(B) s NP(A) u NP(B). 
1. NP(impossible event) = (Timp, Iimp, Fimp), where sup Timp ≤ 0, inf Fimp 

≥ 1; no restriction on Iimp. 
NP(sure event) = (Tsur, Isur, Fsur), 
where inf Tsur ≥ 1, sup Fsur ≤ 0; no restriction on Isur. 
NP(totally indeterminate event) = (Tind, Iind, Find); 
where inf Iind ≥ 1; no restrictions on Tind or Find. 
2. NP(A) 0 {(T, I, F), where T, I, F are real subsets which may over-

lap}. 
3. NP(AcB) = NP(A) r NP(B) s NP(A1B). 
4. NP(A) = {1} s NP(¬A).   
Neutrosophic probability is useful to those events, which involve some 

degree of indeterminacy (unknown) and more criteria of evaluation - as 
quantum physics.  This kind of probability is necessary because it provides a 
better representation than classical probability to uncertain events.   

7.4 Generalization of other Probabilities 

In the case when the truth- and falsity-components are complementary, 
i.e. no indeterminacy and their sum is 1, one falls to the classical probability.  
As, for example, tossing dice or coins, or drawing cards from a well-shuffled 
deck, or drawing balls from a turn. 

An interesting particular case is for n=1, with 0≤t,i,f≤1, which is closer to 
the classical probability.   

For n=1 and i=0, with 0≤t,f≤1, one obtains the classical probability. 
From the intuitionistic logic, paraconsistent logic, dialetheism, failli-

bilism, paradoxism, pseudoparadoxism, and tautologism we transfer the  
"adjectives" to probabilities, i.e. we define the intuitionistic probability 
(when the probability space is incomplete), paraconsistent probability, faill-
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bilist probability, dialetheist probability, paradoxist probability, pseu-
doparadoxist probability, and tautologic probability respectively. 

Hence, the neutrosophic probability generalizes: 
- the intuitionistic probability, which supports incomplete (not com-

pletely known/determined) probability spaces (for 0<n<1 and i=0, 
0[t,f[1) or incomplete events whose probability we need to calculate; 

- the classical probability (for n=1 and i=0, and 0≤t,f≤1); 
- the paraconsistent probability (for n>1 and i=0, with both t,f<1); 
- the dialetheist probability, which says that intersection of some dis-

joint probability spaces is not empty (for t=f=1 and i=0; some para-
doxist probabilities can be denoted this way); 

- the faillibilist probability (for i>0); 
- the pseudoparadoxism (for n_sup>1 or n_inf<0); 
- the tautologism (for t_sup>1). 
Compared with all other types of classical probabilities, the neutrosophic 
probability introduces a percentage of "indeterminacy" - due to unex-
pected parameters hidden in some probability spaces, and let each com-
ponent t, i, f be even boiling over 1 to 1+ (overflooded) or freezing under 
0 (underdried) to -0. 
For example: an element in some tautological probability space may have 
t>1, called "overprobable" (i.e. t = 1+).  Similarly, an element in some para-
doxist probability space may be "overindeterminate" (for i>1), or "overun-
probable" (for f>1, in some unconditionally false appurtenances); or "under-
probable" (for t<0, i.e. t = -0, in some unconditionally false appurtenances), 
"underindeterminate" (for i<0, in some unconditionally true or false appurte-
nances), "underunprobable" (for f<0, in some unconditionally true appurte-
nances). 
This is because we should make a distinction between unconditionally true 

(t>1, and f<0 or i<0) and conditionally true appurtenances (t≤1, and f≤1 or i≤1).  
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Mathematics is inadequate to describe the universe, since mathematics is an ab-
straction from natural phenomena.  Also, mathematics may predict things, which 

don't exist, or are impossible in nature. 

 -- Ludovico delle Colombe criticizing Galilei. 
 

8 Postscript: Schrödinger equation, quantization of celestial systems  

In the preceding chapters, we have found the neat linkage between inter-
pretation of Schrödinger equation and Multi-Valued-logic of Lukasiewicz 
and Neutrosophy.  

Now it will be shown that we can expect to use Schrödinger equation to 
describe quantization of celestial sytems. While this notion of macro-
quantization is not widely accepted yet, as we will see the logarithmic nature 
of Schrödinger equation could be viewed as a support of its applicability to 
larger systems. As an alternative, we will also discuss an outline for how to 
derive Schrödinger equation from simplification of Ginzburg-Landau equa-
tion. It is known that Ginzburg-Landau equation exhibits fractal character, 
which implies that quantization could happen at any scale.  

Before we start our discussion, we think it is compelled to include above 
a quote intended as a critics to Galilei’s work. Somehow we also think that 
the method described herein has not been widely accepted yet, in particular 
because a part within our logic system thinks it would take too much delib-
eration in mathematical part to accept such notion of quantization of celestial 
systems. But as we have shown before using ‘t Hooft’s argument, we could 
come to quantum-mechanical type description even from standard classical 
dynamical system. Therefore it seems that it should not impose too much 
baggage to accept the use of Schrödinger equation to describe also classical 
systems, including celestial quantization. After all, the use of Schrödinger 
equation has proved itself to help in finding new objects known as extrasolar 
planets [85][86]. And we could be sure that new extrasolar planets are to be 
found in the near future.   

First, let us rewrite Schrödinger equation in its common form: 
[ ] 0)(2// 2 =Ψ−∇+∂∂ xUmti      (8.1) 

or Ψ=Ψ∂∂ .)/( Hti                                                         (8.2) 
Now, it is worthnoting here that Englman & Yahalom [4a] argues that this 

equation exhibits logarithmic character: 
 ( ) )),(arg(.),(ln),(ln txitxtx Ψ+Ψ=Ψ     (8.3) 
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Schrödinger already knew this expression in 1926, which then he used 
it to propose his equation called ‘eigentliche Wellengleichung’ [4a]. There-
fore equation (8.1) can be rewritten as follows: 

0]arg[.]arg[.ln2)/ln(2 =Ψ∇∇+Ψ∇Ψ∇+∂Ψ∂ tm    (8.4) 
Interestingly, Nottale’s scale-relativistic method [85][86] was also based 

on generalization of Schrödinger equation to describe quantization of celes-
tial systems. It is known that Nottale-Schumacher’s method [87] could pre-
dict new exoplanets in good agreement with observed data. Nottale’s scale-
relativistic method is essentially based on the use of first-order scale-
differentiation method defined as follows [85][86]: 

 ...)()(ln/ ++==∂∂ bVaVtV βδ      (8.5) 
Now it seems clear that the logarithmic derivation, which is essential in 

scale-relativity approach, also has been described properly in Schrödinger’s 
original equation [4a]. In other word, its logarithmic form ensures applicabil-
ity of Schrödinger equation to describe macroquantization of celestial sys-
tems. 

In order to emphasize this assertion of the possibility to describe quantiza-
tion of celestial systems, let us quote Fischer’ description [71] of relativistic 
momentum from superfluid dynamics. Fischer [71] argues that the circula-
tion is in the relativistic dense superfluid, defined as the integral of the mo-
mentum: 

 ∫ == hvs Ndxp .2πγ µ
µ ,      (8.6) 

and is quantized into multiples of Planck’s quantum of action. This equation 
is the covariant Bohr-Sommerfeld quantization of sγ . And then Fischer [71] 
concludes that the Maxwell equations of ordinary electromagnetism can be 
cast into the form of conservation equations of relativistic perfect fluid hy-
drodynamics [71a]. Furthermore, the topological character of equation (8.6) 
corresponds to the notion of topological electronic liquid, where compressi-
ble electronic liquid represents superfluidity [83]. For the plausible linkage 
between superfluid dynamics and various cosmological phenomena, see 
[73]-[78].  
      It is worthnoting here, because here vortices are defined as elementary 
objects in the form of stable topological excitations [71], then equation (8.6) 
could be interpreted as signatures of Bohr-Sommerfeld quantization from 
topological quantized vortices. Fischer [71] also remarks that equation (8.6) 
is quite interesting for the study of superfluid rotation in the context of gravi-
tation. Interestingly, application of Bohr-Sommerfeld quantization to celes-
tial systems is known in literature [85][86], which here in the context of 
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Fischer’s arguments it seems plausible to suggest that quantization of 
celestial systems actually corresponds to superfluid-quantized vortices at 
large-scale [83]. In our opinion, this result supports known experiments 
suggesting neat correspondence between condensed matter physics and vari-
ous cosmology phenomena [73]-[76].  

To make the conclusion that quantization of celestial systems actually 
corresponds to superfluid-quantized vortices at large-scale a bit conceivable, 
let us consider the problem of quantization of celestial orbits in solar system. 

In order to obtain planetary orbit prediction from this hypothesis we could 
begin with the Bohr-Sommerfeld’s conjecture of quantization of angular 
momentum. This conjecture may originate from the fact that according to 
BCS theory, superconductivity can exhibit macroquantum phenomena 
[73][101]. In principle, this hypothesis starts with observation that in quan-
tum fluid systems like superfluidity, it is known that such vortexes are sub-
ject to quantization condition of integer multiples of 2π, or 

4/.2. mndlvs hπ=∫ . As we know, for the wavefunction to be well de-

fined and unique, the momenta must satisfy Bohr-Sommerfeld’s quantiza-
tion condition: 

          ∫
Γ

= hndxp .2. π           (8.6a) 

for any closed classical orbit Γ. For the free particle of unit mass on the unit 
sphere the left-hand side is [90]: 

         ∫ ==
T

Tdv
0

22 .2.. ωπωτ            (8.7) 

where T=2π/ω is the period of the orbit. Hence the quantization rule 
amounts to quantization of the rotation frequency (the angular momen-
tum): hn=ω . Then we can write the force balance relation of Newton’s 
equation of motion [90]:  

       rmvrGMm // 22 =             (8.8) 
Using Bohr-Sommerfeld’s hypothesis of quantization of angular momen-

tum, a new constant g was introduced: 
            π2/ngmvr =                                        (8.9) 

Just like in the elementary Bohr theory (before Schrödinger), this pair of 
equations yields a known simple solution for the orbit radius for any quan-
tum number of the form [90]:   

   )..4/(. 2222 mGMgnr π=                      (8.10) 
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which can be rewritten in the known form [85][86]: 
   22 /. ovGMnr =                                                (8.11) 

where r, n, G, M, vo represents orbit radii, quantum number (n=1,2,3,…), 
Newton gravitation constant, and mass of the nucleus of orbit, and specific 
velocity, respectively. In this equation (8.11), we denote: 
        GMmgvo )./2( π=                                           (8.12) 

The value of m is an adjustable parameter (similar to g). [85][86]  
Using this equation (8.11), we could predict quantization of celestial or-

bits in the solar system, where for Jovian planets we use least-square method 
and use M in terms of reduced mass )./()( 2121 MMMM +=µ . From 
this viewpoint the result is shown in Table 1 below [90]: 

Table 8.1. Comparison of prediction and observed orbit distance of  
planets in Solar system (in 0.1AU unit) [90] 

Object No. Titius Nottale CSV Observed ∆ (%) 
 1  0.4 0.428   
 2  1.7 1.71   
Mercury 3 4 3.9 3.85 3.87 0.52 
Venus  4 7 6.8 6.84 7.32 6.50 
Earth 5 10 10.7 10.70 10.00 -6.95 
Mars 6 16 15.4 15.4 15.24 -1.05 
Hungarias 7  21.0 20.96 20.99 0.14 
Asteroid 8  27.4 27.38 27.0 1.40 
Camilla 9  34.7 34.6 31.5 -10.00 

Object No. Titius Nottale CSV Observed ∆ (%) 
Jupiter 2 52  45.52 52.03 12.51 
Saturn 3 100  102.4 95.39 -7.38 
Uranus 4 196  182.1 191.9 5.11 
Neptune 5   284.5 301 5.48 
Pluto 6 388  409.7 395 -3.72 
2003EL61 7   557.7 520 -7.24 
Sedna 8 722  728.4 760 4.16 
2003UB31 9   921.8 970 4.96 
Unobserved 10   1138.1   
Unobserved 11   1377.1   
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For comparison purpose, we also include some recent observation by 
M. Brown et al. from Caltech [91][92][93][94]. It is known that Brown et al. 
have reported not less than four new planetoids in the outer side of Pluto 
orbit, including 2003EL61 (at 52AU), 2005FY9 (at 52AU), 2003VB12 (at 
76AU, dubbed as Sedna.) And recently Brown and his team reported a new 
planetoid finding, called 2003UB31 (97AU). This is not to include Quaoar 
(42AU), which has orbit distance more or less near Pluto (39.5AU), there-
fore this object is excluded from our discussion. It is interesting to remark 
here that all of those new ‘planetoids’ are within 8% bound from our predic-
tion of celestial quantization based on the above Bohr-Sommerfeld quantiza-
tion hypothesis (Table 1). While this prediction is not so precise compared to 
the observed data, one could argue that the 8% bound limit also corresponds 
to the remaining planets, including inner planets. Therefore this 8% uncer-
tainty could be attributed to macroquantum uncertainty and other local fac-
tors. 

While our previous prediction only limits new planet finding until n=9 of 
Jovian planets (outer solar system), it seems that there are reasons to suppose 
that more planetoids are to be found in the near future. Therefore it is rec-
ommended to extend further the same quantization method to larger n val-
ues. For prediction purpose, we include in Table 1 new expected orbits based 
on the same quantization procedure we outlined before. For Jovian planets 
corresponding to quantum number n=10 and n=11, our method suggests that 
it is likely to find new orbits around 113.81 AU and 137.71 AU, respec-
tively. It is recommended therefore, to find new planetoids around these 
predicted orbits. 

As an interesting alternative method supporting this proposition of quan-
tization from superfluid-quantized vortices (8.6), it is worthnoting here that 
Kiehn has argued in favor of re-interpreting the square of the wavefunction 
of Schrödinger equation as the vorticity distribution (including topological 
vorticity defects) in the fluid [69]. From this viewpoint, Kiehn suggests that 
there is exact mapping from Schrödinger equation to Navier-Stokes equa-
tion, using the notion of quantum vorticity [69]. Interestingly, de Andrade & 
Sivaram [98] also suggest that there exists formal analogy between 
Schrödinger equation and the Navier-Stokes viscous dissipation equation: 
 VtV 2./ ∇=∂∂ ν                   (8.13) 
where ν is the kinematic viscosity. Their argument was based on propaga-
tion torsion model for quantized vortices [98]. While Kiehn’s argument was 
intended for ordinary fluid, nonetheless the neat linkage between Navier-
Stokes equation and superfluid turbulence is known in literature [99][100].  
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At this point, it seems worth noting that some criticism arises to the use 
of quantization method for describing the motion of celestial systems. These 
criticism proponents usually argue that quantization method (wave mechan-
ics) is oversimplifying the problem, and therefore cannot explain other phe-
nomena, for instance planetary migration etc. While we recognize that there 
are phenomena which do not correspond to quantum mechanical process, at 
least we can argue further as follows: 

(i) Using quantization method like Nottale-Schumacher 
did, one can expect to predict new exoplanets (extraso-
lar planets) with remarkable result [85][86]; 

(ii) The ‘conventional’ theories explaining planetary migra-
tion normally use fluid theory involving diffusion proc-
ess; 

(iii) Alternatively, it has been shown by Gibson et al. [130] 
that these migration phenomena could be described via 
Navier-Stokes approach; 

(iv) As we have shown above, Kiehn’s argument was based 
on exact-mapping between Schrödinger equation and 
Navier-Stokes equations [69]; 

(v) Based on Kiehn’s argument one these authors published 
prediction of some new planets in 2004 [90]; 

(vi) In March 2004 Brown et al. reported their finding of a 
planetoid in Kuiper belt; 

(vii) There is other prediction of planetoid in Kuiper Belt ob-
ject [127], nonetheless the writers don’t mention other 
planetoids apart of Sedna (outside the Kuiper belt); 

(viii) In July 2005, Brown et al. reported again a few number 
of new planetoids, in the Oort Cloud; 

(ix) Our subsequent analysis (Table 8.1) seems to suggest 
that Brown’s report is in good agreement with our pre-
vious prediction, therefore it is not  a retro-diction [90]; 

(x) To conclude: while our method as described herein may 
be interpreted as an oversimplification of the real plane-
tary migration process which took place sometime in 
the past, at least it could provide us with useful tool for 
prediction; 

(xi) Now we also provide new prediction of other planetoids 
which are likely to be observed in the near future 
(around 113.8 AU and 137.7 AU); 
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(xii) It is recommended to use this prediction as guide to 
finding new objects (in the inner Oort Cloud); 

(xiii) There are of course other theories which have been de-
veloped to explain planetoids and exoplanets [126]. 

(xiv) Therefore quantization method could be seen as merely 
a ‘plausible’ theory between others (i.e. It could be re-
garded only as ‘partial truth’, see the previous chapter).  

All in all, what we would like to emphasize here is that the quantization 
method does not have to be the true description of reality with regards to 
celestial phenomena. As always this method could explain some phenomena, 
while perhaps lacks explanation for other phenomena. But at least it can be 
used to predict something which is measurable (exoplanets, and new plane-
toids in the outer solar system etc.) It appears that this problem is somewhat 
similar with what happened to Copernican theory, which once was described 
as: “absurd philosophically and formally heretical inasmuch as it expressly 
contradicts the doctrines of the Holy Scripture.”[131] Therefore, it is our 
conviction that someday a more profound theory will appear which perhaps 
could reconcile the quantization viewpoint and ‘planetary migration’ view-
point. As to the method described herein which could be viewed as merely 
consists of pure guessing (initially), allow us to quote R. Feynman here:  

“First you guess. Don’t laugh; this is the most important step. Then you 
compute the consequences. Compare the consequences to experience. If it 
disagrees with experience, the guess is wrong. In that simple statement is 
the key to science. It doesn’t matter how beautiful your guess is or how 
smart you are or what your name is. If it disagrees with experience, it’s 
wrong.” [134] 

 
Picture 8.1. Book cover of Dialogo [131]. 



  74

 
In the meantime, it seems also interesting here to consider a plausible 

generalization of Schrödinger equation in particular in the context of viscous 
dissipation method. First, we could write Schrödinger equation for a charged 
particle interacting with an external electromagnetic field [69] in the form of 
Ulrych’s unified wave equation [7]: 
( )( )[ ] [ ]Ψ+∂∂−=Ψ−∇−−∇− )(2/.2 xmUtmiqAiqAi µµ

µµ hh .      (8.14) 
In the presence of electromagnetic potential [105], one could include an-

other term into the LHS of equation (8.14): 
( )( )[ ] [ ]Ψ+∂∂−=Ψ+−∇−−∇− )(/2 xUtimeAqAiqAi o

µµ
µµ hh .    (8.15) 

This equation has the physical meaning of Schrödinger equation for a 
charged particle interacting with an external electromagnetic field, which 
takes into consideration Aharonov effect [105]. Topological phase shift 
becomes its immediate implication, as already considered by Kiehn [69].   

As described above, one could also derived equation (8.11) from scale- 
relativistic Schrödinger equation [85][86]. It should be noted here, however, 
that Nottale’s method [85][86] differs appreciably from the viscous dissipa-
tive Navier-Stokes approach of Kiehn [69], because Nottale only considers 
his equation in the Euler-Newton limit [103][104].   

Alternatively, with respect to our superfluid dynamics interpretation [71], 
one could also get Schrödinger equation from simplification of Ginzburg-
Landau equation. This method will be discussed subsequently. It is known 
that Ginzburg-Landau equation can be used to explain various aspects of 
superfluid dynamics [73][74][75]. For alternative approach to describe su-
perfluid dynamics from Schrödinger-type equation, see [96a]-[96b]. 

According to Gross, Pitaevskii, Ginzburg, wavefunction of N bosons of a 
reduced mass m* can be described as [96]:  

 tim ∂∂=+∇− /.*).2/( 222 ψψψκψ hh                (8.18) 
For some conditions, it is possible to replace the potential energy term in 
equation (8.18) with Hulthen potential. This substitution yields: 
 tiVm Hulthen ∂∂=+∇− /..*).2/( 22 ψψψ hh                (8.19) 
where 
 )1/(..2 rr

Hulthen eeZeV δδδ −− −−=                 (8.20) 
This equation (8.20) has a pair of exact solutions. It could be shown that 

for small values ofδ , the Hulthen potential (8.20) approximates the effec-
tive Coulomb potential, in particular for large radius: 
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   )2/().1(/ 222 mrreV eff
Coulomb hll ++−=                

(8.21) 
Therefore equation (8.21) could be rewritten as: 

[ ] timrrem ∂∂=++−+∇− /..)2/().1(/*2/ 22222 ψψψ hhllh      (8.22) 
For large radii, second term in the square bracket of LHS of equation 

(8.22) reduces to zero [95],  
 0)2/().1( 22 →+ mrhll                   (8.23) 

so we can write equation (8.22) as:  
tiUm ∂∂=+∇− /.).*2/( 22 ψψψ hh                  (8.24) 

where Coulomb potential can be written as: 
 reU /2−=                    (8.25) 
      This equation (8.24) is nothing but Schrödinger equation (8.1). In other 
words, we have re-derived Schrödinger equation from simplification of 
Ginzburg-Landau equation, in the limit of small screening parameter. Calcu-
lation shows that introducing this Hulthen effect (8.20) into equation (8.19) 
will yield different result only at the order of 10-39 m compared to prediction 
using equation (8.24), which is of course negligible. Therefore, we conclude 
that for most celestial quantization problems the result of TDGL-Hulthen 
(8.22) is essentially the same with the result derived from equation (8.1). 
Now, to derive equation (8.11) from Schrödinger equation, the reader is 
advised to see Nottale’s scale-relativistic method [85][86].  
      What we would emphasize here is that this derivation of Schrödinger 
equation from Ginzburg-Landau equation is at good agreement with our 
previous conjecture that equation (8.6) implies macroquantization corre-
sponding to superfluid-quantized vortices. This conclusion is the main result 
of this Postscript chapter.  
       It is also worthnoting here that there is recent attempt to introduce 
Ginzburg-Landau equation in the context of microtubule dynamics [108], 
which implies wide applicability of this equation. Furthermore, because 
Ginzburg-Landau equation represents superfluid dynamics at low-
temperature, the fact that we can derive quantization of celestial systems 
from this equation could be interpreted as signature of Bose-Einstein con-
densate cosmology [109][110]. 
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    One day Chuang-tzu and a friend were walking along a riverbank. 
 'How delightfully the fishes are enjoying themselves in the water!' Chuang-tzu 

exclaimed. 
'You are not a fish,' his friend said. 'How do you know whether or not the fishes 

are enjoying themselves?' 
'You are not me,' Chuang-tzu said. 

 'How do you know that I do not know that the fishes are enjoying themselves?' 
A Zen koan [134a] 

 

Epilogue 
Throughout this book, we have argued that using Multi-Valued-logic 

viewpoint, in particular Neutrosophy, some known paradoxes in Quantum 
Physics could be solved in unique way. And it is our hope that some predic-
tions derived in this book will find their way in experiments. 

It is also known that there are other numerous applications of Multi-
Valued-logic, which have become part of daily numerical tools for hardware 
designers and programmers alike. It is not difficult to expect that in the near 
future, applications of Neutrosophic Logic will also be found in the same 
way now electronic designers have made use Fuzzy Logic of L. Zadeh. 

In recent years, a few physicists have suggested that biological systems 
could be represented using Multi-Valued-logic [17a]. Therefore, it is very 
likely that study of Quantum Physics of biological systems will also find 
Neutrosophic Logic useful. Furthermore, it is also likely that Multi-Valued-
logic in particular Neutrosophy will improve various other branches of sci-
ence, which have used mathematical methods extensively, including perhaps 
econometrics [133a].  

Now, this paragraph is intended for physicist fellows who find themselves 
remain undecided as to whether Neutrosophic Logic is worth serious consid-
eration or not. Let us rewrite again Smarandache’s paradox: “Let A be some 
attribute (e.g., possible, present, perfect, etc.). If all is A, then the non-A 
must also be A.” This statement implies that sometimes impossible things 
could happen.  For a daily example of this paradox, let us quote Douglas 
Adams: “The major difference between a thing that might go wrong and a 
thing that cannot possibly go wrong is that when a thing that cannot possibly 
go wrong goes wrong, it usually turns out to be impossible to get at and 
repair.” In other words, sometimes what is supposed to not go wrong can go 
wrong. Or try another quote by British physicist Ernest Rutherford: “All of 
physics is either impossible or trivial. It is impossible until you understand 
it, and then it becomes trivial.” [134] 
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After all, allow us to quote C.N. Yang at the end of this book: “There 
are only two kinds of math books. Those you cannot read beyond the first 
sentence, and those you cannot read beyond the first page.” [134] Therefore 
if you can manage yourself to read up to this page, we believe that at least 
we already write a book which could exclude itself from the above C.N. 
Yang’s statement.  

And if you find this book improves your comprehension of parts of your 
own research, so you could become not only smarter but perhaps also wiser 
(sophos), we would consider it as an extra gratuity. 

  
 
 
FS & VC
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Appendix 1. 
An example of self-referential code: Quine 

 
 
This is subject for computer nerds. There are plenty of examples of such 

‘self-generating’ code, but the most popular one is known as Quine.5 It is 
possible to write a program which outputs another program which is itself a 
quine. 

 
:quine: /kwi:n/ /n./ [from the name of the logician Willard van Orman 
Quine, via Douglas Hofstadter] A program that generates a copy of its own 
source text as its complete output. Here is one classic quine:  

     ((lambda (x) 
       (list x (list (quote quote) x))) 
      (quote 
         (lambda (x) 
           (list x (list (quote quote) x))))) 

 
This one works in LISP or Scheme. Another example using 

JavaScript(Scheme-style) described by: E. Barzilay (eli@CS.Cornell.EDU) 
 
(function (x) { return unescape(x)+"("+"\""+x+"\""+")"}) 
    (escape("(function (x) { return unes-

cape(x)+\"(\"+\"\\\"\"+x+\"\\\"\"+\")\"})")) 
 
And an example written in C, given by K. Thompson (inventor of UNIX): 
 
char s[] = { 
 '\t', 
 '0', 
 '\n', 
 '}', 
 ';', 

                                                                  

5 http://www.nyx.net/~gthompso/bibliography.htm 
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 '\n', 
 '\n', 
 'm', 
 'a', 
 'i', 
 'n', 
 '(', 
 ')', 
 '\n', 
 '{', 
 '\n', 
 '\t', 
 'i', 
 'n', 
 't', 
 ' ', 
 'i', 
 ';', 
 '\n', 
 '\n', 
 '\t', 
 'p', 
 'r', 
 'i', 
 'n', 
 't', 
 'f', 
 '(', 
 '\"', 
 'c', 
 'h', 
 'a', 
 'r', 
 ' ', 
 '\\', 
 't', 
 's', 
 '[', 
 ']', 
 ' ', 
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 '=', 
 ' ', 
 '{', 
 '\\', 
 'n', 
 '\"', 
 ')', 
 ';', 
 '\n', 
 '\t', 
 'f', 
 'o', 
 'r', 
 '(', 
 'i', 
 '=', 
 '0', 
 ';', 
 's', 
 '[', 
 'i', 
 ']', 
 ';', 
 'i', 
 '+', 
 '+', 
 ')', 
 '\n', 
 '\t', 
 '\t', 
 'p', 
 'r', 
 'i', 
 'n', 
 't', 
 'f', 
 '(', 
 '\"', 
 '\\', 
 'r', 
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 '%', 
 'd', 
 ',', 
 '\\', 
 'n', 
 '\"', 
 ',', 
 's', 
 '[', 
 'i', 
 ']', 
 ')', 
 ';', 
 '\n', 
 '\t', 
 'p', 
 'r', 
 'i', 
 'n', 
 't', 
 'f', 
 '(', 
 '\"', 
 '%', 
 's', 
 '\"', 
 ',', 
 's', 
 ')', 
 ';', 
 '\n', 
 '}', 
 0 
}; 
 
main() { 
int i; 
 
        printf("char \ts[] = {\n"); 
        for(i=0;s[i];i++) 
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                printf("\r%d,\n",s[i]); 
        printf("%s",s); 
} 
 
 
These examples are described here merely to put emphasis on self-

referential code and also that self-referential statements are perhaps more 
ubiquitous than what we’ve imagined before. 

 



  93 

Appendix 2 
Summary of bibliography of Non-Standard Logics [120] 
 
 
The followings summarize a few non-standard logics known in literature.  

 
No Name Description 
1 Combinatory Logic Logics that replace variables with functions 

in order to clarify intuitive operations on 
variables such as substitution. Systems of 
arithmetic built from combinatory logic can 
contain all partial recursive functions and 
avoid Gödel incompleteness. 

2 Conditional Logic Logics that deal with the truth of condi-
tional sentences, particularly in the subjunc-
tive mood. The logic of counterfactual 
assertions. 

3 Constructive Logic Logics in which a wff is true iff it is prov-
able. Therefore, undecidable truths (like 
Gödel's G) are ruled out by definition. 

4 Cumulative Logic A logic extending the theory of types. 
Predicates are true of objects of all lower 
types, not (as in the simple theory of types) 
only of objects of the immediately preced-
ing type. 

5 Deontic Logic Logics of permission and obligation (de-
rived from modal logics of possibility and 
necessity); hence the logic of norms and 
normative systems. 

6 Dynamic Logic Logics for reasoning about computer pro-
grams, especially for proving that a pro-
gram is "correct" or lacks semantic bugs or 
does what it is intended to do without error. 
In dynamic logics, the truth-values of wffs 
can change according to the rules or func-
tions of a program. 

7 Epistemic Logic The logic of non-truth-functional operators 
such as "believes" and "knows". For exam-
ple, let *p mean that I know proposition p. 
If *p and p q are given, then what must 
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we add in order to infer *q? 
8 Erotetic Logic The logic of questions and answers. When 

does a proposition answer a question (cor-
rectly or incorrectly)? What's wrong with 
questions that presuppose false propositions 
(such as "Have you stopped beating your 
spouse?")? Do questions bear truth-values? 
What is the most efficient strategy of asking 
questions to get an answer from a database? 

9 Free Logic Standard logic without any existence as-
sumptions. While quantifiers do have exis-
tential import, singular terms may some-
times denote no existing object or not de-
note at all. Logical truths must be true for 
the empty domain as well as all non-empty 
domains. One motive is to make logic purer 
by eliminating some remaining metaphysi-
cal implications; another is to make transla-
tions from natural languages more direct. 

10 Fuzzy Logic Logics in which the underlying set theory is 
fuzzy set theory. In fuzzy set theory, set 
membership is not a binary predicate 
(yes/no, or in/out), but a continuous quan-
tity from 1 to 0. Fuzzy logic introduces a 
similar gradation of truth-values. 

11 Higher-Order Logic Predicate logics in which quantifers bind 
predicate variables, and predicates can take 
other predicates as arguments. In first-order 
predicate logic, by contrast, quantifiers bind 
only individual variables, and predicates 
take only individual terms as arguments. 

12 Infinitary Logic Logics permitting infinitely long wffs, es-
pecially disjunctive strings to replace exis-
tential quantifiers and conjunctive strings to 
replace universal quantifiers, or permitting 
rules of inference that take infinitely many 
premises. Spurred by Gödel's proof of the 
incompleteness of finitary logic and arith-
metic. 

13 Intensional Logic Logics that include apparatus for signifying 
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when two meanings (as opposed to two 
wffs, truth-values, sets, predicates, func-
tions) are identical, and that analyzes infer-
ences involving meanings. (Non-intensional 
logics are called extensional.) 

14 Intuitionistic Logic Propositional logics (and their predicate 
logic extensions) in which neither "p ~p" 
nor "~~p p" are provable. They accept 
disjunctions A B as theorems only if one 
of the disjuncts is separately provable: i.e. if 
either A or B. They have the same 
rules of inference as classical logic. Pro-
positional connectives are undefined primi-
tives. 

15 Many-sorted Logic Logics in which variables are "typed" as 
they are in many computer programming 
languages. 

16 Many-valued logic Logics in which there are more than the two 
standard truth-values "truth" and "false-
hood". Motivated by semantic paradoxes 
like the liar ("this statement is false") and 
by future contingents ("tomorrow there will 
be a sea-battle"), that don't easily take either 
standard truth-value, and by attempts to 
deal with uncertainty, ignorance, and 
"fuzziness". 

17 Modal Logic The logic of the modal categories (possibil-
ity, actuality, and necessity) and their use in 
reasoning, for example, in "strict" implica-
tion. 

18 Neutrosophic Logic Neutrosophy is a branch of philosophy that 
studies the origin, nature, and scope of 
neutralities, as well as their interactions 
with different ideational spectra. In mathe-
matical terms, it is a multiple-valued logic 
in which each proposition is estimated to 
have the percentages of truth, indetermi-
nacy, and falsity in T, I, and F respectively, 
where T, I, F are standard or non-standard 
subsets included in the non-standard unit 
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interval ] -0, 1+[.  It is an extension of fuzzy, 
intuitionistic, paraconsistent logics. 

19 Non-monotonic Logic Logics in which the set of implications 
determined by a given group of premises 
does not necessarily grow, and can shrink, 
when new wffs are added to the set of 
premises. 

20 Paraconsistent Logic Logics in which it is generally false that 
contradictions imply any and every proposi-
tion. Contradictory statements (p·~p) are 
both true and false, as opposed to simply 
false. Hence the principle of excluded mid-
dle is affirmed, while the principle of non-
contradiction denied. Paraconsistent logics 
can be "lived" if one vows to accept all 
truths, but does not insist on rejecting all 
falsehood. Paraconsistent logics do not hold 
that all paradoxes can be "solved" and urges 
that they be recognized as contradictions. 

21 Partial Logic Logics in which wffs need not be either true 
or false, or in which singular terms need not 
denote anything, or both. Logics that can 
cope with "truth-value gaps" and "denota-
tion failures". 

22 Prehairetic Logic The logic of preference. For example, if 
someone prefers A to B and B to C, must 
she prefer A to C? Must preference be tran-
sitive? 

23 Quantum Logic To reflect quantum indeterminacy and un-
certainty, quantum logic adds a third truth-
value ("indeterminate"); hence the metathe-
ory denies the principle of excluded middle 
(PEM). Nevertheless, for every p, "p ~p" 
is logically valid in systems of quantum 
logic. That is, PEM is true in the theory, 
false in the metatheory. Because both dis-
juncts of a true disjunction can be false, 
disjunction and conjunction behave asymet-
rically; hence the distribution laws gener-
ally fail. Motivated to capture the queerness 



  97 

of quantum-mechanics; in quantum logic 
this queerness shows up on the proposi-
tional level, in redefined connectives. 

24 Relevant Logic Logics in which "p implies q" only if p is 
relevant to q. Designed to prevent the para-
doxes of material implication from arising; 
p should never imply q simply because p is 
false or because q is true. The advantage is 
that implication claims in natural language 
are better translated; the disadvantage is 
that implication loses truth-functionality. 

25 Stoic Logic The logic of the ancient Stoics, marked by 
the introduction of tense operators. 

26 Substance Logic The logic of entities related to one another 
by such indices as time, space, and possible 
worlds. Complex entities can model situa-
tions normally modelled by n-place rela-
tions. 
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Appendix 3 
List of some known paradoxes 
 
 
The followings summarize some known paradoxes in science, physics, 

and mathematics.  
 

No Paradox Description URL 
1 Russell 

paradox 
Consider the set of all sets are 
not members of themselves. Is 
this set a member of itself?  
(Let R be the set of all sets 
which are not members of them-
selves.  Then R is neither a 
member of itself nor not a 
member of itself.  Responses to 
it include Zermelo’s axiomiza-
tion of set theory, and its own 
discoverer’s theory of types.) 

http://www.geocitie
s.com/mathimoh/Es
say/essay4.htm 

2 Epimenid-
ean para-
dox 

Consider this statement: “This 
statement is false.” Is this state-
ment is true? 

 

3 Berry para-
dox 

What is "The first number not 
nameable in fewer than ten 
words"? (And hasn't it just been 
named in nine?)  

 

4 Wigner’s 
friend 

It is a thought experiment to 
highlight how he believed con-
sciousness is necessary to the 
quantum mechanical measure-
ment process. If a material de-
vice is substituted for the con-
scious friend, the linearity of the 
wave function implies that the 
state of the system is in a linear 
sum of possible states. It is sim-
ply a larger indeterminate sys-
tem. 

 

5 Einstein-
Podolski-

Can far away events influence 
each other in quantum mechan-
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Rosen 
paradox 

ics? 

6 Schrö-
dinger’s cat 
paradox 

A sealed vessel containing a live 
cat and a device triggered by a 
quantum event such as the ra-
dioactive decay of the nucleus. 
If the quantum event occurs, 
cyanide is released and the cat 
dies; if the event does not occur 
the cat lives. 

 

7 Zeno para-
dox 

The slower when running will 
never be overtaken by the 
quicker; for that which is pursu-
ing must first reach the point 
from which that which is fleeing 
started, so that the slower must 
necessarily always be some 
distance ahead. (Achilles cannot 
win over the turtle) 

http://plus.maths.org
/issue17/xfile/index.
html 

8 Banach-
Tarski 
paradox 

Split a ball into 5 pieces; re-
assemble the pieces to get two 
balls, both of equal size to the 
first. 

 

9 Wheeler’s 
paradox 
(John 
Archibald 
Wheeler) 

“The question is: What is the 
question?” 

 

10 Olber para-
dox 

Why is the night sky black if 
there is infinity of stars? (For-
mulated in 1826, it stated that 
the night sky should be uni-
formly illuminated if the uni-
verse were infinite and homoge-
neous with stars in every direc-
tion.  It was resolved with the 
discovery of the Red Shift and 
the realization that stars have 
finite lifetimes.) 

 

11 Ehrenfest Formulated by an Austrian  
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paradox physicist, it examines a rapidly 
rotating disc.  Since any radial 
segment of the disc is perpen-
dicular to the direction of mo-
tion, the radius should not un-
dergo length contraction. Since, 
however, the circumference of 
the disc is parallel to the direc-
tion of motion, the circumfer-
ence should contract. 

12 Richard’s 
paradox 

A complete list of definitions of 
real numbers doesn't exist. (We 
appear to be able to use simple 
English to define a decimal 
expansion in a way which is 
self-contradictory.) 

http://www.dpmms.
cam.ac.uk/~wtg10/ri
chardsparadox.html 

13 Barber 
paradox 

The barber who shaves all men 
who don't shave themselves, and 
no-one else.  
Should he shave himself? 

http://home.att.net/~
numeri-
cana/answer/sets.ht
m#barber 

14 Ship of 
Theseus 
paradox 

When every component of the 
ship has been replaced at least 
once, is it still the same ship? 
 
(Similarly we can ask: If each 
component of human body has 
been replaced by equivalent 
robotic part, is HE the same 
human?) 
 

 

15 Abilene 
paradox 

A group of people often has to 
decide against its own interests. 
(People can make decisions 
based not on what they actually 
want to do, but on what they 
think that other people want to 
do, with the result that every-
body decides to do something 
that nobody really wants to do, 
but only what they thought that 
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everybody else wanted to do.) 
16 Bertrand 

Paradox 
Two players reaching a state of 
Nash equilibrium both find 
themselves with no profits. 

 

17 Diamond-
water para-
dox 

Why is water cheaper than dia-
monds, when humans need 
water to survive, not diamonds? 

 

18 Jevons 
paradox 

Increases in efficiency lead to 
even larger increases in demand. 

 

19 St.Peters-
burg para-
dox 

The so-called "St. Petersburg 
Game" is played with a fair 
coin, which is tossed until heads 
appears. If the game lasts for 
n+1 tosses, the player receives 
2n dollars.   
What's a decent price to pay for 
the privilege of playing this 
game? (People will only offer a 
modest fee for a reward of infi-
nite value.) 

http://home.att.net/~
numeri-
cana/answer/utility.
htm#petersburg 

20 Moore’s 
paradox 

"It's raining but I don't believe 
that it is." 

 

21 Nihilist 
paradox 

If truth does not exist, the state-
ment "truth does not exist" is a 
truth, thereby proving itself 
incorrect. 

 

22 Mere addi-
tion para-
dox 

Is a large population living 
barely tolerable lives better than 
a small happy population? 

 

23 Fermi 
paradox 

If there are many other sentient 
species in the Universe, then 
where are they? Shouldn't their 
presence be obvious? 

 

24 Mpemba 
paradox 

Hot water can under certain 
conditions freeze faster than 
cold water, even though it must 
pass the lower temperature on 
the way to freezing. 

 

25 Raven 
paradox 

Observing a red apple increases 
the likelihood of all ravens be-
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ing black. 
26 Socratic 

paradox 
One can never knowingly 
choose the lesser good or will-
ingly do the wrong thing. 

 

27 Hausdorff 
paradox 

There exists a countable subset 
C of the sphere S such that SC is 
equidecomposable with two 
copies of itself. 

 

28 Gabriel’s 
horn 

A simple object with finite vol-
ume but infinite surface area 

 

29 Grelling 
paradox 

Is the word "heterological", 
meaning "not applicable to it-
self," a heterological word? 

 

30 Petronius 
paradox 

Moderation in all things. Includ-
ing moderation 

 

31 Sorites 
paradox 

At what point does a heap stop 
being a heap as I take away 
grains of sand? Alternately, at 
what point does someone be-
come bald? 

 

32 D’Alember
t paradox 

An inviscid liquid produces no 
drag 

 

33 Smaran-
dache 
paradox 
[136][137] 

Let A be some attribute (e.g., 
possible, present, perfect, etc.). 
If all is A, then the non-A must 
also be A. For example, "Noth-
ing is perfect, not even the per-
fect." 

http://mathworld.wo
lfram.com/Smarand
acheParadox.html 

34 Smaran-
dache’s 
Invisible 
Quasi Para-
dox 

Our visible world is composed 
of a totality of invisible particles 

http://www.gallup.un
m.edu/~smarandache/
eBook-
neutrosophics2.pdf 

35 Invisible 
Sorites 
Paradox 

There is not a clear frontier between 
visible matter and invisible matter.  

http://www.gallup.un
m.edu/~smarandache/
eBook-
neutrosophics2.pdf 

 
Source: Some paradoxes are mentioned in http://www.reference.com
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Appendix 4 
A few basic notations 
 
Merely as refreshment, here’s a few basic notations used in this book. 
 
Notation Description 

∅ The empty set 
∈ Element of 
∉ Not an element of 
⊆ Contained in 
⊇ Contains 
⊄ Not contained in 
∩ Intersection 
∪ Union 

  
  

 
 

Terminology. [133] 

A set is any collection of objects.  

The empty set is the set containing no elements, denoted by Æ.  

If A is a set and x is a member of A, we say x is an element of A and denote this by x Î 
A.  

If A and B are sets and every element of A is also an element of B (that is, x Î A im-
plies x Î B), then we say A is a subset of B or A is contained in B and we denote this 
by A Í B.  

The intersection of two sets is the elements they have in common. For example, if 
A={1, 2, 3, 4} and B={2, 4, 6, 8}, then A Ç B = {2, 4}.  

The union of two sets is the set of elements that are in at least one of the two sets. For 
example, if A={1, 2, 3, 4} and B={2, 4, 6, 8} then A È B = {1, 2, 3, 4, 6, 8}.  
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Appendix 5 
A few historical achievements in foundations of set theory 
 
 

Date Description 
March 3, 1845 Georg Ferdinand Ludwig Philip Cantor was born of Danish 

parents in St. Petersburg, Russia, in 1845, and moved with 
his parents to Frankfurt, Germany, in 1352.  Georg gave up 
his father’s suggestion of preparing for a career in engineer-
ing.  Rather, Cantor concentrated on philosophy, physics, and 
mathematics.  He studied at Zurich, Gottingen, and Berlin 
(where he took his doctorate in 1867).  He then spent a long 
teaching career at the University of Halle from 1869 until 
1905. In 1874 he commenced his revolutionary work on set 
theory and the theory of the infinite.  With this work he 
created a whole new field of mathematical research.  Today, 
Cantor's set theory has penetrated into almost every branch of 
mathematics, and it has proved to be of particular importance 
in the foundations of real function theory.  Cantor died in a 
mental hospital in Halle in 1918.  Well known is his famous 
aphorism: "The essence of mathematics lies in its freedom." 

March 18, 1871 What mathematician, when asked his age answered "I was x 
years old in the year x2.? 

A. De Morgan died. Augustus De Mor6an was born (blind 
in one eye) in 1806 in Madras, where his father was associ-
ated with the East India Company.  He was educated at Trin-
ity College, Cambridge, graduating as fourth wrangler, and in 
1828 became a professor in the newly established University 
of London (later renamed University College), where, 
through his works and his students, he exercised a wide 
influence in English mathematics.  He was well read in phi-
losophy and the history of mathematics, and wrote works on 
the foundations of algebra, differential calculus, logic, and 
the theory of probability.  He was a highly lucid expositor.  
His witty and amusing book, A Budget of Paradoxes, still 
makes entertaining reading.  He continued George Boole's 
work on the algebra of sets, enunciating the principle of 
duality of set theory, of which the so-called De Morgan Laws 
are an illustration: If A and B are subsets of a universal set, 
then the complement of the union of A and B is the intersec-
tion of the complements of A and B, and the complement of 
the intersection of A and B is the union of the complements 
of A and B (in symbols: (A È B). = A. Ç B. and (A Ç B). = 
A. È B., where prime denotes complement).  Like Boole, De 
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Morgan regarded mathematics as an abstract study of sym-
bols subjected to sets of symbolic operations.  De Morgan 
was an outspoken champion of academic freedom and of 
religious tolerance.  He performed beautifully on the flute 
and was always jovial company, and he was a confirmed 
lover of big-city life.  He had a fondness for puzzles and 
conundrums, and when asked either his age or his year of 
birth would reply, "I was x years old in the year x2.” 

April 20, 1932 The Italian mathematician Giuseppe Peano, who was born 
in 1858, died.  In 1889 Peano brought the searchlight of 
modern criticism on Euclid's treatment of geometry, reveal-
ing a number of defects.  Perhaps the gravest of these defects 
is that Euclid's axiomatic basis is insufficient for a rigorous 
development of the subject.    Very popular with mathemati-
cians is Peano's concise postulate set for the natural number 
system, which can be used employing no more assumptions, 
to obtain, first, the rational number system, then the real 
numbers, and finally the complex numbers.  The work of 
Peano and that of the German logician Gottlieb Frege (1848-
1925) originated the modern approach to symbolic logic.  
Peano's work was motivated by a desire to express all of 
mathematics as a manipulation of logical symbols. The re-
sulting Fornulaire de mathematiques by Peano and his co-
workers began its appearance in 1894.   

In 1890 Peano constructed the first continuous curve pass-
ing through every point of a square, thus showing that a 
continuous curve need not be one-dimensional, but can be 
area-filling. The curve is defined as the limit of an infinite 
sequence of curves, and Peano had one of the curves of the 
sequence put on the terrace of his home, by means of 
black tiles on white.  Peano's curve has (an infinite number 
of) multiple points.  Continuous area-filling curves without 
this fault were constructed later by David Hilbert (1891), 
Waclaw Sierpinski (1912), and others. 

18 May, 1872 Birthdate of Bertrand Arthur William Russell.  Bertrand 
Russell, descendent of an aristocratic family, was born near 
Trellack, Wales.  The winner of an open scholarship at Trin-
ity College, Cambridge, he took high honours in mathematics 
and philosophy, and studied under Alfred North Whitehead 
(1861-1947).  In addition to lecturing, largely at universities 
in the United States, he wrote over forty books on mathemat-
ics, logic, philosophy, sociology, and education.  He received 
many awards, such as both the Sylvester and de Morgan 
medals of the Royal Society (1934), the Order of Merit 
(1940), and the Nobel Prize for Literature (1950).  His out-
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spoken views often embroiled him in controversies.  During 
World I & II, he was dismissed from Cambridge University 
and imprisoned for four months because of his pacifist views 
and his opposition to conscription.  In the early 1960s, he led 
pacifist moves to ban nuclear weapons and was again briefly 
imprisoned.  A man of remarkable mind and ability, he died 
in 1970, mentally alert to the end, at the advanced age of 
ninety-eight.  His most influential work, written with White-
head, is the monumental Principia mathematics (1910-1913).  
The basic idea of this work is the identification of much of 
mathematics with logic by the deduction of the natural num-
bers, and hence the great bulk of existing mathematics, from 
a set of promises or postulates for logic itself. 

5 September, 1667 Girolamo Saccheri was born.  Little is know about Sac-
cheri’s life.  He is famous for is work with Euclid.s fifth 
postulate as given in Euclid.s Elements.  Many individuals in 
mathematics have questioned whether it is actually a postu-
late and should not be replaced as a proposition, derived from 
the remaining postulates.  It is this that Saccheri set out to do.  

While working on his proof using a quadrilateral, parts of 
the proof came easy; however other sections of the proof 
became quite difficult; finally finishing in a rather uncon-
vincing manner.  Unfortunately, if Saccheri had simply ac-
cepted that there was no proof for the remaining parts, he 
would have been credited with the discovery of non-
Euclidean geometry.  His work went little noticed until 1889, 
when it was resurrected by Eugenio Beltrami (1835-1900). 

5 October, 1781 Bernard Bolzano was born in Prague, Czechoslovakia.  
Bolzano was a priest but was defrocked for heresy and dis-
missed from his religion teaching post at the University of 
Prague.  He had a leaning toward logic and mathematics, 
especially analysis, and can be considered a forerunner of the 
arithmetization of analysis, a program wherein the real num-
ber system is first rigorized and then all the basic concepts of 
analysis derived from this number system.  In 1843, he pro-
duced a continuous non-differentiable function.  His function 
didn’t become known, and it is Weierstrass, about 40 years 
later, who is usually credited for the first example of this 
kind.  There is a famous theorem in analysis that bears both 
mathematicians, named the Bolzano-Weirstrass Theorem, 
which states that every bounded infinite set of points contains 
at least one accumulation point.  The Intermediate-Value 
Theorem of calculus is often referred to as Bolzano’s theo-
rem.      

 There is an amusing story told about Bolzano when he 
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once was suffering from an illness manifested by bodily 
aches and chills.  To take his mind off his troubles, he picked 
up Euclid’s Elements and, for the first time read the masterly 
exposition of the Eudoxian doctrine of ratio and proportion 
set out in Book V.  Lo and behold his pain vanished.  

 It has been said that after that, when anyone became simi-
larly discomforted, Bolzano recommended that the ill one 
read Euclid's Book V. 

2 November, 1815 George Boole was born.  Largely self-taught in mathemat-
ics, he became interested in formal logic.  In 1847, he pub-
lished a pamphlet entitled The Mathematical Analysis of 
Logic, which De Morgan praised as epoch-making.  Boole 
maintained that the essential character of mathematics lies in 
its form rather than in its content; mathematics is not (as 
some dictionaries today still assert) merely "the science of 
measurement and number," but, more broadly, any study 
consisting of symbols along with precise rules of operation 
upon those symbols, the rules being subject only to the re-
quirement of inner consistency. 

In 1854, Boole expanded and clarified his earlier work 
into a book entitled Investigation of the Laws of Thought, in 
which he established both a formal logic and a new algebra. 
The algebra of sets is known today as Boolean algebra.  
Boolean algebra in recent times, has been found to have a 
number of applications, such as in the theory of electric 
switching circuits. 

  
 
 
Source: Prof. H. Eves, http://pegasus.cc.ucf.edu/~mathed/eves (With kind 

permission from D. Brumbaugh) 
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This book was intended to discuss some paradoxes in Quantum Mechanics 
from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a 
recent concept Neutrosophic Logic. Essentially, this new concept offers new 
insights on the idea of ‘identity’, which too often it has been accepted as 
given. 
 
Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic 
introduced by L. Zadeh. While some aspects of theoretical foundations of 
logic are discussed, this book is not intended solely for pure mathematicians, 
but instead for physicists in the hope that some of ideas presented herein will 
be found useful.  
 
The book is motivated by observation that despite almost eight decades, 
there is indication that some of those paradoxes known in Quantum Physics 
are not yet solved. In our knowledge, this is because the solution of those 
paradoxes requires re-examination of the foundations of logic itself, in par-
ticular on the notion of identity and multi-valuedness of entity.  
 
The book is also intended for young physicist fellows who think that some-
where there should be a ‘complete’ explanation of these paradoxes in Quan-
tum Mechanics. If this book doesn’t answer all of their questions, it is our 
hope that at least it offers a new alternative viewpoint for these old ques-
tions.   
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