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Introduction. Let I bea reflexive real Banach space, X* its conjugate space,

(w, u) the pairing between w in X* and u in X. We consider multi-valued map-

pings T of X into X* (i.e, mappings in the ordinary sense of X into 2**)

which are monotone, i.e., if veT(u), Vy eT(ux) for u and ux in X, then

(V  —  Vy,    U   —  Uy)    ̂     0.

It is our object in the present paper to generalize to the multi-valued case the

results obtained in a number of recent papers by the author and G. J. Minty

for single-valued mappings T (cf. [2]-[14]). The first results for multi-valued

mappings for X a Hubert space have been obtained in an unpublished paper

of Minty [15]. The methods of [15] are not directly extendable to more general

spaces, but our discussion of the finite-dimensional case (Lemma 2.1) has been

very much influenced by the manuscript of [15] which Minty has recently trans-

mitted to the author. (The basic result of [15] is stated at the end of §2

below.)

Our results for general multi-valued monotone mappings have an interesting

specific application given in §3 below to the generalization of a theorem of Beur-

ling and Livingston [1] on duality mappings in Banach spaces. In a previous

paper [12], we showed that for strictly convex reflexive spaces, this theorem

could be obtained from results on single-valued monotone mappings. In §3 below

we give a generalization of this theorem to general reflexive Banach spaces which

runs as follows: Let X be a reflexive Banach space, ej)(r) a non-negative non-

decreasing function on P1 with ej)(0) =0. The duality map Tof X with respect

to c¡> is defined by

T{u) m \v\veX*> M-*M>.    >

\(V,U)  =   \\v\\ • || M I .
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DUALITY MAPPINGS IN BANACH SPACES 339

Let Y be a closed subspace ofX, Yx its annihilator in X*, v0 and w0 arbitrary

elements of X and X*, respectively. Then

T(Y+v0)n(Y± + w0)

is nonempty.

§1 is devoted to the study of maximal monotonie mappings and of a very weak

continuity property for multi-valued mappings which we have called vague con-

tinuity and which plays a key role in our discussion. §2 contains the proof of

the basic results on general multi-valued monotonie mappings. §3 contains the

discussion of duality mappings.

1. Let X be a reflexive Banach space over the reals, X* its conjugate space.

We denote the pairing between w in X* and u in X by (w,u). We denote by

X x X* the product space of X and X* whose elements will be written as [w, w]

and with norm

|[«,w]||={||«|2 + ||w||2.r/2.

We consider multi-valued mappings T of X into X*, where T assigns to each

u in X, a subset T(u) (possibly empty) of X*.

To make our discussion of multi-valued mappings more intuitive by tying the

formalism of our arguments closer to the single-valued case, we introduce the

following notational convention:

Convention. If V is a subset of X*, u an element of X, then (V, u) will denote

the set {(v,u)\ veV}. Similarly if V and W are subsets of X*, then (V — W,u)

will denote the set {(v — w,u)j ve V, we W} . If c is a real number, and R0 is

a set of real numbers, R0^c (or R0 ^ c) will denote the sets of inequalities

r ^ cfor reR0 (or r g c for reR0). If a set V appears several times in a single

equation or inequality, the equation or inequality is assumed to hold for each

v in V, with the same v chosen at all points of occurrence of Vin the given equa-

tion or inequality.

Definition 1.1. Let Tbe a (possibly) multi-valued map from X to X*. Then

T is said to be monotone if

(T(u)-T(ux), u-ux)^0

for all u and ux in X.

Definition 1.2.   TZie graph G(T) is the subset of X x X* given by

G(T) = {[u,w]|   weT(u), ueX}.

We say that T<= Tx if G(T) <= G(TX).

Definition 1.3. T is said to be maximal monotone if T is monotone and if

for every monotone Tx such that TçzTx, we have T=TX.

If S is a subset of X or X*, K(S) will denote its convex closure, i.e., the smallest
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340 F. E. BROWDER [June

closed convex set containing S. S is said to surround 0 if every ray {tw [ t > 0}

for w # 0 intersects S.

Lemma 1.1. Let T be a maximal monotone multi-valued map from X to

X*. Then:

(a):For every u in X,T(u) is a closed convex subset of X*.

(b) If {uk} and {vk} are sequences in X and X*, respectively, such that

uk-*u0 strongly in X,vkeT(uk), and vk^>v0 weakly in X*, then v0eT(u0).

Proof of Lemma 1.1. Proof of (a). For u, Uy in X and v, vQ e Tin), Vy e Tiuy),

we have

(y  — Vy, u — Uy) 2: 0,

(V0  —  Vy,   U   — Uy)     ̂      0.

If 0 <¡ t g 1, v, = tv + (1 - t)v0, we have

(V, —  Vy,U  —  Uy)    =   f(i; —  Vy,U  —  Uy) + (1   —   l) (Vq  — Vy,U  — Uy) ^ 0.

If we add v, to T(u) therefore to obtain a larger mapping Tx, it follows that TY

is monotone. Since T is maximal monotone, it follows that v,eT(u), i.e., T(u)

is convex. Similarly T(u) is closed.

Proof of (b). Let u be any element of X, v any element of T(u). For every

k, we have

ivk-v, uk-u) ^ 0.

Since uk — u converges strongly to u0 — u while vk — v converges weakly to v0 — v,

we have

ivk - v, uk - u)  -> (»o -v, u0-u).
fc-»oo

Hence

(v0 - v, «o - u) £ 0

for every u in X, ve T(u). By the maximal monotonicity of T, it follows that

v0eT(u).   Q.E.D.

Definition 1.4. // T is a multi-valued transformation from X to X*, its

domain D(T) is defined to be the set of u in X for which T(u) ^ 0.

Definition 1.5. // T is a multi-valued mapping from X to X*, T is said to

be vaguely continuous if £>(T) is a dense linear subset of X and the following

condition is satisfied.

For each pair u0 and ux of D(T), there exists a sequence {/„} of positive real

numbers with tn —> 0 as n -» + co and an element Vy of K(T(u0)) such that if

un = tnUy + (l — t„)u0, there exist elements v„eK(T(un)) such that vn~*Vy

weakly in X*.
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If T is a single-valued mapping, vague continuity of T is a weakening of the

condition of hemi-continuity of T as introduced by the author in [5] (i.e., T

continuous from each segment in D(T) to the weak topology of X*),

Theorem 1.1. Let T be a maximal monotone mapping of X into X* such

that D(T) is a dense linear subset of X and for each closed line segment S0 in

D(T), there is a bounded set Sx in X* such that T(u) (~\SX ̂ 0 for ueS0.

Then T is vaguely continuous and T(u) is a closed convex set for every u in

D(T).

Proof of Theorem 1.1. We know from the maximal monotonicity of T and

part (a) of Lemma 1.1 that T(u) is a closed convex set in X* for every u in D(T).

It follows from the hypotheses of our theorem that D(T) is a dense linear subset

of X. We need only to show that the condition of Definition  1.5 is satisfied.

Let S0 be the closed line segment {ut = tux+(l — t)u0\ 0 ^ t ^ 1} in D(T).

By hypothesis, there exists a constant M depending on S0 such that for each u,

in S, we may find vt in T(ut) with | vt || ^ M. By the weak compactness of the

closed ball in the reflexive Banach space X*, we may choose a sequence {r„}

with t„ > 0, t„ -* 0 as « -» + oo and vtn -* vx weakly in X* as n -* + oo. However,

ur„ ~* "o strongly in X. Since T is maximal monotone, it follows from Lemma

1.1 (b) that vx e T(u0).    Q.E.D.

We have a converse for Theorem 1.1, namely:

Theorem 1.2. Let T be a multi-valued mapping of X into X* for which all

of the following conditions are satisfied.

(a) T is monotone.

(b) D(T) = X and T(u) is a closed convex set for each u in X.

(c) T is vaguely continuous.

Then T is maximal monotone.

Proof of Theorem 1.2. Suppose Tçz Tx, where Tx is monotone and v0 e Tx(u0).

We must show that v0 e T(u0). By the monotonicity of Tx, we know that for

every u in X and v e T(u), we have

(v-v0, u-u0) ^ 0.

Suppose v0 does not lie in T(w0). Since T(u0) is closed and convex there exists w

in X such that

(v0,w)>(T(u0),w).

For real t > 0, set ut = u0 + tw. For any v in T(ut), we have

t(v-vo,w)\^0,

i.e.,
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iv-v0,w)^0,       veTiu,),

or

iTiu,)-v0,w)^0.

Hence

iTiu,) - T(«0),w) ^ (»0 - Tiu0),w)

for all t > 0. Hence, choosing {vk} for the segment {u, = u0 + tw\ 0 ^ t ¿¡ 1}

we have vkeTiuk), where u,. = u0 + rfcw (tfc->0) with vk-*Vy weakly in X* for

some Vy in T(«0). Hence

(vk-Vy,w)^(v0-Vy,w),

which implies that

0 ^ (»0 - u,,w) ^ iv0 - Tiu0),w) > 0,

yielding a contradiction.   Q.E.D.

Lemma 1.2.    // T is a maximal monotone multi-valued mapping from X

to X* and if for sequences {uk} and {vk} from X and X*, respectively, we have

vkeT(uk)

and

u  ~* So   weakly in X,

vk —> v0   strongly in X*,

then voeT(u0).

Proof of Lemma 1.2.   For u in X,veTiu), we have for every k

ivk-v,uk-u)^0.

Since uk — u converges weakly to u0 — u and vk — v converges strongly to v0 — v,

we have

ivk - v,uk - u) -* iv0 -v,u0-u).

Hence,

iv0 -v,uo-u)^0,

i.e.,

iv0- Tiu),u0 -u) ^ 0

for all u in X. By the maximal monotonicity of T, it follows that v0 e Tiu0).

Q.E.D.

2.   We begin the study of the ranges of monotone multi-valued mappings

with the finite-dimensional case.

Lemma 2.1.    Let F be a finite-dimensional Banach space, F* its conjugate

space, T a multi-valued mapping of F into F*. Suppose that T is maximal
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monotone and that there exists a bounded subset S of F surrounding 0 such that

for u in S,

(T(u),u)^0.

Then there exists u0 in K(S) such that OeT(u0).

Proof of Lemma 2.1. Since the hypotheses and conclusions are invariant

under a change to an equivalent norm and since F is of finite dimension, we may

assume without loss of generality that F is a Hubert space and F* = F.

We adopt a device used by Minty [15] under different hypotheses in infinite-

dimensional Hubert spaces. For each positive integer «, let T„ be the mapping

from X to X* whose graph is given by

G(T„) = { u + ip,» + i«] |[n,i;]eG(T)j.

We consider the properties of the mappings T„ ■ We begin by establishing the

inequality:

(2.1) (w - wx,x - xx) 2; — {|| w - wx |2 + | x - xx ||2}

for all [x, w] and [xjjWi] in G(T„). By the definition of G(T„), there exist [u,t>]

and [«!,«!] in G(T) such that

1 1
X   =  U + -V, w = v + -u,

n n

1 1
xx=ux+-vx,      w1=f1H—ux.

n n

Hence,

(w-wx,x-xx)   =  i(u — ux) + -(v — vx),(v — vx)+-(u — ux)\

^l-{h-^\\2 + h-^\\2}

On the other hand,

I x - xx I    ^   || u - ux || + I V - V11,

I w — wx I   g   I u — ux || + || V — vx I

so that

|| x - xx \\2 + \\w-wx \\2 ^ 4{| u - ux \\2 + I v - vx \\2}

and
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ÍW - Wy,X - Xy) ^ —{¡X - Xy\\2   +   \\ W - W y \\2} .

[June

As a corollary of the inequality (2.1), we see that if x = Xy, then w = Wy and

conversely so that T„ is a one-to-one mapping with

— II x — Xi [I < || T„x — T„x, || < 4n || x — x, ||.

If T is maximal monotone, the transformation T* with graph

GiT*) = u, lu,v-\eG(T)

is also maximal monotone. Applying Lemma 2 of Minty [13], we see that the set

{u + v/n\ \u,v] e G(T)} is the whole of F. Hence each T„ is defined on all of X

and satisfies the inequality

In il-,
(Tnx-Tnxy,x-Xy) ^—¡x-Xill2.

Hence by [13], each T„ maps F one-to-one onto F.

For each n, let x„ be the unique solution of T„x„ = 0. Choose \un,v¿\eGiT)

such that

1
"" + ñV" = X"

% + -«» = 0.

We assert that u„ e K(S). Indeed for u not in K(S), we have u = pu0, where

p > 1, u0 e S (since S surrounds the origin). Since

(T(u)-T(uo), m-w0)^0

we have for v e T(u0),

(P-D
(T(u),u) ^ (p-l)(T«o,«o)^0,

i.e., for v e T(u), iv, u) ^ 0. For such u and v

I 1 \    ̂     II     112
I V + - u,v\  >   \\v     ,
\       n        /    - h   «

/            1 \    ^   1 II      112
I V -\-U,U\   2.   - \\U\\
\       n       J       n "    "

so that if v + il ¡n)u = 0, we have u = 0, v = 0, i.e., u e X(S), which is a contra-

diction. Hence all the elements u„ lie in K(S).
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Since K(S) is bounded, there exists a constant M such that || un || ^ M for

all «. Hence

.1    « ^ M
H = II«"-" =t

so that i'„ -* 0 as « -* oo. We may choose a subsequence {«„ } so that ua -* u0 in

F as j -*■ + oo. By Lemma 2.1, however, it follows that Oe T(u0).   Q.E.D.

Lemma 2.2.    Let T be a multi-valued mapping of X into X* such that

(a) T is monotone.

(b) T is vaguely continuous.

(c) T(u) is a bounded closed convex set for each u.

Let Y be a closed subspace of X such that YczD(T). Let j be the injection

mapping of Y into X,j* the projection map of X* onto Y*. Let Tx be the multi-

valued mapping of Y into Y* given by Tx(u) = j*T(ju) for u in Y.

Then Tx is monotone, D(TX) = Y, and Tx satisfies conditions (a), (b), and (c).

In particular, Tx is maximal monotone.

Proof of Lemma 2.2.    For each  u  in Y, T(u) # 0 implies that Tx(u) # 0.

Hence D(TX) = Y.

For u,ux in Y

(Tx(u) — Tx(ux),u — ux) = (T(u) — T{u),u — ux) ^ 0

so that Tx is monotone.

Since j* is weakly continuous, if vk e T{uk) and vk -* vx weakly in X* for

vx e T{u0), then j*vk e Tx{uk), j*vx e Tx{u0), and j*vk ->-j*vx weakly in Y*. Hence

Tx is vaguely continuous.

Since j* is linear and T{u) is convex for each u,j*T{u) = Tx{u) is convex for

each u in Y. Since T{u) is a bounded closed convex set in the reflexive space X*,

it is weakly compact. Since j* is weakly continuous, j*T(u) = Tx(u) is weakly

compact and hence closed. Thus we have completed the verification of proper-

ties (a), (b), and (c) for the mapping Tx.

Finally the maximal monotonicity of Tx follows from (a), (b), and (c) and

Theorem 1.2.    Q.E.D.

Theorem 2.1. Let T be a multi-valued mapping of X into X* such that

T(u) is bounded for each u, D{T) is a linear subset of X, and for each closed

line segment S0 in D{T), there exists a bounded set Sx in X* {possibly depending

on S0) such that T(u) C\SX ̂  0 for ueS0. Suppose further that

(i)    T is maximal monotone.

(ii)   There exists a bounded subset S of X surrounding 0 such that

for ueS.

(T(u),u)^0
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TZie« there exists u0 in K(S) such that OeT(u0).

Proof of Theorem 2.1. Since Tis maximal monotone and a bounded set Sx

exists for each closed line segment S0 such that T(u) r\Sx # 0 for u e S0, it follows

from Theorem 1.1 that T is vaguely continuous, and T(u) is a bounded closed

convex subset of X* for each u in D(T).

Let F be a finite-dimensional subspace of D(T). LetjF be the injection mapping

of F into X,j* the dual map projecting X* onto F*. We form the mapping

TF: F -> F* by setting TFu =j*(TF(jFu)) (ueF). Then by Lemma 2.2, TF is vaguely

continuous, TF(u) is a closed convex subset of F* for every u in F, D(TF) = F,

and TF is a monotone multi-valued mapping of F into F*. Hence by Theorem

1.2, TF is a maximal monotone mapping of F into F*.

Let SF = S r\F. Then Sf c 7C(Sf) c .K(S), and SF surrounds the origin in

F. For u in SF,

(TF(u),u) = (jp(u),u) = (T(u),u)^0.

Hence   Tf  satisfies  the  hypotheses  of Lemma  2.1   and  there  exists  uF  in

K(SF) <=. K(S) OF such that Oe TF(uF).

For any u in F, we have, however,

(TF(uF) - TF(u),uF — w) ;> 0,

i.e.,

(T(u),u-¡iF)^0.

Hence, the set

FF = {u| veK(S), (T(u),u-v)^0)   for all weF

is a nonempty weakly closed convex subset of the weakly compact set K(S) in

X. Since the family of such sets is closed under finite intersections, it follows

that the set

f)  VF * 0.
F

If u0 lies inf^pVp, however, u0 lies in K(S), and

(T(u), u-uo)^0

for all ueD(T). Hence by the maximal monotonicity of T,0eT(uo).    Q.E.D.

Theorem 2.2. Let T be a multi-valued mapping of X into X* such that

D(T) = X,Tis monotone and vaguely continuous, and T(u) is a bounded closed

convex set for each u. Suppose that there exists a bounded set S surrounding 0

in X such that (T(u),u)~¿.0 for u in S.

Then there exists u0 in K(S) such that 0eT(u0).
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Proof of Theorem 2.2. This is the same as that of Theorem 2.1 except that

the vague continuity of T is given to us by hypothesis and does not need to be

deduced from maximal monotonicity and the existence of sets Sy as in

Theorem 2.1.

Theorem 2.3.    Let T be a monotone multi-valued  mapping of X into X*

Y a closed subspace of X, Yx its annihilator in X*. Suppose that Y<zzD(T)

and that there exists a subset S surrounding 0 in Y such that iTiu),u) ^ 0/or

u in S. Suppose also that one of the two following conditions holds:

(A) T is maximal monotone. T(u) is a bounded set for each u, and for each

closed segnent S0 in X, there exists a bounded set Sy in X* such that

Tiu)nSy*0.

(B) T is vaguely continuous and T(u) is a bounded closed convex subset

of X* for  each u.

Then there exists u0 in KiS) c Y such that Tiu0)nfI#0,

Proof of Theorem 2.3. If j is the injection mapping of Y into X, j* the pro-

jection mapping of X* on Y*, we set Tyiu) =j*(T(u)). Then Tiu0) n Yx »* 0 if

and only if OeT,(u). If (A) holds, Ty satisfies the hypotheses of Theorem 2.1,

while if (B) holds, Ty satisfies the hypotheses of Theorem 2.2. Hence our con-

clusion follows.   Q.E.D.

Theorem 2.4.   Let T be a monotone multi-valued mapping of X into X*,

Y a closed subspace of X with Y <zz D(T), Y ± the annihilator of Y in X*. Sup-

pose that T satisfies either of the conditions (A) and (B) of Theorem 2.3 and

that there exists a continuous real-valued function on P1 with cir)-+ + ao as

r—> + go such that

iT'u),u) ^ c(||m||){||m|| + ||t(m)||}

for ueY.

Then for each v0 in X, w0 in X*,

TiY+vo)niwo+Y±)¿0.

Proof of Theorem 2.4.    We form the mapping T* of X into X*  by setting

T*(u) = T(u0 + v0)-w0.

Then T* satisfies the hypotheses of Theorem 2.3 with respect to Y since for

I u I sufficiently large

(T(u + v0) - w0, u) = (T(u + v0), u + v0)- (w0, u) - (T(u + v0), v0)

^ c(||m + »o|){||« + »o|| + I-T(« + so)||}-|w0| -lull

- \\vQ\\ ■ || T(u + v0) I ^0.      Q.E.D.
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It is interesting to compare Theorem 2.3 with the result obtained by Minty

in [15]. In our notation, this is the following:

Theorem (Minty). Let H be a Hubert space, T a multi-valued mapping of

H into H, Y a closed subspace of 77. Suppose that T is maximal monotone and

satisfies all of the following conditions:

(!)    (T(u),u) ¡a — c for some c> 0 and all u in 77.

(ii) There exists a bounded set C surrounding 0 in 77 such that for every u

in C, there exists v e T(u) such that

(v,u) ^ 0.

(iii) There exists a bounded set D in H surrounding 0 such that for each

veD, there exists u in 77 such iZia/ veT(u) and

(v,u) ^ 0.

Then TLY) n Yx #0.

To clarify the relation of this result to Theorem 2.3, we note that by the mono-

tonicity of T, the condition (ii) of Minty's theorem is equivalent to the stronger

condition :

(ii)'   C c D(T) and (Tu),u) ^ 0 for ueC.

Indeed if Zc> 1 is fixed and ueC, we have from condition (ii):

0 ^ (T(ku) -v,ku-u) = (k-T) B (T(ku),ku) - (v,u)\.

Hence if ux = kuekC,(T(ux),ux) ^ 0.

Theorem 2.4 is thus a generalization of Minty's theorem to reflexive Banach

spaces with hypotheses (i) and (iii) dropped and with the additional hypotheses

that T(u) is bounded for each u and that for each line segment S0, there exists

a bounded set Sx intersecting T(u) for all u in S0,

3. Let X be a reflexive Banach space as before, X* its conjugate space,

(j> a continuous nondecreasing non-negative function of r in R1 with <p(0) = 0,

<p(r)-+ + CO as r -> + oo.

Definition. If u # 0 is an element of X,v in X* is said to be a dual element

to u with respect to the gauge function <p if

(v,u) =  ! v I • || u ||,

|| o I    =  <p(\\ u ||).

Definition. TZie duality map T of X into X* (with respect to the gauge func-

tion (p) is given by T(0) = 0 and for u^O,

T(u) = {v\ v is dual to u}.
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Lemma 3.1. If X is a reflexive Banach space, <p a continuous non-negative

nondecreasing function on R1 with c/> (0) = 0, then the duality map T of X into X*

with respect to c/> is a multi-valued maximal monotone mapping of X into X*

with D(T) = X and

(a) T is vaguely continuous.

(b) T(ti) is a bounded closed convex subset of X* for each u in X.

(c) For all u in X

{T{u),u) = c(||m|){|«| + ||T«||},

wZiere

c{r) = min l-r, -<p(r)  .

Proof of Lemma 3.1. The maximal monotonicity of Twill follow if we prove

that T is monotone, D(T) = X, and (a), (b), and (c) above are valid. D(T) = X

by the Hahn-Banach theorem. If u,uxeX and veT(u), vxeT(ux), then

(» —»i, u-«i) =  || f || • |«| + I t>i || • || «i|| - (v,ux) — (vx,u)

—    II V II ' II U I  ~*~  II Vi II ' II Ml II _ II V II ' II M! II — II Vl Il ' Il M II
=   (|»| - || «1 ||>C|| " || - ||"l||)

=   (</»(|| U \\)-(h(\\ux\\))(\\u ||- |mi|)  £0,

since c/> is nondecreasing. Hence T is monotone.

Proof of (a). Let {uk} be a sequence converging strongly to u0,vkeT(uk).

Then || vk || = </>(| uk |)gM, so that by extracting a subsequence, we can assume

that vk -* vx weakly in X*. Since uk -* u0 strongly, we have

\\vk\\ ■ \\uk\\ = (vk,uk)-*(vx,u0)

while

I Uj j]    ^ liminf I vk ||,

|| u0 ||    = lim || uk I.

Hence

|| «i || • || «o||   ̂  (Vi,U0)^ ¡ti! I • |w0|.

Thus

(»i,m0) = I fi| - |1 «0 |j

Moreover

(»i,«o) = Hm(vk,uk) = lim0(j|ut||)[|iift

so that

II »ill =#| «o||).
Thus »i 6 T(m0) •

= <P(\\ "o I) || «o
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Proof of (b).   Obviously T(u) is bounded and closed.  Suppose v,vxeTiu)

Then for 0 z% t ^ 1,

(ti) + (l - t)vx,u)  = tiv,u) + il -t)iv¡,u)

= í</.(||u|)||u|+(l-í)</»(||«||)||w|

= </>(| w ||) 1 » I •
However, if d, = ru + (1 — t)vy, we have

\\v,\\ ¿t\v\ + (l-»)|»i| =^(|«|).

Hence

ÍV„U)   =   4(||«||)||l<||   ̂    I tl, I   I M ||

and since

h.«)*M-M.
we have |»t| = </>(||m||) and j;,eT(u). Hence T(u) is convex. Q.E.D.

Proof of (c).    For ueX

(Tu,u) = fp(||u|)|u||   = i|| T(u)\\ • \\u\\ +^<j>i\\u\\)  Jj « |j

^ c(||u||){|u| + I T(u) I}.       Q.E.D.

Theorem 3.1. Let X be a reflexive Banach space, Y a closed subspace of

X,X* the conjugate space of X, Y±the annihilator of Yin X*. Let Tbea duality

map of X into X*. If v0 e X, w0 e X*, then the set

T(y+i>o)n(yx+w0)# 0.

Proof of Theorem 3.1.    By Lemma 3.1, T satisfies the hypotheses of Theorem

2.4 and our conclusion follows.

Q.E.D.
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