MULTI-VALUED MONOTONE NONLINEAR MAPPINGS AND DUALITY MAPPINGS IN BANACH SPACES

BY
FELIX E. BROWDER(1)

Introduction. Let X be a reflexive real Banach space, X^{*} its conjugate space, (w, u) the pairing between w in X^{*} and u in X. We consider multi-valued mappings T of X into X^{*} (i.e, mappings in the ordinary sense of X into $2^{X^{*}}$) which are monotone, i.e., if $v \in T(u), v_{1} \in T\left(u_{1}\right)$ for u and u_{1} in X, then

$$
\left(v-v_{1}, u-u_{1}\right) \geqq 0
$$

It is our object in the present paper to generalize to the multi-valued case the results obtained in a number of recent papers by the author and G. J. Minty for single-valued mappings T (cf. [2]-[14]). The first results for multi-valued mappings for X a Hilbert space have been obtained in an unpublished paper of Minty [15]. The methods of [15] are not directly extendable to more general spaces, but our discussion of the finite-dimensional case (Lemma 2.1) has been very much influenced by the manuscript of [15] which Minty has recently transmitted to the author. (The basic result of [15] is stated at the end of $\S 2$ below.)

Our results for general multi-valued monotone mappings have an interesting specific application given in $\S 3$ below to the generalization of a theorem of Beurling and Livingston [1] on duality mappings in Banach spaces. In a previous paper [12], we showed that for strictly convex reflexive spaces, this theorem could be obtained from results on single-valued monotone mappings. In $\S 3$ below we give a generalization of this theorem to general reflexive Banach spaces which runs as follows: Let X be a reflexive Banach space, $\phi(r)$ a non-negative nondecreasing function on R^{1} with $\phi(0)=0$. The duality map T of X with respect to ϕ is defined by

$$
T(u)=\left\{\begin{array}{l}
v \mid v \in X^{*},\|v\|=\phi(\|u\|) \\
(v, u)=\|v\| \cdot\|u\|
\end{array}\right.
$$

[^0]Let Y be a closed subspace of X, Y^{\perp} its annihilator in X^{*}, v_{0} and w_{0} arbitrary elements of X and X^{*}, respectively. Then

$$
T\left(Y+v_{0}\right) \cap\left(Y^{\perp}+w_{0}\right)
$$

is nonempty.
$\S 1$ is devoted to the study of maximal monotonic mappings and of a very weak continuity property for multi-valued mappings which we have called vague continuity and which plays a key role in our discussion. $\S 2$ contains the proof of the basic results on general multi-valued monotonic mappings. $\S 3$ contains the discussion of duality mappings.

1. Let X be a reflexive Banach space over the reals, X^{*} its conjugate space. We denote the pairing between w in X^{*} and u in X by (w, u). We denote by $X \times X^{*}$ the product space of X and X^{*} whose elements will be written as [u, w] and with norm

$$
\|[u, w]\|=\left\{\|u\|_{x}^{2}+\|w\|_{x^{*}}^{2}\right\}^{1 / 2}
$$

We consider multi-valued mappings T of X into X^{*}, where T assigns to each u in X, a subset $T(u)$ (possibly empty) of X^{*}.
To make our discussion of multi-valued mappings more intuitive by tying the formalism of our arguments closer to the single-valued case, we introduce the following notational convention:

Convention. If V is a subset of X^{*}, u an element of X, then (V, u) will denote the set $\{(v, u) \mid v \in V\}$. Similarly if V and W are subsets of X^{*}, then $(V-W, u)$ will denote the set $\{(v-w, u) \mid v \in V, w \in W\}$. If c is a real number, and R_{0} is a set of real numbers, $R_{0} \geqq c$ (or $R_{0} \leqq c$) will denote the sets of inequalities $r \geqq c$ for $r \in R_{0}$ (or $r \leqq c$ for $r \in R_{0}$). If a set V appears several times in a single equation or inequality, the equation or inequality is assumed to hold for each v in V, with the same v chosen at all points of occurrence of V in the given equation or inequality.

Definition 1.1. Let T be a (possibly) multi-valued map from X to X^{*}. Then T is said to be monotone if

$$
\left(T(u)-T\left(u_{1}\right), u-u_{1}\right) \geqq 0
$$

for all u and u_{1} in X.
Definition 1.2. The graph $G(T)$ is the subset of $X \times X^{*}$ given by

$$
G(T)=\{[u, w] \mid \quad w \in T(u), u \in X\} .
$$

We say that $T \subseteq T_{1}$ if $G(T) \subseteq G\left(T_{1}\right)$.
Defintion 1.3. T is said to be maximal monotone if T is monotone and if for every monotone T_{1} such that $T \subseteq T_{1}$, we have $T=T_{1}$.

If S is a subset of X or $X^{*}, K(S)$ will denote its convex closure, i.e., the smallest
closed convex set containing $S . S$ is said to surround 0 if every ray $\{t w \mid t>0\}$ for $w \neq 0$ intersects S.

Lemma 1.1. Let T be a maximal monotone multi-valued map from X to X^{*}. Then:
(a): For every u in $X, T(u)$ is a closed convex subset of X^{*}.
(b) If $\left\{u_{k}\right\}$ and $\left\{v_{k}\right\}$ are sequences in X and X^{*}, respectively, such that $u_{k} \rightarrow u_{0}$ strongly in $X, v_{k} \in T\left(u_{k}\right)$, and $v_{k} \rightarrow v_{0}$ weakly in X^{*}, then $v_{0} \in T\left(u_{0}\right)$.

Proof of Lemma 1.1. Proof of (a). For u, u_{1} in X and $v, v_{0} \in T(u), v_{1} \in T\left(u_{1}\right)$, we have

$$
\begin{aligned}
& \left(v-v_{1}, u-u_{1}\right) \geqq 0 \\
& \left(v_{0}-v_{1}, u-u_{1}\right) \geqq 0
\end{aligned}
$$

If $0 \leqq t \leqq 1, v_{t}=t v+(1-t) v_{0}$, we have

$$
\left(v_{t}-v_{1}, u-u_{1}\right)=t\left(v-v_{1}, u-u_{1}\right)+(1-t)\left(v_{0}-v_{1}, u-u_{1}\right) \geqq 0
$$

If we add v_{t} to $T(u)$ therefore to obtain a larger mapping T_{1}, it follows that T_{1} is monotone. Since T is maximal monotone, it follows that $v_{t} \in T(u)$, i.e., $T(u)$ is convex. Similarly $T(u)$ is closed.

Proof of (b). Let u be any element of X, v any element of $T(u)$. For every k, we have

$$
\left(v_{k}-v, u_{k}-u\right) \geqq 0
$$

Since $u_{k}-u$ converges strongly to $u_{0}-u$ while $v_{k}-v$ converges weakly to $v_{0}-v$, we have

$$
\left(v_{k}-v, u_{k}-u\right) \underset{k \rightarrow \infty}{\longrightarrow}\left(v_{0}-v, u_{0}-u\right)
$$

Hence

$$
\left(v_{0}-v, u_{0}-u\right) \geqq 0
$$

for every u in $X, v \in T(u)$. By the maximal monotonicity of T, it follows that $v_{0} \in T(u)$. Q.E.D.

Definition 1.4. If T is a multi-valued transformation from X to X^{*}, its domain $D(T)$ is defined to be the set of u in X for which $T(u) \neq \varnothing$.

Definition 1.5. If T is a multi-valued mapping from X to X^{*}, T is said to be vaguely continuous if $D(T)$ is a dense linear subset of X and the following condition is satisfied.

For each pair u_{0} and u_{1} of $D(T)$, there exists a sequence $\left\{t_{n}\right\}$ of positive real numbers with $t_{n} \rightarrow 0$ as $n \rightarrow+\infty$ and an element v_{1} of $K\left(T\left(u_{0}\right)\right)$ such that if $u_{n}=t_{n} u_{1}+\left(1-t_{n}\right) u_{0}$, there exist elements $v_{n} \in K\left(T\left(u_{n}\right)\right)$ such that $v_{n} \rightarrow v_{1}$ weakly in X^{*}.

If T is a single-valued mapping, vague continuity of T is a weakening of the condition of hemi-continuity of T as introduced by the author in [5] (i.e., T continuous from each segment in $D(T)$ to the weak topology of X^{*}),

Theorem 1.1. Let T be a maximal monotone mapping of X into X^{*} such that $D(T)$ is a dense linear subset of X and for each closed line segment S_{0} in $D(T)$, there is a bounded set S_{1} in X^{*} such that $T(u) \cap S_{1} \neq \varnothing$ for $u \in S_{0}$.

Then T is vaguely continuous and $T(u)$ is a closed convex set for every u in $D(T)$.

Proof of Theorem 1.1. We know from the maximal monotonicity of T and part (a) of Lemma 1.1 that $T(u)$ is a closed convex set in X^{*} for every u in $D(T)$. It follows from the hypotheses of our theorem that $D(T)$ is a dense linear subset of X. We need only to show that the condition of Definition 1.5 is satisfied.

Let S_{0} be the closed line segment $\left\{u_{t}=t u_{1}+(1-t) u_{0} \mid 0 \leqq t \leqq 1\right\}$ in $D(T)$. By hypothesis, there exists a constant M depending on S_{0} such that for each u_{t} in S, we may find v_{t} in $T\left(u_{t}\right)$ with $\left\|v_{t}\right\| \leqq M$. By the weak compactness of the closed ball in the reflexive Banach space X^{*}, we may choose a sequence $\left\{t_{n}\right\}$ with $t_{n}>0, t_{n} \rightarrow 0$ as $n \rightarrow+\infty$ and $v_{t_{n}} \rightarrow v_{1}$ weakly in X^{*} as $n \rightarrow+\infty$. However, $u_{t_{n}} \rightarrow u_{0}$ strongly in X. Since T is maximal monotone, it follows from Lemma 1.1 (b) that $v_{1} \in T\left(u_{0}\right)$. Q.E.D.

We have a converse for Theorem 1.1, namely:
Theorem 1.2. Let T be a multi-valued mapping of X into X^{*} for which all of the following conditions are satisfied.
(a) T is monotone.
(b) $D(T)=X$ and $T(u)$ is a closed convex set for each u in X.
(c) T is vaguely continuous.

Then T is maximal monotone.
Proof of Theorem 1.2. Suppose $T \subseteq T_{1}$, where T_{1} is monotone and $v_{0} \in T_{1}\left(u_{0}\right)$. We must show that $v_{0} \in T\left(u_{0}\right)$. By the monotonicity of T_{1}, we know that for every u in X and $v \in T(u)$, we have

$$
\left(v-v_{0}, u-u_{0}\right) \geqq 0
$$

Suppose v_{0} does not lie in $T\left(u_{0}\right)$. Since $T\left(u_{0}\right)$ is closed and convex there exists w in X such that

$$
\left(v_{0}, w\right)>\left(T\left(u_{0}\right), w\right) .
$$

For real $t>0$, set $u_{t}=u_{0}+t w$. For any v in $T\left(u_{t}\right)$, we have

$$
t\left(v-v_{0}, w\right) I \geqq 0,
$$

i.e.,

$$
\left(v-v_{0}, w\right) \geqq 0, \quad v \in T\left(u_{t}\right),
$$

or

$$
\left(T\left(u_{t}\right)-v_{0}, w\right) \geqq 0
$$

Hence

$$
\left(T\left(u_{t}\right)-T\left(u_{0}\right), w\right) \geqq\left(v_{0}-T\left(u_{0}\right), w\right)
$$

for all $t>0$. Hence, choosing $\left\{v_{k}\right\}$ for the segment $\left\{u_{t}=u_{0}+t w \mid 0 \leqq t \leqq 1\right\}$ we have $v_{k} \in T\left(u_{k}\right)$, where $u_{k}=u_{0}+t_{k} w\left(t_{k} \rightarrow 0\right)$ with $v_{k} \rightarrow v_{1}$ weakly in X^{*} for some v_{1} in $T\left(u_{0}\right)$. Hence

$$
\left(v_{k}-v_{1}, w\right) \geqq\left(v_{0}-v_{1}, w\right),
$$

which implies that

$$
0 \geqq\left(v_{0}-v_{1}, w\right) \geqq\left(v_{0}-T\left(u_{0}\right), w\right)>0,
$$

yielding a contradiction. Q.E.D.
Lemma 1.2. If T is a maximal monotone multi-valued mapping from X to X^{*} and if for sequences $\left\{u_{k}\right\}$ and $\left\{v_{k}\right\}$ from X and X^{*}, respectively, we have

$$
v_{k} \in T\left(u_{k}\right)
$$

and

$$
\begin{aligned}
& u \rightarrow g_{0} \\
& \text { weakly in } X \\
& v_{k} \rightarrow v_{0} \\
& \text { strongly in } X^{*}
\end{aligned}
$$

then $v_{0} \in T\left(u_{0}\right)$.
Proof of Lemma 1.2. For u in $X, v \in T(u)$, we have for every k

$$
\left(v_{k}-v, u_{k}-u\right) \geqq 0
$$

Since $u_{k}-u$ converges weakly to $u_{0}-u$ and $v_{k}-v$ converges strongly to $v_{0}-v$, we have

$$
\left(v_{k}-v, u_{k}-u\right) \rightarrow\left(v_{0}-v, u_{0}-u\right)
$$

Hence,

$$
\left(v_{0}-v, u_{0}-u\right) \geqq 0,
$$

i.e.,

$$
\left(v_{0}-T(u), u_{0}-u\right) \geqq 0
$$

for all u in X. By the maximal monotonicity of T, it follows that $v_{0} \in T\left(u_{0}\right)$. Q.E.D.
2. We begin the study of the ranges of monotone multi-valued mappings with the finite-dimensional case.

Lemma 2.1. Let F be a finite-dimensional Banach space, F^{*} its conjugate space, T a multi-valued mapping of F into F^{*}. Suppose that T is maximal
monotone and that there exists a bounded subset S of F surrounding 0 such that for u in S,

$$
(T(u), u) \geqq 0 .
$$

Then there exists u_{0} in $K(S)$ such that $0 \in T\left(u_{0}\right)$.
Proof of Lemma 2.1. Since the hypotheses and conclusions are invariant under a change to an equivalent norm and since F is of finite dimension, we may assume without loss of generality that F is a Hilbert space and $F^{*}=F$.

We adopt a device used by Minty [15] under different hypotheses in infinitedimensional Hilbert spaces. For each positive integer n, let T_{n} be the mapping from X to X^{*} whose graph is given by

$$
G\left(T_{n}\right)=\left\{\left.\left[u+\frac{1}{n} v, v+\frac{1}{n} u\right] \right\rvert\,[u, v] \in G(T)\right\}
$$

We consider the properties of the mappings T_{n}. We begin by establishing the inequality:

$$
\begin{equation*}
\left(w-w_{1}, x-x_{1}\right) \geqq \frac{1}{4 n}\left\{\left\|w-w_{1}\right\|^{2}+\left\|x-x_{1}\right\|^{2}\right\} \tag{2.1}
\end{equation*}
$$

for all $[x, w]$ and $\left[x_{1}, w_{1}\right]$ in $G\left(T_{n}\right)$. By the definition of $G\left(T_{n}\right)$, there exist $[u, v]$ and $\left[u_{1}, v_{1}\right]$ in $G(T)$ such that

$$
\begin{array}{ll}
x=u+\frac{1}{n} v, & w=v+\frac{1}{n} u \\
x_{1}=u_{1}+\frac{1}{n} v_{1}, & w_{1}=v_{1}+\frac{1}{n} u_{1}
\end{array}
$$

Hence,

$$
\begin{aligned}
\left(w-w_{1}, x-x_{1}\right) & =\left(\left(u-u_{1}\right)+\frac{1}{n}\left(v-v_{1}\right),\left(v-v_{1}\right)+\frac{1}{n}\left(u-u_{1}\right)\right) \\
& \geqq \frac{1}{n}\left\{\left\|u-u_{1}\right\|^{2}+\left\|v-v_{1}\right\|^{2}\right\}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|x-x_{1}\right\| & \leqq u-u_{1}\|+\| v-v_{1} \| \\
\left\|w-w_{1}\right\| & \leqq u-u_{1}\|+\| v-v_{1} \|
\end{aligned}
$$

so that

$$
\left\|x-x_{1}\right\|^{2}+\left\|w-w_{1}\right\|^{2} \leqq 4\left\{\left\|u-u_{1}\right\|^{2}+\left\|v-v_{1}\right\|^{2}\right\}
$$

and

$$
\left(w-w_{1}, x-x_{1}\right) \geqq \frac{1}{4 n}\left\{\left\|x-x_{1}\right\|^{2}+\left\|w-w_{1}\right\|^{2}\right\}
$$

As a corollary of the inequality (2.1), we see that if $x=x_{1}$, then $w=w_{1}$ and conversely so that T_{n} is a one-to-one mapping with

$$
\frac{1}{4 n}\left\|x-x_{1}\right\| \leqq\left\|T_{n} x-T_{n} x_{1}\right\| \leqq 4 n\left\|x-x_{1}\right\|
$$

If T is maximal monotone, the transformation $T^{\#}$ with graph

$$
G\left(T^{\#}\right)=\left\{\left.\left[u, \frac{v}{n}\right] \right\rvert\,[u, v] \in G(T)\right\}
$$

is also maximal monotone. Applying Lemma 2 of Minty [13], we see that the set $\{u+v / n \mid[u, v] \in G(T)\}$ is the whole of F. Hence each T_{n} is defined on all of X and satisfies the inequality

$$
\left(T_{n} x-T_{n} x_{1}, x-x_{1}\right) \geqq \frac{1}{4 n}\left\|x-x_{1}\right\|^{2}
$$

Hence by [13], each T_{n} maps F one-to-one onto F.
For each n, let x_{n} be the unique solution of $T_{n} x_{n}=0$. Choose $\left[u_{n}, v_{n}\right] \in G(T)$ such that

$$
\begin{aligned}
& u_{n}+\frac{1}{n} v_{n}=x_{n} \\
& v_{n}+\frac{1}{n} u_{n}=0
\end{aligned}
$$

We assert that $u_{n} \in K(S)$. Indeed for u not in $K(S)$, we have $u=\rho u_{0}$, where $\rho>1, u_{0} \in S$ (since S surrounds the origin). Since

$$
\left(T(u)-T\left(u_{0}\right), u-u_{0}\right) \geqq 0
$$

we have for $v \in T\left(u_{0}\right)$,

$$
\frac{(\rho-1)}{\rho}(T(u), u) \geqq(\rho-1)\left(T u_{0}, u_{0}\right) \geqq 0
$$

i.e., for $v \in T(u),(v, u) \geqq 0$. For such u and v

$$
\begin{aligned}
& \left(v+\frac{1}{n} u, v\right) \geqq\|v\|^{2} \\
& \left(v+\frac{1}{n} u, u\right) \geqq \frac{1}{n}\|u\|^{2}
\end{aligned}
$$

so that if $v+(1 / n) u=0$, we have $u=0, v=0$, i.e., $u \in K(S)$, which is a contradictiof, Hence all the elements u_{n} lie in $K(S)$.

Since $K(S)$ is bounded, there exists a constant M such that $\left\|u_{n}\right\| \leqq M$ for all n. Hence

$$
\left\|v_{n}\right\|=\left\|\frac{1}{n} u_{n}\right\| \leqq \frac{M}{n}
$$

so that $v_{n} \rightarrow 0$ as $n \rightarrow \infty$. We may choose a subsequence $\left\{u_{n_{j}}\right\}$ so that $u_{n_{j}} \rightarrow u_{0}$ in F as $j \rightarrow+\infty$. By Lemma 2.1, however, it follows that $0 \in T\left(u_{0}\right)$. Q.E.D.

Lemma 2.2. Let T be a multi-valued mapping of X into X^{*} such that
(a) T is monotone.
(b) T is vaguely continuous.
(c) $T(u)$ is a bounded closed convex set for each u.

Let Y be a closed subspace of X such that $Y \subset D(T)$. Let j be the injection mapping of Y into X, j^{*} the projection map of X^{*} onto Y^{*}. Let T_{1} be the multivalued mapping of Y into Y^{*} given by $T_{1}(u)=j^{*} T(j u)$ for u in Y.

Then T_{1} is monotone, $D\left(T_{1}\right)=Y$, and T_{1} satisfies conditions (a), (b), and (c). In particular, T_{1} is maximal monotone.

Proof of Lemma 2.2. For each u in $Y, T(u) \neq \varnothing$ implies that $T_{1}(u) \neq \varnothing$. Hence $D\left(T_{1}\right)=Y$.

For u, u_{1} in Y

$$
\left(T_{1}(u)-T_{1}\left(u_{1}\right), u-u_{1}\right)=\left(T(u)-T(u), u-u_{1}\right) \geqq 0
$$

so that T_{1} is monotone.
Since j^{*} is weakly continuous, if $v_{k} \in T\left(u_{k}\right)$ and $v_{k} \rightarrow v_{1}$ weakly in X^{*} for $v_{1} \in T\left(u_{0}\right)$, then $j^{*} v_{k} \in T_{1}\left(u_{k}\right), j^{*} v_{1} \in T_{1}\left(u_{0}\right)$, and $j^{*} v_{k} \rightarrow j^{*} v_{1}$ weakly in Y^{*}. Hence T_{1} is vaguely continuous.

Since j^{*} is linear and $T(u)$ is convex for each $u, j^{*} T(u)=T_{1}(u)$ is convex for each u in Y. Since $T(u)$ is a bounded closed convex set in the reflexive space X^{*}, it is weakly compact. Since j^{*} is weakly continuous, $j^{*} T(u)=T_{1}(u)$ is weakly compact and hence closed. Thus we have completed the verification of properties (a), (b), and (c) for the mapping T_{1}.

Finally the maximal monotonicity of T_{1} follows from (a), (b), and (c) and Theorem 1.2. Q.E.D.

Theorem 2.1. Let T be a multi-valued mapping of X into X^{*} such that $T(u)$ is bounded for each $u, D(T)$ is a linear subset of X, and for each closed line segment S_{0} in $D(T)$, there exists a bounded set S_{1} in X^{*} (possibly depending on S_{0}) such that $T(u) \cap S_{1} \neq \varnothing$ for $u \in S_{0}$. Suppose further that
(i) T is maximal monotone.
(ii) There exists a bounded subset S of X surrounding 0 such that

$$
(T(u), u) \geqq 0
$$

for $u \in S$.

Then there exists u_{0} in $K(S)$ such that $0 \in T\left(u_{0}\right)$.
Proof of Theorem 2.1. Since T is maximal monotone and a bounded set S_{1} exists for each closed line segment S_{0} such that $T(u) \cap S_{1} \neq \varnothing$ for $u \in S_{0}$, it follows from Theorem 1.1 that T is vaguely continuous, and $T(u)$ is a bounded closed convex subset of X^{*} for each u in $D(T)$.

Let F be a finite-dimensional subspace of $D(T)$. Let j_{F} be the injection mapping of F into X, j_{F}^{*} the dual map projecting X^{*} onto F^{*}. We form the mapping $T_{F}: F \rightarrow F^{*}$ by setting $T_{F} u=j_{F}^{*}\left(T_{F}\left(j_{F} u\right)\right)(u \in F)$. Then by Lemma $2.2, T_{F}$ is vaguely continuous, $T_{F}(u)$ is a closed convex subset of F^{*} for every u in $F, D\left(T_{F}\right)=F$, and T_{F} is a monotone multi-valued mapping of F into F^{*}. Hence by Theorem 1.2, T_{F} is a maximal monotone mapping of F into F^{*}.

Let $S_{F}=S \cap F$. Then $S_{F} \subset K\left(S_{F}\right) \subset K(S)$, and S_{F} surrounds the origin in F. For u in S_{F},

$$
\left(T_{F}(u), u\right)=\left(j_{F}^{*} T(u), u\right)=(T(u), u) \geqq 0
$$

Hence T_{F} satisfies the hypotheses of Lemma 2.1 and there exists u_{F} in $K\left(S_{F}\right) \subset K(S) \cap F$ such that $0 \in T_{F}\left(u_{F}\right)$.

For any u in F, we have, however,

$$
\left(T_{F}\left(u_{F}\right)-T_{F}(u), u_{F}-u\right) \geqq 0,
$$

i.e.,

$$
\left(T(u), u-u_{F}\right) \geqq 0 .
$$

Hence, the set

$$
V_{F}=\{v \mid v \in K(S),(T(u), u-v) \geqq 0\} \text { for all } u \in F
$$

is a nonempty weakly closed convex subset of the weakly compact set $K(S)$ in X. Since the family of such sets is closed under finite intersections, it follows that the set

$$
\bigcap_{F} V_{F} \neq \varnothing
$$

If u_{0} lies in $\bigcap_{F} V_{F}$, however, u_{0} lies in $K(S)$, and

$$
\left(T(u), u-u_{0}\right) \geqq 0
$$

for all $u \in D(T)$. Hence by the maximal monotonicity of $T, 0 \in T\left(u_{0}\right)$. Q.E.D.
Theorem 2.2. Let T be a multi-valued mapping of X into X^{*} such that $D(T)=X, T$ is monotone and vaguely continuous, and $T(u)$ is a bounded closed convex set for each u. Suppose that there exists a bounded set S surrounding 0 in X such that $(T(u), u) \geqq 0$ for u in S.

Then there exists u_{0} in $K(S)$ such that $0 \in T\left(u_{0}\right)$.

Proof of Theorem 2.2. This is the same as that of Theorem 2.1 except that the vague continuity of T is given to us by hypothesis and does not need to be deduced from maximal monotonicity and the existence of sets S_{1} as in Theorem 2.1.

Theorem 2.3. Let T be a monotone multi-valued mapping of X into X^{*} Y a closed subspace of X, Y^{\perp} its annihilator in X^{*}. Suppose that $Y \subset D(T)$ and that there exists a subset S surrounding 0 in Y such that $(T(u), u) \geqq 0$ for u in S. Suppose also that one of the two following conditions holds:
(A) T is maximal monotone. $T(u)$ is a bounded set for each u, and for each closed segnent S_{0} in X, there exists a bounded set S_{1} in X^{*} such that $T(u) \cap S_{1} \neq \varnothing$.
(B) T is vaguely continuous and $T(u)$ is a bounded closed convex subset of X^{*} for each u.

Then there exists u_{0} in $K(S) \subset Y$ such that $T\left(u_{0}\right) \cap Y^{\perp} \neq \varnothing$.
Proof of Theorem 2.3. If j is the injection mapping of Y into X, j^{*} the projection mapping of X^{*} on Y^{*}, we set $T_{1}(u)=j^{*}(T(u))$. Then $T\left(u_{0}\right) \cap Y^{\perp} \neq \varnothing$ if and only if $0 \in T_{1}(u)$. If (A) holds, T_{1} satisfies the hypotheses of Theorem 2.1, while if (B) holds, T_{1} satisfies the hypotheses of Theorem 2.2. Hence our conclusion follows. Q.E.D.

Theorem 2.4. Let T be a monotone multi-valued mapping of X into X^{*}, Y a closed subspace of X with $Y \subset D(T), Y^{\perp}$ the annihilator of Y in X^{*}. Suppose that T satisfies either of the conditions (A) and (B) of Theorem 2.3 and that there exists a continuous real-valued function on R^{1} with $c(r) \rightarrow+\infty$ as $r \rightarrow+\infty$ such that

$$
(T(u), u) \geqq c(\|u\|)\{\|u\|+\|T(u)\|\}
$$

for $u \in Y$.
Then for each v_{0} in X, w_{0} in X^{*},

$$
T\left(Y+v_{0}\right) \cap\left(w_{0}+Y^{\perp}\right) \neq \varnothing
$$

Proof of Theorem 2.4. We form the mapping $T^{\#}$ of X into X^{*} by setting

$$
T^{\#}(u)=T\left(u_{0}+v_{0}\right)-w_{0} .
$$

Then $T^{\#}$ satisfies the hypotheses of Theorem 2.3 with respect to Y since for $\|u\|$ sufficiently large

$$
\begin{aligned}
\left(T\left(u+v_{0}\right)-w_{0}, u\right)= & \left(T\left(u+v_{0}\right), u+v_{0}\right)-\left(w_{0}, u\right)-\left(T\left(u+v_{0}\right), v_{0}\right) \\
\geqq & c\left(\left\|u+v_{0}\right\|\right)\left\{\left\|u+v_{0}\right\|+\left\|T\left(u+v_{0}\right)\right\|\right\}-\left\|w_{0}\right\| \cdot\|u\| \\
& -\left\|v_{0}\right\| \cdot\left\|T\left(u+v_{0}\right)\right\| \geqq 0 \text {. Q.E.D. }
\end{aligned}
$$

It is interesting to compare Theorem 2.3 with the result obtained by Minty in [15]. In our notation, this is the following:

Theorem (Minty). Let H be a Hilbert space, T a multi-valued mapping of H into H, Y a closed subspace of H. Suppose that T is maximal monotone and satisfies all of the following conditions:
(i) $\quad(T(u), u) \geqq-c$ for some $c>0$ and all u in H.
(ii) There exists a bounded set C surrounding 0 in H such that for every u in C, there exists $v \in T(u)$ such that

$$
(v, u) \geqq 0 .
$$

(iii) There exists a bounded set D in H surrounding 0 such that for each $v \in D$, there exists u in H such that $v \in T(u)$ and

$$
(v, u) \geqq 0 .
$$

Then $T(X) \cap Y^{\perp} \neq \varnothing$.
To clarify the relation of this result to Theorem 2.3, we note that by the monotonicity of T, the condition (ii) of Minty's theorem is equivalent to the stronger condition:
(ii)' $C \subset D(T)$ and $(T u), u) \geqq 0$ for $u \in C$.

Indeed if $k>1$ is fixed and $u \in C$, we have from condition (ii):

$$
0 \leqq(T(k u)-v, k u-u)=(k-1)\left\{\frac{1}{k}(T(k u), k u)-(v, u)\right\} .
$$

Hence if $u_{1}=k u \in k C,\left(T\left(u_{1}\right), u_{1}\right) \geqq 0$.
Theorem 2.4 is thus a generalization of Minty's theorem to reflexive Banach spaces with hypotheses (i) and (iii) dropped and with the additional hypotheses that $T(u)$ is bounded for each u and that for each line segment S_{0}, there exists a bounded set S_{1} intersecting $T(u)$ for all u in S_{0},
3. Let X be a reflexive Banach space as before, X^{*} its conjugate space, ϕ a continuous nondecreasing non-negative function of r in R^{1} with $\phi(0)=0$, $\phi(r) \rightarrow+\infty$ as $r \rightarrow+\infty$.

Definition. If $u \neq 0$ is an element of X, v in X^{*} is said to be a dual element to u with respect to the gauge function ϕ if

$$
\begin{aligned}
(v, u) & =\|v\| \cdot\|u\| \\
\|v\| & =\phi(\|u\|)
\end{aligned}
$$

Definition. The duality map Tof X into X^{*} (with respect to the gauge function ϕ) is given by $T(0)=0$ and for $u \neq 0$,

$$
T(u)=\{v \mid v \text { is dual to } u\}
$$

Lemma 3.1. If X is a reflexive Banach space, ϕ a continuous non-negative nondecreasing function on R^{1} with $\phi(0)=0$, then the duality map T of X into X^{*} with respect to ϕ is a multi-valued maximal monotone mapping of X into X^{*} with $D(T)=X$ and
(a) T is vaguely continuous.
(b) $T(u)$ is a bounded closed convex subset of X^{*} for each u in X.
(c) For all u in X

$$
(T(u), u) \geqq c(\|u\|)\{\|u\|+\|T u\|\}
$$

where

$$
c(r)=\min \left\{\frac{1}{2} r, \frac{1}{2} \phi(r)\right\}
$$

Proof of Lemma 3.1. The maximal monotonicity of T will follow if we prove that T is monotone, $D(T)=X$, and (a), (b), and (c) above are valid. $D(T)=X$ by the Hahn-Banach theorem. If $u, u_{1} \in X$ and $v \in T(u), v_{1} \in T\left(u_{1}\right)$, then

$$
\begin{aligned}
\left(v-v_{1}, u-u_{1}\right) & =\|v\| \cdot\|u\|+\left\|v_{1}\right\| \cdot\left\|u_{1}\right\|-\left(v, u_{1}\right)-\left(v_{1}, u\right) \\
& \geqq\|v\| \cdot\|u\|+\left\|v_{1}\right\| \cdot\left\|u_{1}\right\|-\|v\| \cdot\left\|u_{1}\right\|-\left\|v_{1}\right\| \cdot\|u\| \\
& =\left(\|v\|-\left\|v_{1}\right\|\right)\left(\|u\|-\left\|u_{1}\right\|\right) \\
& =\left(\phi(\|u\|)-\phi\left(\left\|u_{1}\right\|\right)\right)\left(\|u\|-\left\|u_{1}\right\|\right) \geqq 0
\end{aligned}
$$

since ϕ is nondecreasing. Hence T is monotone.
Proof of (a). Let $\left\{u_{k}\right\}$ be a sequence converging strongly to $u_{0}, v_{k} \in T\left(u_{k}\right)$. Then $\left\|v_{k}\right\|=\phi\left(\left\|u_{k}\right\|\right) \leqq M$, so that by extracting a subsequence, we can assume that $v_{\dot{k}} \rightarrow v_{1}$ weakly in X^{*}. Since $u_{k} \rightarrow u_{0}$ strongly, we have

$$
\left\|v_{k}\right\| \cdot\left\|u_{k}\right\|=\left(v_{k}, u_{k}\right) \rightarrow\left(v_{1}, u_{0}\right)
$$

while

$$
\begin{aligned}
\left\|v_{1}\right\| & \leqq \liminf \left\|v_{k}\right\| \\
\left\|u_{0}\right\| & =\lim \left\|u_{k}\right\|
\end{aligned}
$$

Hence

$$
\left\|v_{1}\right\| \cdot\left\|u_{0}\right\| \leqq\left(v_{1}, u_{0}\right) \leqq\left\|v_{1}\right\| \cdot\left\|u_{0}\right\|
$$

Thus

$$
\left(v_{1}, u_{0}\right)=\left\|v_{1}\right\| \cdot\left\|u_{0}\right\|
$$

Moreover

$$
\left(v_{1}, u_{0}\right)=\lim \left(v_{k}, u_{k}\right)=\lim \phi\left(\left\|u_{k}\right\|\right)\left\|u_{k}\right\|=\phi\left(\left\|u_{0}\right\|\right)\left\|u_{0}\right\|
$$

so that

$$
\left\|v_{1}\right\|=\phi\left(\left\|u_{0}\right\|\right)
$$

Thus $v_{1} \in T\left(u_{0}\right)$.

Proof of (b). Obviously $T(u)$ is bounded and closed. Suppose $v, v_{1} \in T(u)$ Then for $0 \leqq t \leqq 1$,

$$
\begin{aligned}
\left(t v+(1-t) v_{1}, u\right) & =t(v, u)+(1-t)\left(v_{1}, u\right) \\
& =t \phi(\|u\|)\|u\|+(1-t) \phi(\|u\|)\|u\| \\
& =\phi(\|u\|)\|u\|
\end{aligned}
$$

However, if $v_{t}=t v+(1-t) v_{1}$, we have

$$
\left\|v_{t}\right\| \leqq t\|v\|+(1-t)\left\|v_{1}\right\|=\phi(\|u\|)
$$

Hence

$$
\left(v_{t}, u\right)=\phi(\|u\|)\|u\| \geqq\left\|v_{t}\right\|\|u\|
$$

and since

$$
\left(v_{t}, u\right) \leqq\left\|v_{t}\right\| \cdot\|u\|
$$

we have $\left\|v_{t}\right\|=\phi(\|u\|)$ and $v_{t} \in T(u)$. Hence $T(u)$ is convex. Q.E.D.
Proof of (c). For $u \in X$

$$
\begin{aligned}
(T u, u) & =\phi(\|u\|)\|u\|=\frac{1}{2}\|T(u)\| \cdot\|u\|+\frac{1}{2} \phi(\|u\|)\|u\| \\
& \geqq c(\|u\|)\{\|u\|+\|T(u)\|\} . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 3.1. Let X be a reflexive Banach space, Y a closed subspace of X, X^{*} the conjugate space of X, Y^{\perp} the annihilator of Y in X^{*}. Let Tbe a duality map of X into X^{*}. If $v_{0} \in X, w_{0} \in X^{*}$, then the set

$$
T\left(Y+v_{0}\right) \cap\left(Y^{\perp}+w_{0}\right) \neq \varnothing
$$

Proof of Theorem 3.1. By Lemma 3.1, T satisfies the hypotheses of Theorem 2.4 and our conclusion follows.
Q.E.D.

Bibliography

1. A. Beurling and A.E. Livingston, A theorem on duality mappings in Banach spaces, Ark Mat. 4 (1962), 405-411.
2. F. E. Browder, Solvability of non-linear functional equations, Duke Math. J. 30 (1963), 557-566.
3. ——, Variational boundary value problems for quasi-linear elliptic equations of arbitrary order, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 31-37.
4. —_, Variational boundary value problems for quasi-linear elliptic equations. II, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 592-598.
5. _, Variational boundary value problems for quasi-linear elliptic equations. III, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 794-798.
6. _-_, Non-linear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874.
7. —, Non-linear parabolic boundary value problems of arbitrary order, Bull. Amer. Math. Soc. 69 (1963), 858-861.
8. -_, Strongly non-linear parabolic boundary value problems, Amer. J. Math. 86 (1964), 339-357.
9. —_ Nonlinear elliptic boundary problems, II Trans. Amer. Math. Soc. 117 (1965), 530-550.
10. -, Nonlinear elliptic problems. II, Bull. Amer. Math. Soc. 70 (1964), 299-302.
11. -, Non-linear equations of evolution Ann. of Math. 80 (1964), 485-523.
12. -, On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965).
13. G. J. Minty, Monotone (non-linear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
14. -_, On a"monotonicity" method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.
15. -_, Unpublished paper on maximal monotone sets for Hilbert spaces.

Institute for Advanced Study,
Princeton, New Jersey
University of Chicago, Chicago, Illinois

[^0]: Received by the editors February 21, 1964.
 (1) The preparation of this paper was partially supported by NSF grants 19751 and GP-2283 the Sloan Foundation, and the Army Research Office (Durham) through grant DA-ARO(D)-31-124-G455.

