MULTI-VALUED MONOTONE NONLINEAR
MAPPINGS AND DUALITY MAPPINGS IN
BANACH SPACES

BY
FELIX E. BROWDER(})

Introduction. Let X be a reflexive real Banach space, X* its conjugate space,
(w,u) the pairing between w in X* and u in X. We consider multi-valued map-
pings T of X into X* (i.e, mappings in the ordinary sense of X into 2*7)
which are monotone, i.e., if ve T(u), v, € T(u,) for u and u, in X, then

(v—v, u—uy) = 0.

It is our object in the present paper to generalize to the multi-valued case the
results obtained in a number of recent papers by the author and G. J. Minty
for single-valued mappings T (cf. [2]-[14]). The first results for multi-valued
mappings for X a Hilbert space have been obtained in an unpublished paper
of Minty [15]. The methods of [15] are not directly extendable to more general
spaces, but our discussion of the finite-dimensional case (Lemma 2.1) has been
very much influenced by the manuscript of [15] which Minty has recently trans-
mitted to the author. (The basic result of [15] is stated at the end of §2
below.)

Our results for general multi-valued monotone mappings have an interesting
specific application given in §3 below to the generalization of a theorem of Beur-
ling and Livingston [1] on duality mappings in Banach spaces. In a previous
paper [12], we showed that for strictly convex reflexive spaces, this theorem
could be obtained from results on single-valued monotone mappings. In §3 below
we give a generalization of this theorem to general reflexive Banach spaces which
runs as follows: Let X be a reflexive Banach space, ¢(r) a non-negative non-
decreasing function on R' with ¢(0) =0. The duality map T of X with respect

to ¢ is defined by
O A
@u) = o] - Ju].
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DUALITY MAPPINGS IN BANACH SPACES 339

Let Y be a closed subspace of X, Y™ its annihilator in X*, vy and w, arbitrary
elements of X and X*, respectively. Then

T(Y + vo) N (Y™ + wp)
is nonempty.

§1 is devoted to the study of maximal monotonic mappings and of a very weak
continuity property for multi-valued mappings which we have called vague con-
tinuity and which plays a key role in our discussion. §2 contains the proof of
the basic results on general multi-valued monotonic mappings. §3 contains the
discussion of duality mappings.

1. Let X be a reflexive Banach space over the reals, X* its conjugate space.
We denote the pairing between w in X* and u in X by (w,u). We denote by
X x X* the product space of X and X* whose elements will be written as [u, w]
and with norm

3.

T w | = {5+ | w

We consider multi-valued mappings T of X into X*, where T assigns to each
u in X, a subset T(u) (possibly empty) of X*.

To make our discussion of multi-valued mappings more intuitive by tying the
formalism of our arguments closer to the single-valued case, we introduce the
following notational convention:

CONVENTION. If Vis a subset of X*,u an element of X, then (V,u) will denote
the set {(v,u)| veV}. Similarly if V and W are subsets of X*, then (V — W,u)
will denote the set {(v — w,u)| veV,weW}. If ¢ is a real number, and R, is
a set of real numbers, Ry = ¢ (or Ry = c) will denote the sets of inequalities
r=cforreR, (or r = c for reRy). If a set V appears several times in a single
equation or inequality, the equation or inequality is assumed to hold for each
vin V, with the same v chosen at all points of occurrence of V in the glven equa-
tion or inequality.

DerINITION 1.1. Let T be a (possibly) multi-valued map from X to X*. Then
T is said to be monotone if

(T(w) — T(uy), u—uy) 20

for all u and u; in X.
DerINITION 1.2. The graph G(T) is the subset of X x X* given by

G(T) = {[u,w]l weT(u), ue X}.

We say that T< T, if G(T) < G(T,).

DerINITION 1.3. T is said to be maximal monotone if T is monotone and if
for every monotone Ty such that T< T,, we have T=T,.

If S is a subset of X or X*, K(S) will denote its convex closure, i.e., the smallest
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closed convex set containing S. S is said to surround O if every ray {th t> 0}
for w # O intersects S.

Lemma 1.1. Let T be a maximal monotone multi-valued map from X to
X*. Then:

(a):For every u in X,T(u) is a closed convex subset of X*.

(b) If {uw} and {v} are sequences in X and X*, respectively, such that
u, — ug strongly in X,v,e T(w,), and v,— vy, weakly in X*, then vye T(uo).

Proof of Lemma 1.1. Proof of (a). For u,u, in X and v,v,€ T(u), v, € T(u,),
we have

v

(U — Uy u—ul) 0’

(Vo — vy, u—uy) 2 0.
If0Zt=<1, v, =tv+ (1-1)vy, we have
(o, —vu—uy) =tw—v,u—u)+ 1 —1)(v—vy,u—u)20.

If we add v, to T(u) therefore to obtain a larger mapping T;, it follows that T,
is monotone. Since T is maximal monotone, it follows that v,e T(u), i.e., T(u)
is convex. Similarly T(u) is closed.

Proof of (b). Let u be any element of X, v any element of T(u). For every
k, we have

(w,—v, u,—u) = 0.

Since u, — u converges strongly to u, — u while v, — v converges weakly to vy — v,
we have

(e —v, Uy —u) —> (Vo — 0, Uy —u).
k=

Hence
(vo—v, up—u) 2 0

for every u in X, ve T(u). By the maximal monotonicity of T, it follows that
voeT(u). QE.D.

DeriNiTION 1.4, If T is a multi-valued transformation from X to X*, its
domain D(T) is defined to be the set of u in X for which T(u) # & .

DEerINITION 1.5. If T is a multi-valued mapping from X to X*, T is said to
be vaguely continuous if D(T) is a dense linear subset of X and the following
condition is satisfied.

For each pair u, and u, of D(T), there exists a sequence {t,} of positive real
numbers with t,—0 as n— + o and an element vy of K(T(uy)) such that if
u, =tu, + (1 —t)ug, there exist elements v,e K(T(u,)) such that v,— v,
weakly in X*.
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1965] DUALITY MAPPINGS IN BANACH SPACES 341

If Tis a single-valued mapping, vague continuity of T is a weakening of the
condition of hemi-continuity of T as introduced by the author in [5] (i.e., T
continuous from each segment in D(T) to the weak topology of X*),

THEOREM 1.1. Let T be a maximal monotone mapping of X into X* such
that D(T) is a dense linear subset of X and for each closed line segment S, in
D(T), there is a bounded set S; in X* such that T(u) NS, # & for ueS,.

Then T is vaguely continuous and T(u) is a closed convex set for every u in
D(T).

Proof of Theorem 1.1. We know from the maximal monotonicity of T and
part (a) of Lemma 1.1 that T(u) is a closed convex set in X* for every u in D(T).
It follows from the hypotheses of our theorem that D(T) is a dense linear subset
of X. We need only to show that the condition of Definition 1.5 is satisfied.

Let S, be the closed line segment {u, = tu, + (1—t)u0| 0=t<1} in D(T).
By hypothesis, there exists a constant M depending on S, such that for each u,
in §, we may find v, in T(u,) with ||v,| < M. By the weak compactness of the
closed ball in the reflexive Banach space X*, we may choose a sequence {t,}
with ¢, >0,¢, -0 as n > + oo and v, — v, weakly in X* as n — + co. However,
u,, — uq strongly in X . Since T is maximal monotone, it follows from Lemma
1.1(b) that v, € T(uy). Q.E.D.

We have a converse for Theorem 1.1, namely:

THEOREM 1.2. Let T be a multi-valued mapping of X into X* for which all
of the following conditions are satisfied.

(@) T is monotone.

(b) D(T) = X and T(u) is a closed convex set for each u in X.

(c) T is vaguely continuous.

Then T is maximal monotone.

Proof of Theorem 1.2. Suppose T < T, where T, is monotone and v, € Ty(uo).
We must show that v,e T(ug). By the monotonicity of T;, we know that for
every u in X and ve T(u), we have

(0_009 u—“o)éo.

Suppose v, does not lie in T(u,). Since T(u,) is closed and convex there exists w
in X such that

(v0s W) > (T(uo), ).

For real t > 0, set u, = uy + tw. For any v in T(u,), we have
(v — v, WIZ 0,

ie.,
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W—vo,w)20, veT(u),
or
(T(u,)—UO,W) 2 0.

Hence
(T(u) — T(uo),w) 2 (vo — T(uo),w)

for all ¢t > 0. Hence, choosing {v,} for the segment {u, =u,+ tw| 0=st=1}
we have v, € T(u,), where u, =ugy + t;,w (¢, — 0) with v, —» v, weakly in X* for
some v, in T(uy). Hence

(0 — 01, W) = (Vo — v, W),
which implies that
0= (vo — v4,w) 2 (v — T(uo),w) >0,

yielding a contradiction. Q.E.D.

LemMMA 1.2. If T is a maximal monotone multi-valued mapping from X
to X* and if for sequences {u,} and {v,} from X and X*, respectively, we have

€ T(uy)
and
u — g, weakly in X,

v, vy strongly in X*,
then voe T(ug).
Proof of Lemma 1.2. For u in X,ve T(u), we have for every k
(v —v,u,—u)=0.

Since u, — u converges weakly to u, — u and v, — v converges strongly to v, — v,

we have
(v — v,u, — 1) > (vg — v, Uy — u).
Hence,
(vo—v,uo—u) 20,
ie.,

(vo— T(u),uo —u) 2 0

for all u in X. By the maximal monotonicity of T, it follows that vye T(ug).
Q.E.D.

2. We begin the study of the ranges of monotone multi-valued mappings
with the finite-dimensional case.

LeMMA 2.1. Let F be a finite-dimensional Banach space, F* its conjugate
space, T a multi-valued mapping of F into F*. Suppose that T is maximal
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monotone and that there exists a bounded subset S of F surrounding O such that
for uin S,

(T(u),u) 2 0.
Then there exists u, in K(S) such that 0e T(u,).

Proof of Lemma 2.1. Since the hypotheses and conclusions are invariant
under a change to an equivalent norm and since F is of finite dimension, we may
assume without loss of generality that F is a Hilbert space and F*=F.

We adopt a device used by Minty [15] under different hypotheses in infinite-
dimensional Hilbert spaces. For each positive integer n, let T, be the mapping
from X to X* whose graph is given by

G(T) = {[u +r1;v,v+;1l-u] |[u,v]eG(T)}.

We consider the properties of the mappings T,. We begin by establishing the
inequality:

@1 w=wix=x)2 g ([ w=wi [P+ [x=x )

for all [x,w] and [x,,w,] in G(T,). By the definition of G(T,), there exist [u,v]
and [uy,v,] in G(T) such that

1 1
X = u+-v, w=0v+-u,
n n
Xy =Uy+ -0 w v+1u
1 1 nl’ 1 1 n 1

Hence,

= wpx=x) = (=) 40— o), 0= 0) + 16— w))

v

1
7 e = ]? + o —o |7

On the other hand,

I\

[x=x]] = Ju—u] +Jo-ov],
[w=wi] = Ju—u]+]o-o]
so that
x—=x >+ |w=wi|* < 4{lu—u > + |o—0, |}

and
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w=wox=x) 2 g x = x|* + [ w=wi |}

As a corollary of the inequality (2.1), we see that if x = x,, then w =w, and
conversely so that T, is a one-to-one mapping with

g lx=xl s | Tx =T ] < dnfx—xi ).
If T is maximal monotone, the transformation T* with graph
G(T*) = {[u, E]l [u,v] eG(T)}
is also maximal monotone. Applying Lemma 2 of Minty [13], we see that the set

{u +v/n| [u,v]e G(T)} is the whole of F. Hence each T, is defined on all of X
and satisfies the inequality

1
(Tox — Toxy,x — x4) %‘m”x—ﬁ "2

Hence by [13], each T, maps F one-to-one onto F.

For each n, let x, be the unique solution of T,x, =0. Choose [u,,v,]€ G(T)
such that

1
u, + r—‘v,, = X,,

1
v,,+;u,,= 0.

We assert that u,e K(S). Indeed for u not in K(S), we have u = pu,, where
p>1, ugeS (since S surrounds the origin). Since

(T(uw) — T(uo), u—uo) 20
we have for ve T(uy),

“’%"(T(u), 4) 2 (p = 1)(Tuorug) 2 0,

i.e., for ve T(u), (v,u) = 0. For such u and v
(v + ! u,v) lv]?,
n

(v+1u,u) 1—"u”2
n n

SO tha@ if v+ (1/n)u =0, we have u =0,v =0, i.e., ue K(S), which is a contra-
dictiéi:;.-'Hence all the elements u, lie in K(S).

4
Ty

v

v
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Since K(S) is bounded, there exists a constant M such that || u, " =M for
all n. Hence
1 M
loal =1 Jull = 5
so that v,— 0 as n— co. We may choose a subsequence {u, } so that u, — u, in

F as j— + oo. By Lemma 2.1, however, it follows that 0e T(u,). Q.E.D.

LEMMA 2.2. Let T be a multi-valued mapping of X into X* such that

(a) T is monotone.

(b) T is vaguely continuous.

(c) T(u) is a bounded closed convex set for each u.

Let Y be a closed subspace of X such that Y = D(T). Let j be the injection
mapping of Y into X, j* the projection map of X* onto Y*. Let T, be the multi-
valued mapping of Y into Y* given by Ty(u) = j*T(ju) for u in Y.

Then T, is monotone, D(T,) = Y, and T, satisfies conditions (a), (b), and (c).
In particular, T, is maximal monotone.

Proof of Lemma 2.2. For each u in Y, T(u) # J implies that T;(u) # &.
Hence D(Ty) =Y.
For u,u; in Y

(Ty(w) — Ty(uy),u —uy) = (T(w) — T(u)u —u,) 2 0

so that T, is monotone.

Since j* is weakly continuous, if v,e T(u;) and v,— v, weakly in X* for
vy € T(u,), then j*v, e Ty(uy), j*v, € Ti(uy), and j*v, — j*v; weakly in Y*. Hence
T, is vaguely continuous.

Since j* is linear and T(u) is convex for each u,j*T(u) = T,(u) is convex for
each u in Y. Since T(u) is a bounded closed convex set in the reflexive space X*,
it is weakly compact. Since j* is weakly continuous, j*T(u) = T,(u) is weakly
compact and hence closed. Thus we have completed the verification of proper-
ties (a), (b), and (c) for the mapping T;.

Finally the maximal monotonicity of T, follows from (a), (b), and (c) and
Theorem 1.2. Q.E.D.

THEOREM 2.1. Let T be a multi-valued mapping of X into X* such that
T(u) is bounded for each u, D(T) is a linear subset of X, and for each closed
line segment S, in D(T), there exists a bounded set S, in X* (possibly depending
on Sg) such that T(u) NS, # & for ueS,. Suppose further that

(i) T is maximal monotone.

(i) There exists a bounded subset S of X surrounding O such that

(T(u),u)2 0
for ues.
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Then there exists uy in K(S) such that Oe T(u,).

Proof of Theorem 2.1. Since T is maximal monotone and a bounded set S,
exists for each closed line segment S, such that T(u) N S; # & for u € S, it follows
from Theorem 1.1 that T is vaguely continuous, and T(u) is a bounded closed
convex subset of X* for each u in D(T).

Let F be a finite-dimensional subspace of D(T). Let j, be the injection mapping
of F into X,j} the dual map projecting X* onto F*. We form the mapping
Tp: F — F* by setting Tpu = j§(T(jzu)) (u € F). Then by Lemma 2.2, Ty is vaguely
continuous, Tx(u) is a closed convex subset of F* for every u in F, D(Ty) =F,
and Ty is a monotone multi-valued mapping of F into F*. Hence by Theorem
1.2, T is a maximal monotone mapping of F into F*.

Let S;=S NF. Then S; < K(Sp) = K(S), and Sy surrounds the origin in
F. For u in Sg,

(Te(w),u) = (jrT(w),u) = (T(u),u) 2 0.

Hence Ty satisfies the hypotheses of Lemma 2.1 and there exists up in
K(SF) (e K(S) NF Such that 0€ Tp(up) .
For any u in F, we have, however,

) (Tp(up) — Te(u),up —u) 2 0,
ie.,
(T(u),u — ug) 2 0.

Hence, the set
Ve = {v[ veK(S), (T(u),u —v) 20} for all ueF

is a nonempty weakly closed convex subset of the weakly compact set K(S) in
X . Since the family of such sets is closed under finite intersections, it follows
that the set

anséQ.

F
If ug, lies inn r Vi, however, u, lies in K(S), and
(T(u)’u - uO) g 0
for all ue D(T). Hence by the maximal monotonicity of T,0e T(u,). Q.E.D.

THEOREM 2.2. Let T be a multi-valued mapping of X into X* such that
D(T) = X, T is monotone and vaguely continuous, and T(u) is a bounded closed
convex set for each u. Suppose that there exists a bounded set S surrounding 0
in X such that (T(u),u)=0 for u in S.

Then there exists uy in K(S) such that 0 T(u,).
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Proof of Theorem 2.2. This is the same as that of Theorem 2.1 except that
the vague continuity of T is given to us by hypothesis and does not need to be
deduced from maximal monotonicity and the existence of sets S; as in
Theorem 2.1.

THEOREM 2.3. Let T be a monotone multi-valued mapping of X into X*
Y a closed subspace of X, Y* its annihilator in X*. Suppose that Y < D(T)
and that there exists a subset S surrounding 0 in Y such that (T(u),u) = 0 for
u in S. Suppose also that one of the two following conditions holds:

(A) T is maximal monotone. T(u) is a bounded set for each u, and for each
closed segnent S, in X, there exists a bounded set S; in X* such that
TwynS, #J.

(B) T is vaguely continuous and T(u) is a bounded closed convex subset
of X* for each u.

Then there exists uy in K(S) < Y such that T(u)) N Y* # .

Proof of Theorem 2.3. If j is the injection mapping of Y into X,j* the pro-
jection mapping of X* on Y*, we set T,(u) = j*(T(u)). Then T(u,) N Y* # ¥ if
and only if 0e T,(u). If (A) holds, T; satisfies the hypotheses of Theorem 2.1,
while if (B) holds, T; satisfies the hypotheses of Theorem 2.2. Hence our con-
clusion follows. Q.E.D.

THEOREM 2.4. Let T be a monotone multi-valued mapping of X into X*,
Y a closed subspace of X with Y < D(T),Y * the annihilator of Y in X*. Sup-
pose that T satisfies either of the conditions (A) and (B) of Theorem 2.3 and
that there exists a continuous real-valued function on R! with c(r)— + o as
r— + oo such that

(T@,w) 2 e up{Ju] + | T}
for ueY.
Then for each v, in X,wy in X*,

T(Y+ vy) N(wo + Y1) # .
Proof of Theorem 2.4. We form the mapping T* of X into X* by setting
T*(u) = T(ug + vy) — Wo.

Then T* satisfies the hypotheses of Theorem 2.3 with respect to Y since for
” u || sufficiently large

(T(u + vo) — wo,u)

(T(u + vo), u + vo) — (Wo,u) — (T(u + vy), Vo)
e(Ju+oo D {u+ 0o + | Tw+vo) [} = wo - |
—|lvo|| - | T +vo)| 20. Q.E.D.

v
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It is interesting to compare Theorem 2.3 with the result obtained by Minty
in [15]. In our notation, this is the following:

THEOREM (MINTY). Let H be a Hilbert space, T a multi-valued mapping of
H into H,Y a closed subspace of H. Suppose that T is maximal monotone and
satisfies all of the following conditions:

(i) (T(u),u) = — c for some ¢ >0 and all u in H.

(ii) There exists a bounded set C surrounding 0 in H such that for every u
in C, there exists ve T(u) such that

(v,u) = 0.

(iii) There exists a bounded set D in H surrounding O such that for each
ve D, there exists u in H such that ve T(u) and

(v,u) 2 0.
Then T(X) NY* # (.

To clarify the relation of this result to Theorem 2.3, we note that by the mono-
tonicity of T, the condition (ii) of Minty’s theorem is equivalent to the stronger
condition:

@ii))’ C< D(T) and (Tu),u) =0 for ueC.

Indeed if k > 1 is fixed and ue C, we have from condition (ii):

0= (T(ku) —v,ku —u) = (k—1) {i (T(ku), ku) — (v, u)} .

Hence if u; = kue kC,(T(u,),u,) =0.

Theorem 2.4 is thus a generalization of Minty’s theorem to reflexive Banach
spaces with hypotheses (i) and (iii) dropped and with the additional hypotheses
that T(u) is bounded for each u and that for each line segment S,, there exists
a bounded set S, intersecting T'(u) for all u in S,,

3. Let X be a reflexive Banach space as before, X* its conjugate space,
¢ a continuous nondecreasing non-negative function of r in R! with ¢(0) =0,
¢(r)—> + © as r— + 0.

DEerFINITION. If u # 0 is an element of X ,v in X* is said to be a dual element
to u with respect to the gauge function ¢ if

@w = Jof -Ju],
[el = ¢dul-

DErFINITION. The duality map T of X into X* (with respect to the gauge func-
tion ¢) is given by T(0) =0 and for u #0,

T(u) = {vl v is dual to u}.
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LeMMA 3.1. If X is a reflexive Banach space, ¢ a continuous non-negative
nondecreasing function on R* with ¢ (0) = 0, then the duality map T of X into X*
with respect to ¢ is a multi-valued maximal monotone mapping of X into X*
with D(T) =X and

(a) T is vaguely continuous.

(b) T(u) is a bounded closed convex subset of X* for each u in X .

(c) For all u in X

(Tw),u) 2 | u){|u] + | Tu

I}

where
¢(r) = min {% r, %gb(r)} .

Proof of Lemma 3.1. The maximal monotonicity of T will follow if we prove
that T is monotone, D(T) = X, and (a), (b), and (c) above are valid. D(T) = X
by the Hahn-Banach theorem. If u,u;, € X and ve T(u), v; € T(u,), then
[o - Bl + Joul - sl = @) = 1)
fol-lwl+ ol -Tuad = ol fucf = o[ u]

(ol =Toapul] = Judl
= @(up—¢uu] - Julp 2 0,

since ¢ is nondecreasing. Hence T is monotone.

Proof of (a). Let {u,} be a sequence converging strongly to ug,v, e T(uy).
Then || Uy || = ¢(|| Uy, ") < M, so that by extracting a subsequence, we can assume
that v, —» v, weakly in X*. Since u, — u, strongly, we have

(v—vy, u—uy)

v

EAREA RO ARICY

while

|os]| < liminf]| o],

luo] = tim u].

Hence
losl-luo] = iuo) < [ou] - [uo]-
Thus
1u0) = [loy | - | uo]-
Moreover
(03, 0) = lim (v, u) = Hm (| we|]) || = ¢ (| o ) || wo ||

so that

Jo]l = & uo |-

Thus v, € T(uy).
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Proof of (b). Obviously T(u) is bounded and closed. Suppose v,v, € T(u)
Then for 05t <1,

(tv+ (1 — vy, u) tv,u) + (1 — )(vy,u)
to(|ulDul + A= ulp]u]
= o(|up|u]-

However, if v, =tv + (1 — t)v,, we have

Jodl < tlof + @ =olou] = ¢(u-

I

I

Hence

@ou) = ¢(|uDfuf = [o] |«
and since
@ou) < |o] - |u].

we have || v, || = qS(“u |l) and v,e T(u). Hence T(u) is convex. Q.E.D.
Proof of (¢). For ueX

(Tuw) = ¢(|ulpu] = [T [u]+2o(u]) [u]
z c|u{|u]+|T@|}. QE.D.

THEOREM 3.1. Let X be a reflexive Banach space, Y a closed subspace of
X, X* the conjugate space of X, Y * the annihilator of Yin X*. Let Tbe a duality
map of X into X*. If voe X,wo€ X*, then the set

T(Y+ o) N(Y*+wp) # &

Proof of Theorem 3.1. By Lemma 3.1, T satisfies the hypotheses of Theorem

2.4 and our conclusion follows.
Q.E.D.
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