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Abstract 

In recent years, hesitant fuzzy sets (HFSs) and neutrosophic sets (NSs) have become a subject of great interest for 

researchers and have been widely applied to multi-criteria group decision-making (MCGDM) problems. In this 

paper, multi-valued neutrosophic sets (MVNSs) are introduced, which allow the truth-membership, indeterminacy-

membership and falsity-membership degree have a set of crisp values between zero and one, respectively. Then the 

operations of multi-valued neutrosophic numbers (MVNNs) based on Einstein operations are defined, and a 

comparison method for MVNNs is developed depending on the related research of HFSs and Atanassov’s 

intuitionistic fuzzy sets (IFSs). Furthermore, the multi-valued neutrosophic power weighted average (MVNPWA) 

operator and the multi-valued neutrosophic power weighted geometric (MVNPWG) operator are proposed and the 

desirable properties of two operators are also discussed. Finally, an approach for solving MCGDM problems is 

explored by applying the power aggregation operators, and an example is provided to illustrate the application of 

the proposed method, together with a comparison analysis. 

Keywords: Multi-criteria group decision-making, multi-valued neutrosophic sets, power aggregation operators. 
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1. Introduction 

In many cases, it is difficult for decision-makers to 

precisely express a preference when solving multi-

criteria decision-making (MCDM) and multi-criteria 

group decision-making (MCGDM) problems with 

inaccurate, uncertain or incomplete information. Under 

these circumstances, Zadeh’s fuzzy sets (FSs)
1
, where 

the membership degree is represented by a real number 

between zero and one, are regarded as an important tool 

for solving MCDM and MCGDM problems
2–3

, fuzzy 

logic and approximate reasoning
4
, and pattern 

recognition
5
.  

However, FSs can not handle certain cases where it is 

hard to define the membership degree using one specific 

value. In order to overcome the lack of knowledge of 

non-membership degrees, Atanassov introduced 

intuitionistic fuzzy sets (IFSs)
 6
, an extension of Zadeh’s 

FSs. Furthermore, Gau and Buehrer defined vague sets
7
 

and subsequently Bustince pointed out that the vague 

sets and IFSs are mathematically equivalent objects
8
. 

IFSs simultaneously take into account the membership 

degree, non-membership degree and degree of 

hesitation. Therefore, they are more flexible and 

practical when addressing fuzziness and uncertainty 

than FSs. Moreover, in some actual cases, the 

membership degree, non-membership degree and 

hesitation degree of an element in IFSs may not be a 

specific number; hence, they were extended to the 

interval-valued intuitionistic fuzzy sets (IVIFSs)
9
. To 

date, IFSs and IVIFSs have been widely applied in 

solving MCDM and MCGDM problems
10–21

. In order to 

handle situations where people are hesitant in 

expressing their preference regarding objects in a 

decision-making process, hesitant fuzzy sets (HFSs) 

were introduced by Torra and Narukawa
22–23

. Then 

some work on HFSs and their extensions have been 

undertaken, including the aggregation operators, the 

correlation coefficient, distance, correlation measures 

and outranking relations for HFSs
24–30

.  

Although the theory of FSs has been developed and 

generalized, it can not deal with all types of 

uncertainties in different real-world problems. Types of 

uncertainties, such as the indeterminate information and 

inconsistent information, cannot be managed. For 

example, when an expert is asked for their opinion 

about a certain statement, he or she may say the 

possibility that the statement is true is 0.5, the 

possibility that the statement is false is 0.6 and the 

degree that he or she is not sure is 0.2
31

. This issue is 

beyond the scope of the FSs and IFSs. Then 

Smarandache proposed neutrosophic logic and 

neutrosophic sets (NSs)
32–33

 and subsequently Rivieccio 

pointed out that an NS is a set where each element of 

the universe has a degree of truth, indeterminacy and 

falsity respectively and it lies in ]0 ,  1 [− + , the non-

standard unit interval
34

. Clearly, this is the extension of 

the standard interval [0,  1] . Furthermore, the 

uncertainty presented here, i.e. indeterminacy factor, is 

dependent on of truth and falsity values, whereas the 

incorporated uncertainty is dependent on the degrees of 

belongingness and degree of non-belongingness of 

IFSs
35

. Additionally, the aforementioned example of 

NSs can be expressed as x(0.5, 0.2, 0.6). However, 

without specific description, NSs are difficult to apply 

to real-life situations. Therefore, single-valued 

neutrosophic sets (SVNSs) were proposed, which are an 

extension of NSs
31,35

. Majumdar et al introduced a 

measure of entropy of SVNSs
35

. Furthermore, the 

correlation coefficients of SVNSs as well as a decision-

making method using SVNSs were introduced
36

. In 

addition, Ye also introduced the concept of simplified 

neutrosophic sets (SNSs), which can be described by 

three real numbers in the real unit interval [0,1], and 

proposed an MCDM method using the aggregation 

operators of SNSs
37

. Wang et al and Lupiáñez proposed 

the concept of interval neutrosophic sets (INSs) and 

provided the set-theoretic operators of INSs
38,39

. Broumi 

and Smarandache discussed the correlation coefficient 

of INSs
40

. Furthermore, Ye proposed the cross-entropy 

of SVNSs and similarity of INSs respectively
41–42

. 

However, in certain cases, the operations of SNSs 

provided by Ye may be unreasonable
37

. For example, 

the sum of any element and the maximum value should 

be equal to the maximum value, but this is not always 

the case during operations. The similarity measures and 

distances of SVNSs that are based on those operations 

may also be unrealistic. Peng et al developed novel 

operations, outranking relations and aggregation 

operators of SNSs
43–44

, which were based on the 

operations in Ye
37

 and applied them to MCGDM 

problems. Zhang et al introduced a MCDM method with 

INSs
45

. Liu and Wang investigated single-valued 

neutrosophic normalized weighted Bonferroni mean and 

applied it to MCDM problems
46

. Liu et al developed 

some Hamacher aggregation operators with NSs
47

. Tian 
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 MVNSs and Power Aggregation Operators 

 

et al developed simplified neutrosophic linguistic 

normalized weighted Bonferroni mean operator and 

applied it to MCDM problems
48

. 

However, decision-makers can also be hesitant when 

expressing their evaluation values for each parameter in 

SNSs. For example, if the possibility of a statement 

being true is 0.6 or 0.7, the possibility of it being false is 

0.2 or 0.3 and the degree that he or she is not sure is 0.1 

or 0.2, this will be beyond the capability of SNSs. If the 

operations and comparison method of SNSs were 

extended to multiple values, the shortcomings discussed 

earlier would still exist. Therefore, Wang and Li 

developed the definition of multi-valued neutrosophic 

sets (MVNSs)
49

, based on which, the Einstein 

operations and comparison method, and power 

aggregation operators for multi-valued neutrosophic 

numbers (MVNNs) are defined in this paper. 

Consequently, a MCGDM method is established based 

on the proposed operators. An illustrative example is 

also given to demonstrate the applicability of the 

proposed method. 

The rest of paper is organized as follows. In Section 2 

some basic concepts and operations of SNSs are briefly 

reviewed. Then the definition of MVNSs is introduced, 

and the operations, a comparison method and distance 

of MVNNs are defined in Section 3. Section 4 contains 

two MVNN power aggregation operators and a 

MCGDM approach with MVNNs. In Section 5, an 

illustrative example and a comparison analysis are 

presented to verify the proposed approach. Finally, the 

conclusions are drawn in Section 6. 

2. Preliminaries 

In this section, the definitions and operations of NSs and 

SNSs are introduced, which will be utilized in the latter 

analysis. 

 

Definition 1. Let X  be a space of points (objects), with 

a generic element in X  denoted by x . An NS A  in X  

is characterized by a truth-membership function ( )AT x , 

a indeterminacy-membership function ( )AI x  and a 

falsity-membership function ( )AF x  as follows
32

: 

 { }, ( ), ( ), ( )A A AA x T x I x F x x X= ∈ , (1) 

( )AT x , ( )AI x  and ( )AF x  are real standard or 

nonstandard subsets of ]0 ,  1 [− + , that is, 

( ) : ]0 ,  1 [AT x X − +→ , ( ) : ]0 ,  1 [AI x X − +→ , and 

( ) : ]0 ,  1 [AF x X − +→ . There is no restriction on the sum 

of ( )AT x , ( )AI x  and ( )AF x , therefore 

( ) ( ) ( )0 sup sup sup 3A A AT x I x F x− +≤ + + ≤ . 

Considering the applicability of NSs, Ye reduced NSs 

of nonstandard intervals into SNSs of standard 

intervals
37

, which can preserve the operations of NSs 

properly. 

 

Definition 2. Let X  be a space of points (objects), with 

a generic element in X  denoted by x . An NS A  in X  

is characterized by ( )AT x , ( )AI x  and ( )AF x , which 

are singleton subintervals/subsets in the real standard [0, 

1], that is ( ) : [0,1]AT x X → , ( ) : [0,1]AI x X → , and 

( ) : [0,1]AF x X → . Then, a simplification of A  is 

denoted by
37

: 

 ( ) ( ) ( ){ }, | , ,A A AA x T x I x F x x X= ∈ , (2) 

which is called an SNS and is a subclass of NSs. For 

convenience, the SNSs is denoted by the simplified 

symbol { }( ), ( ), ( )A A AA T x I x F x= . The set of all SNSs 

is represented as SNSS. 

The operations of SNSs are also defined by Ye
37

. 

 

Definition 3. Let A , 
1A  and 

2A  be three SNSs. For 

any x X∈ , the following operations can be true
37

. 

(1) ( ) ( ) ( ) ( )
1 2 1 21 2 ,A A A AA A T x T x T x T x+ = + − ⋅  

( ) ( ) ( ) ( )
1 2 1 2

,A A A AI x I x I x I x+ − ⋅  

                ( ) ( ) ( ) ( )
1 2 1 2A A A AF x F x F x F x+ − ⋅ ; 

(2) ( ) ( ) ( ) ( )
1 2 1 21 2 , ,A A A AA A T x T x I x I x⋅ = ⋅ ⋅  

( ) ( )
1 2A AF x F x⋅ ; 

(3) ( )( ) ( )( )1 1 ,1 1 ,A AA T x I x
λ λ

λ ⋅ = − − − −  

( )( )1 1 , 0AF x
λ

λ− − > ; 

(4) ( ) ( ) ( ), , , 0A A AA T x I x F xλ λ λ λ λ= > . 

There are some limitations related to Definition 3 and 

these are now outlined. 

 

(i) In some situations, operations such as 
1 2A A+  and 

1 2A A⋅  might be impractical. This is demonstrated 

in Example 1. 
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Example 1. Let { }1 ,0.5,0.5,0.5A x= 〈 〉  and 

{ }2 ,1,0,0A x= 〈 〉  be two SNSs. Clearly, 

{ }2 ,1,0,0A x= 〈 〉  can be the larger of these SNSs. 

Theoretically, the sum of any number and the maximum 

number should be equal to the maximum one. However, 

according to Definition 3, { }1 2 ,1,0.5,0.5A A x+ = 〈 〉  

2A≠ , therefore the operation “+” cannot be accepted. 

Similar contradictions exist in other operations of 

Definition 3, and thus those defined above are incorrect. 

 

(ii) The correlation coefficient of SNSs
36

, which is 

based on the operations of Definition 3, cannot be 

accepted in some specific cases. 

 

Example 2. Let { }1 ,0.8,0,0A x= 〈 〉  and 

{ }2 ,0.7,0,0A x= 〈 〉  be two SNSs, and { },1,0,0A x= 〈 〉  

be the largest one of the SNSs. According to the 

correlation coefficient of SNSs
36

, 

( ) ( )1 2 2, , 1W A A W A A= =  can be obtained, but this 

does not indicate which one is the best. However, it is 

clear that 
1A  is superior to 

2A . 

 

(iii) In addition, the cross-entropy measure for SNSs
41

, 

which is based on the operations of Definition 3, 

cannot be accepted in special cases. 

 

Example 3. Let { }1 ,0.1,0,0A x= 〈 〉  and 

{ }2 ,0.9,0,0A x= 〈 〉  be two SNSs, and { },1,0,0A x= 〈 〉  

be the largest one of the SNSs. According to the cross-

entropy measure for SNSs
41

, ( ) ( )1 1 2 2, , 1S A A S A A= =  

can be obtained, which indicates that 
1A  is equal to 

2A . 

Yet it is not possible to discern which one is the best. 

Since ( ) ( )
2 1A AT x T x> , ( ) ( )

2 1A AI x I x>  and 

( ) ( )
2 1A AF x F x>  for any x  in X , it is clear that 

2A  is 

superior to 
1A . 

(iv) If ( ) ( )
1 2

0A AI x I x= =  for any x  in X , then 
1A  

and 
2A  are both reduced to IFSs. However, the 

operations presented in Definition 3 are not in 

accordance with the operations of two IFSs
6, 8, 10-21

. 

3. Multi-valued Neutrosophic Sets 

 In this section, MVNSs are introduced, and the 

corresponding operations and comparison method are 

developed in terms of those of IFSs
6, 8, 10-21

 and HFSs
22, 

23
. 

3.1.  MVNSs and theirs Einstein operations 

Definition 4. Let X  be a space of points (objects), with 

a generic element in X  denoted by x . An MVNSs A  

in X  is characterized by
48

: 

 ( ) ( ) ( ){ }, , ,A A AA x T x I x F x x X= ∈   , (3) 

where ( )AT x , ( )AI x , and ( )AF x are three sets of 

precise values in [0,1], denoting the truth-membership 

degree, indeterminacy-membership function and falsity-

membership degree respectively, satisfying 

0 , , 1, 0 3γ η ξ γ η ξ+ + +≤ ≤ ≤ + + ≤ , where 

( ) ( ) ( ), ,A A AT x I x F xγ η ξ∈ ∈ ∈   , ( )sup AT xγ + =  , 

( )sup AI xη + =   and ( )sup AF xξ + =  .  

If X  has only one element, then A  is called a multi-

valued neutrosophic number (MVNN), denoted by 

( ) ( ) ( ),  ,A A AA T x I x F x=    . For convenience, an 

MVNN can be denoted by , ,A A AA T I F=    . The set of 

all MVNNs is represented as MVNNS. 

Obviously, MVNSs are generally considered as an 

extension of NSs. If each of ( ) ( ),A AT x I x   and ( )AF x  

for any x  has only one value, i.e. , andγ η ξ , and 

0 + 3γ η ξ≤ + ≤ , then MVNSs are reduced to SNSs; if 

( )AI x = ∅  for any x , then MVNSs are reduced to 

DHFSs; if ( ) ( )A AI x F x= = ∅   for any x , then MVNSs 

are reduced to HFSs. In a word, MVNSs are the 

extensions of SNSs, DHFSs and HFSs. 

In the following, the operations of MVNNs can be 

defined based on the operations of IFSs and HFSs. 

 

Definition 5. Let A MVNNS∈ , then the complement of 

a MVNN can be denoted by CA , which can be defined 

as follows: 

 { } { } { }, 1 ,
A A A

C

F I T
A ξ η γξ η γ∈ ∈ ∈= −     . (4) 

It is noted that different aggregation operators are all 

based on different t-conorms and t-norms and are used 

to deal with different relationships of the aggregated 

arguments, which satisfy the requirements of the 

conjunction and disjunction operators, respectively. 

Einstein operations include the Einstein sum 

( ) ( )1a b a b a b⊕ = + + ⋅  and Einstein product 

( ) ( ) ( )( )1 1 1a b a b a b⊗ = ⋅ + − ⋅ − ( ), [0,1]a b∈ 50
, which 

are examples of t-norms and t-conorms, respectively. In 

the following, the operations of MVNNs can be defined 

based on Einstein operations. 
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 MVNSs and Power Aggregation Operators 

 

Definition 6. Let , ,A A AA T I F=    , , ,B B BB T I F=     be 

two MVNNs and 0λ > . The operations of MVNNs can 

be defined as follows: 

(1) 
( ) ( )
( ) ( )
1 1

,
1 1

A A

A A

T

A A

A

λ λ

γ λ λ

γ γ
λ

γ γ∈

 + − − =  
+ + −  

  

( )
( ) ( )

2
,

2
A A

A

I

A A

λ

η λ λ

η

η η∈

 ⋅ 
 

− +  
  

( )
( ) ( )

2

2
A A

A

F

A A

λ

ξ λ λ

ξ

ξ ξ∈

 ⋅ 
 

− +  
 ; 

(2) 
( )

( ) ( )
2

,
2

A A

A

T

A A

A

λ
λ

γ λ λ

γ

γ γ∈

 ⋅ =  
− +  

  

( ) ( )
( ) ( )
1 1

,
1 1

A A

A A

I

A A

λ λ

η λ λ

η η

η η∈

 + − − 
 

+ + −  
  

( ) ( )
( ) ( )
1 1

1 1
A A

A A

F

A A

λ λ

ξ λ λ

ξ ξ

ξ ξ∈

 + − − 
 

+ + −  
 ; 

(3)
,

,
1A A B B

A B

T T

A B

A B γ γ

γ γ
γ γ∈ ∈

 +
⊕ =  

+ ⋅ 
   

( ) ( ),
,

1 1 1A A B B

A B

I I

A B

η η

η η
η η∈ ∈

 ⋅ 
 
+ − ⋅ −  

   

( ) ( ),
1 1 1A A B B

A B

F F

A B

ξ ξ

ξ ξ
ξ ξ∈ ∈

 ⋅ 
 
+ − ⋅ −  

  ; 

(4)
( ) ( ),

,
1 1 1A A B B

A B

T T

A B

A B γ γ

γ γ
γ γ∈ ∈

 ⋅ ⊗ =  
+ − ⋅ −  

   

,
,

1A A B B

A B

I I

A B

η η

η η
η η∈ ∈

 +
 
+ ⋅ 

   

,
1A A B B

A B

F F

A B

ξ ξ

ξ ξ
ξ ξ∈ ∈

 +
 
+ ⋅ 

  . 

If there is only one specific number in ,A AT I   and 

AF , then the operations in Definition 6 are reduced to 

the operations of SNNs as follows: 

(5) 
( ) ( )
( ) ( )
1 1

,
1 1

A A

A A

A

λ λ

λ λ

γ γ
λ

γ γ

+ − −
=

+ + −

( )
( ) ( )

2
,

2

A

A A

λ

λ λ

η

η η

⋅

− +
  

( )
( ) ( )

2

2

A

A A

λ

λ λ

ξ

ξ ξ

⋅

− +
; 

(6) 
( )

( ) ( )
2

,
2

A

A A

A

λ
λ

λ λ

γ

γ γ

⋅
=

− +
 
( ) ( )
( ) ( )
1 1

,
1 1

A A

A A

λ λ

λ λ

η η

η η

+ − −

+ + −
 

( ) ( )
( ) ( )
1 1

1 1

A A

A A

λ λ

λ λ

ξ ξ

ξ ξ

+ − −

+ + −
; 

(7) ,
1

A B

A B

A B
γ γ
γ γ
+

⊕ =
+ ⋅

 
( ) ( )

,
1 1 1

A B

A B

η η
η η
⋅

+ − ⋅ −
 

( ) ( )1 1 1

A B

A B

ξ ξ
ξ ξ
⋅

+ − ⋅ −
; 

(8)
( ) ( )

,
1 1 1

A B

A B

A B
γ γ
γ γ
⋅

⊗ =
+ − ⋅ −

 ,
1

A B

A B

η η
η η
+

+ ⋅
 

 
1

A B

A B

ξ ξ
ξ ξ
+

+ ⋅
. 

Note that the operations of MVNNs coincide with the 

operations of IFSs
6, 8, 10-21

. 

 

Example 4. Let { } { } { }0.6 , 0.1,0.2 , 0.2A =  and 

{ } { } { }0.5 , 0.3 , 0.2,0.3B =  be two MVNNs, and 

2λ = , then the following results can be achieved. 

(1) { } { } { }2 0.8824 , 0.1105,0.2439 , 0.2439A⋅ = ; 

(2) { } { } { }2 1 , 0.1980,0.3846 , 0.3846A = ; 

(3) { } { } { }0.8462 , 0.0184,0.0385 , 0.0244,0.0385A B⊕ = ; 

(4) { } { } { }0.2500 , 0.3884,0.4717 , 0.3884,0.4717A B⊗ = . 

 

Theorem 1. Let , ,A A AA T I F=    , , ,B B BB T I F=    , and 

, ,C C CC T I F=     be three MVNNs, then the following 

equations can be true. 

(1) 
1 2 2 1A A A A⊕ = ⊕ ; 

(2) 
1 2 2 1 A A A A⊗ = ⊗ ; 

(3) ( ) , 0A B A Bλ λ λ λ⊕ = ⊕ > ; 

(4) ( ) , 0A B A B
λ λ λ λ⊗ = ⊗ > ; 

(5) ( )1 2 1 2 1 2, 0, 0A A Aλ λ λ λ λ λ⊕ = + > > ; 

(6) 1 2 1 2

1 2, 0, 0A A A
λ λ λ λ λ λ+⊗ = > > ; 

(7) ( ) ( ) A B C A B C⊕ ⊕ = ⊕ ⊕ ; 

(8) ( ) ( ).A B C A B C⊗ ⊗ = ⊗ ⊗  

 

Proof. (1), (2), (7) and (8) can be easily obtained. 

(3) Since 0λ > , 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

349

D
o
w

n
lo

ad
ed

 b
y
 [

C
en

tr
al

 S
o
u
th

 U
n
iv

er
si

ty
],

 [
ji

an
-q

ia
n
g
 W

an
g
] 

at
 1

7
:3

3
 2

9
 D

ec
em

b
er

 2
0
1
4
 



Peng et al. 

( )

,

1 1
1 1

,

1 1
1 1

A A B B

A B A B

A B A B

T T

A B A B

A B A B

A B

λ λ

γ γ λ λ

λ

γ γ γ γ
γ γ γ γ

γ γ γ γ
γ γ γ γ

∈ ∈

⊕

    + +
 + − −   + ⋅ + ⋅    =  
   + + + + −    + ⋅ + ⋅    

 
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

,

2
1 1 1

,

2
1 1 1 1 1 1

2
1 1 1

2
1 1 1 1 1 1

A A B B

A B

A B

I I

A B A B

A B A B

A B

A B

A B A B

A B A B

λ

η η λ λ

λ

λ λ

η η
η η

η η η η
η η η η

ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

∈ ∈

  ⋅   + − ⋅ −  
 
    ⋅ ⋅

− +       + − ⋅ − + − ⋅ −    

  ⋅   + − ⋅ −  
 
    ⋅ ⋅

− +      + − ⋅ − + − ⋅ −    

 

,
.

A A B BF Fξ ξ∈ ∈



 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

,

,

,

1 1 1 1
,

1 1 1 1

2
,

2

 

2

2

2 2

A A B B

A A B B

A A B B

A B A B

T T

A B A B

A B

I I

A B A B

A B

F F

A B A B

λ λ λ λ

γ γ λ λ λ λ

λ λ

η η λ λ λ λ

λ λ

ξ ξ λ λ λ λ

γ γ γ γ

γ γ γ γ

η η

η η η η

ξ ξ

ξ ξ ξ ξ

∈ ∈

∈ ∈

∈ ∈

 + + − − − =  
+ + + − −  

  
 

− − +  

  
 

− − +  

 

 

 







 

 

and  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

1 1 1 1

1 1 1 1
,

1 1 1 1
1

1 1 1 1

2 2

2 2

2 2
1 1 1

2

 

2

A A B B

A A B B

A A B B

T T

A A B B

A A B B

A B

A A B B

A B

A A B B

A B

λ λ λ λ

λ λ λ λ

γ γ λ λ λ λ

λ λ λ λ

λ λ

λ λ λ λ

λ λ

λ λ λ λ

λ λ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

η η
η η η η

η η
η η η η

∈ ∈

⊕

 + − − + − −
+ 

+ + − + + − 
=  

+ − − + − − + ⋅ + + − + + − 

⋅ ⋅
⋅

− + − +

 ⋅ ⋅
 + − ⋅ −
 − + − + 

 

,
,

A A B BI Iη η∈ ∈

 
 
  
 

        

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

2 2

2 2
.

2 2
1 1 1

2 2

A A B B

A B

A A B B

F F

A B

A A B B

λ λ

λ λ λ λ

ξ ξ λ λ

λ λ λ λ

ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

∈ ∈

 ⋅ ⋅ ⋅
 − + − + 
 

   ⋅ ⋅    + − ⋅ −    − + − +     

 
 

 

Thus, ( )A B A Bλ λ λ⊕ = ⊕  can be obtained. 

Similarly, (4), (5) and (6) can be true.       

3.2. Comparison method 

Based on the score function and accuracy function of 

IFSs
10-21

, the score function and accuracy function of a 

MVNN can be provided below.  

 

Definition 7. Let , ,A A AA T I F=     be an MVNN, and 

then score function ( )s A  and accuracy function ( )a A  

of an MVNN can be defined as follows: 

(1) ( ) ( ), ,

1
3

A A A A A A

A A A

A A AT I F

T I F

s A
l l l

γ η ξ γ η ξ∈ ∈ ∈= − −
⋅ ⋅

∑   

  

; 

(2) ( ) ( ), ,

1
3

A A A A A A

A A A

A A AT I F

T I F

a A
l l l

γ η ξ γ η ξ∈ ∈ ∈= + +
⋅ ⋅

∑   

  

. 

Here ,A A A AT Iγ η∈ ∈   and 
A AFξ ∈  ; ,

A AT I
l l  and 

AF
l  denote the number of element in ,A AT I  and 

AF , 

respectively.  

The score function is an important index in ranking 

MVNNs. For an MVNN A, the bigger the truth-

membership 
AT  is, the greater the MVNN will be; the 

smaller the indeterminacy-membership 
AI  is, the 

greater the MVNN will be; similarly, the smaller the 

false-membership 
AF  is, the greater the MVNN will be. 

For the score function, if the greater the result of 

A A Aγ η ξ− −  is, the more affirmative the statement will 

be. For the accuracy function, the bigger the sum of the 

truth, indeterminacy and falsity, the more affirmative 

the statement will be.  

On the basis of Definition 7, the method for 

comparing MVNNs can be defined as follows. 

 

Definition 8. Let A  and B  be two MVNNs. The 

comparision method can be defined as follows: 

(1)If ( ) ( )s A s B>  or ( ) ( )s A s B=  and 

( ) ( )a A a B> , then A  is superior to B , denoted by 

A B ; 

(2)If ( ) ( )s A s B=  and ( ) ( )a A a B= , then A  is 

indifferent to B , denoted by ~A B . 

(3)If ( ) ( )s A s B=  and ( ) ( )a A a B<  or 

( ) ( )s A s B< , then A  is inferior to B , denoted by 

A BB ; 

 

Example 5. Let A  and B  be two MVNNs, and 

according to Definition 8, the following can be 

obtained: 
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 MVNSs and Power Aggregation Operators 

 

(1) If { } { } { }0.6,0.5 , 0.3 , 0.2A =  and { }0.5 ,B =  

{ } { }0.1,0.2 , 0.4 are two MVNNs, then 

( ) ( )0.017 and 0.017s A s B= = − . ( ) ( )s A s B> , so 

A B . 

(2) If { } { } { }0.6,0.5 , 0.4 , 0.2A =  and { }0.5 ,B =  

{ } { }0.1,0.2 , 0.4  are two MVNNs, then ( ) ( )s A s B=  

0.017= − , ( ) 0.383a A = and ( ) 0.35a B = , 

( ) ( )a A a B> , so A B . 

(3) If { } { } { }0.6,0.7 , 0.3 , 0.2A =  and 

{ }0.6,0.7B = , { } { }0.2 , 0.3  are two MVNNs, then 

( ) ( )s A s B=  0.05= and ( ) ( ) 0.3833a A a B= = . So 

~A B . 

(4) If { } { } { }0.5 , 0.1,0.2 , 0.1A =  and { }0.6 ,B =  

{ } { }0.2 , 0.1  are two MVNNs, then ( ) 0.0833s A =  and 

( ) 0.1s B = . ( ) ( )s A s B< , so A BB . 

(5) If { } { } { }0.5 , 0.1,0.2 , 0.1A =  and { }0.7 ,B =  

{ } { }0.2,0.3 , 0.2  are two MVNNs, then ( ) ( )s A s B=  

0.0833= , ( ) 0.25a A =  and ( ) 0.3833a B = . 

( ) ( )a A a B< , so A BB . 

 

Definition 9. Let , ,A A AA T I F=     and , ,B B BB T I F=     

be two MVNNs, then the Hamming–Hausdorff distance 

between A and B can be defined as follows: 

( ) (

)

1
, max min max min

6

max min max min

max min max min .

B B A AA A B B

B B A AA A B B

B B A AA A B B

A B B A
T TT T

A B B A
I II I

A B B A
F FF F

d A B
γ γγ γ

η ηη η

ξ ξξ ξ

γ γ γ γ

η η η η

ξ ξ ξ ξ

∈ ∈∈ ∈

∈ ∈∈ ∈

∈ ∈∈ ∈

= − + −

+ − + −

+ − + −

  

  

  

(5) 

 

Example 6. Let { } { } { }0.4,0.5 , 0.2 , 0.3A =  and 

{ } { } { }0.8 , 0.8 , 0.5B =  be two MVNNs, then 

according to Eq. (5), ( ), 0.25d A B =  can be determined. 

4. Power Operators and MCGDM Approach 

In this section, the power aggregation operators of 

MVNNs are presented and an approach for MCGDM 

problems that utilizes these aggregation operators is 

proposed. 

4.1. Power aggregation operator 

The power average (PA) operator was developed by 

Yager in the form of nonlinear weighted average 

aggregation operator
51

. 

 

Definition 10. The PA operator is the mapping PA: 
nR R→ , which is defined as follows

51
: 

( )
( )( )
( )( )

1

1 2

1

1
, , ,

1

n

i ii

n n

ii

S
PA

S

α α
α α α

α
=

=

+
=

+
∑
∑

2 . (6) 

Here ( ) ( )1,
,

n

i i ji j i
S Suppα α α= ≠=∑ , and ( ),i jSupp α α  

is the support for 
iα  from 

jα . Then the following 

properties are true. 

(1) ( ), [0,1]i jSupp α α ∈ ; 

(2) ( ) ( ), ,i j j iSupp Suppα α α α= ; 

(3) ( ) ( ), ,i j p q i j p qSupp Supp iffα α α α α α α α≥ − < − . 

Apparently, the closer two values get, the more they 

support each other. 

4.2. Power weighted average operator 

Definition 11. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2  

be a collection of MVNNs, and ( )1 2, , , nw w w w= 2  be 

the weight vector of 
jA ( )1, 2, ,j n= 2 , with 

0jw ≥ ( )1, 2, ,j n= 2  and 
1

1
n

j
j

w
=

=∑ . The multi-valued 

neutrosophic power weighted average (MVNPWA) 

operator of dimension n  is the mapping 
nMVN MVPWA : NN MVNN→ , and  

( )
( )( )
( )( )

1

1 2

1

1
PWA , , ,

1
MVN

n

j j j
j

w n n

j jj

w S A A
A A A

w S A

=

=

⊕ +
=

+∑
2 . (7) 

Here ( ) ( )
1,

,
n

j j j i
i j i

S A w Supp A A
= ≠

= ∑  and ( ),j iSupp A A  

is the support for 
jA  from 

iA , which satisfies the 

following conditions: 

(1) ( ), [0,1]i jSupp A A ∈ ; 

(2) ( ) ( ), ,i j j iSupp A A Supp A A= ; 

(3) ( )( , ) ,i j p qSupp A A Supp A A≥  iff ( ),i jd A A <  

( ),p qd A A , where d is the distance measure as was 

defined in Definition 9. 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

351

D
o
w

n
lo

ad
ed

 b
y
 [

C
en

tr
al

 S
o
u
th

 U
n
iv

er
si

ty
],

 [
ji

an
-q

ia
n
g
 W

an
g
] 

at
 1

7
:3

3
 2

9
 D

ec
em

b
er

 2
0
1
4
 



Peng et al. 

Based on the operations in Definition 6 and Eq. (7), 

Theorem 2 can be derived. 

 

Theorem 2. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2  be a 

collection of MVNNs, and ( )1 2, , , nw w w w= 2  be the 

weight vector of 
jA ( )1,2, ,j n= 2 , with 0jw ≥  

( )1, 2, ,j n= 2  and 
1

1
n

j
j

w
=

=∑ . Then their aggregated 

result using the MVNPWA operator is also an MVNN, 

and 

 

( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

1 1

1 1

1 2

1 1

1 1

1

1

1

1

1

1 1

1

M PWA

1 1

,

1 1

V , , ,N

j j j j

n n

j j j jj j

j Aj j j j j

n n

j j j jj j

w n

w S A w S A

w S A w S A
j j

T w S A w S A

w S A w S

n n

j j

n n

A

j
j j

j

A A A

γ

γ γ

γ γ

= =

= =

= =

= =

+ +

+ +

∈ + +

+ +

 
 ∑ ∑
 =  
 

∑ ∑

+ −



−


+ + −

∏ ∏

∏ ∏


2


 

( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

1

1 1

1

1 1

1

1

1 1

1 1

1

1

1 1

1

1

1 1

1

1 1

12

2

2

,

2

j j

n

j jj

j Aj j j j j

n n

j j j jj j

j j

n

j jj

j j j j

n n

j j j jj j

w S A

w S A
j

I w S A w S A

w S A w S A
j j

w S

n

j

n n

j j

n

j
j

n n

j j

A

w S A

j

w S A w S A

w S A w S A

i

η

η

η η

ξ

ξ ξ

=

= =

=

= =

+

+

∈ + +

+

=

= =

=

+

+

+

+ +

=

+ +

=

 
 
 
 
 

− 
 

 
 
 

∑

+∑ ∑

∑

+∑ ∑

 
 

−
 

∏

∏ ∏

∏

∏ ∏



.
j Aj

Fξ ∈





 (8) 

 

Here ( ) ( )
1,

,
n

j j j i
i j i

S A w Supp A A
= ≠

= ∑  and satisfies the 

conditions in Definition 11. 

 

Proof. For simplicity, let  

1

1
1

w S A
j j

j n w S A
j j j

ς

  +     =
  +∑   =   

 

in the process of proof. By using the mathematical 

induction on n . 

(1) If 2n = , based on the operations (1) and (3) in 

Definition 6,  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 2

1 1 2 2

1 2 1 1 2 21 2

1 1 2 2

1 2

1 2 2

1

1

1 1 2 2

1 1 2 2

1 1 2 2

,

1 1 2 2

1 1 2 2

1 2

1 1 2 2

1

1

1 1 1 1

1 1 1 1
,

1 1 1 1
1

1 1 1 1

2 2

2 2

2
1 1

2

 

A AT T

A A

ς ς ς ς

ς ς ς ς

γ γ ς ς ς ς

ς ς ς ς

ς ς

λ ς ς ς

ς

ς

ς ς

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

η η
η η η η

η
η

∈ ∈

⊕

 + − − + − −
+ 

+ + − + + − 
=  

+ − − + − − + ⋅ + + − + + − 

⋅ ⋅
⋅

− + − +

⋅
+ −

−

 

( ) ( ) ( )

1 21 2
2

1 2 2

,

2

1 2 2

,
2

1
2

A AI Iη η ς

ς ς ς

η
η η η

∈ ∈

 
 
  
 

   ⋅    ⋅ −    + − +     

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

1 2 2
1 2

1 1 2 2

1 2

1 1 2 2

,

1 2

1 1 2 2

2 2

2 2

2 2
1 1 1

2 2

A AF F

ς ς

ς ς ς ς

ξ ξ ς ς

ς ς ς ς

ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

∈ ∈

 ⋅ ⋅ ⋅
 − + − + 
 

   ⋅ ⋅    + − ⋅ −    − + − +     

   

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2 1 21 2

1 2

1 2 21 2 1 1 2

2

1 2

1 2 1 2 1 21 2

1 2 1 2

,

1 2 1 2

1 2

,

1 1 2

1 2

,

1 2 1 2

1 1 1 1
,

1 1 1 1

2
,

2 2

2
.

2 2

A A

A A

A A

T T

I I

A

F F

ς ς ς ς

γ γ ς ς ς ς

ς ς

η η ςς ς ς

ς ς

ξ ξ ς ς ς ς

γ γ γ γ

γ γ γ γ

η η

η η η η

ξ ξ

ξ ξ ξ ξ

∈ ∈

∈ ∈

∈ ∈

 + + − − − =  
+ + + − −  

 
 
 

− − +  

  
 

− − +  

 

 

 







 

So 

 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2 1 21 2

1 2

1 2 21 2 1 1 2

2

1 2

1 2 1 2 1 21

1 2

1 2 1 2

,

1 2 1 2

1 2

,

1 1 2

1 2

,

1 2 1 2

MVNPWA ,

1 1 1 1
,

1 1 1 1

2
,

2 2

2

2 2

A A

A A

A

w

T T

I I

A

F

A A

ς ς ς ς

γ γ ς ς ς ς

ς ς

η η ςς ς ς

ς ς

ξ ξ ς ς ς ς

γ γ γ γ

γ γ γ γ

η η

η η η η

ξ ξ

ξ ξ ξ ξ

∈ ∈

∈ ∈

∈ ∈

 + + − − − =  
+ + + − −  

 
 
 

− − +  

  
 

− − +  

 

 

 





2

.
AF

 

 

(2) If Eq. (8) holds for n k= , then 
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( )

( ) ( )

( ) ( )
1 1

1 1

1 2

1 1

,

1 1

MV PWAN , , ,

j j

j Aj j j

k k

j j

k k

w k

j j

T

j j
j j

A A A

ς ς

γ ς ς

γ γ

γ γ

= =

= =

∈

 
  =  
 
  

+ − −

+ + −

∏ ∏

∏ ∏


2


 

( )

( ) ( )

( )

( ) ( )

1

1 1

1

1 1

2

2

,

2

.

2

j

j Aj j j

j

j Aj j j

k

j

k k

j j

k

j
j

k k

j

I

j j

F

j j
j i

ς

η ς ς

ς

ξ ς ς

ξ

ξ ξ

η

η η

=

= =

=

=

∈

=

∈

 
  
 
 −
  

 
  
 
 −


+


+



∏

∏ ∏

∏
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If 1n k= + , by the operations (1) and (3) in Definition 

6,  

( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

1 1

1 1

1 1

1

1 2 1

1 1

1 1

1 1

1

1 1

1 1

1 1

1 1

1

1 1
1 1

1 11 1

1 1
1 1

1
1 11

M PWA , , ,N

1

V ,

j j

k k

k kj j

j j

k k

kj j

w k k

j j
k k

k k
j j

j j
k

k k

j j

k k

j j

k k

j j

k

k

k
j

j
j

k

j

k

A A A A

ς ς
ς ς

ς ςς ς

ς ς
ς ς

ς ςς ς

γ γ γ γ

γ γγ γ

γ γ γ γ

γ γγ γ

+ +

+ +

+ +

+

= =

= =

= =

+

+ +

+

=

+

+

+ +
=

+

+ − −
+ − −

+
+ + −+ + −

+ − −
+ − −

+ ⋅
+ ++

=

−+ −

∏ ∏

∏ ∏

∏ ∏

∏ ∏

2

1

,
j Aj

k

Tγ

+

∈

 
 
 
 
 
 
 
 
 
 
 


 

( )

( ) ( )
( )

( ) ( )

( )

( ) ( )
( )

( ) ( )

1

11

1

11

1

1 1

1

1

1

1

1

1 1

2
2

2
2

22

,

1
2

1 1

2

j

k

kkj j

j Aj j

k

kkj j

k

j

k k

j j

k

j

k k

j
k

k jj j

I

j
k

kj j
j

j

j

ς
ς

ςςς ς

η ς
ς

ςςς ς

η η

η ηη η

η η

η ηη η

+

++

+

++

= +

= =

=

= =

+

∈

+

+

⋅
++
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 + − ⋅ − 

   ++   



 

−− 
 

∏

∏ ∏

∏
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1
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1

1 1

1

1

1

1

1

1 1

2
2

2
2

22
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1
2

1 1

2
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kkj j

j Aj j

k

kkj j
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j
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j j

k

j
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j
k

k jj j

F

j
k
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j

j

j
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ξ ς
ς
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= +

= =

=

= =

+
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+

+

⋅
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i.e., Eq. (8) holds for 1n k= + . Thus, Eq. (8) holds for 

all n , then 

( )
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Peng et al. 

The MVNPWA operator has the following properties. 

 

Theorem 3. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2

 
be a 

collection of MVNNs. If ( )1,2, ,jA j n′ = 2  is any 

permutation of ( )1, 2, ,jA j n= 2 , then  

( ) ( )1 2 1 2MVN MVPWA , , , PWA , ,N ,w n w nA A A A A A′ ′ ′=2 2 . 

 

Proof. The process of proof is omitted here.         

 

Theorem 4. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2

 
be a 

collection of MVNNs and , ,A A AA T I F=     be an 

MVNN. If for all j , ,j jγ γ η η= =  and 
jξ ξ= , then  

( )1 2PWA , ,MVN ,w nA A A A=2 . 

Where ,j jγ η  and 
jξ  are elements of ,

j jA AT I   and 
jAF  

respectively, ,γ η  and ξ  are elements of ,A AT I   and 

AF  respectively. 

 

Proof. The process of proof is omitted here.         

 

Theorem 5. Let , ,
j j jj A A AA T I F=    ( )1, 2, ,j n= 2  and 

* * *

* , ,
j j j

j A A A
A T I F=    ( )1, 2, ,j n= 2

 
be two collections of 

MVNNs. If for all j , * *,j j j jγ γ η η≤ ≥  and *

j jξ ξ≥ , then  

( ) ( )* * *

1 21 2MVN MVPWA , , , PW ,N A , ,w n w nA A A A A A≤2 2

. 

Where ,j jγ η  and 
jξ  are elements of ,

j jA AT I   and 
jAF  

respectively, * *,j jγ η  and *

jξ  are elements of * *,
j jA A

T I   and 

*
jA

F  respectively. 

 

Proof. The process of proof is omitted here.         

4.3. Power weighted geometric operator 

Definition 12. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2

 

be a collection of MVNNs, and ( )1 2, , , nw w w w= 2  be 

the weight vector of 
jA ( )1,2, ,j n= 2 , with 

0jw ≥ ( )1,2, ,j n= 2  and 
1

1
n

j
j

w
=

=∑ . The multi-valued 

neutrosophic power weighted geometric (MVNPWG) 

operator of dimension n  is the mapping MVNPWG: 
nMVNN MVNN→ , and 

( ) ( )
( )( )

( )( )
1

1

1
1 2

1
PWG , ,MVN ,

j j

n

j jj

w S A
n

w S A
w n j

j
A A A A

=

+

+
=

= ⊗ ∑2 . (9) 

Here ( ) ( )
1,

,
n

j j j i
i j i

S A w Supp A A
= ≠

= ∑  and ( ),j iSupp A A  

is the support for 
jA  from 

iA , which satisfies the 

following conditions: 

(1) ( ), [0,1]i jSupp A A ∈ ; 

(2) ( ) ( ), ,i j j iSupp A A Supp A A= ; 

(3) ( ) ( ) ( )( , ) , , ,i j p q i j p qSupp A A Supp A A iff d A A d A A≥ < , 

where d is the distance measure defined in Definition 9. 

Based on the operations in Definition 6 and Eq. (9), 

Theorem 3 can be derived. 

 

Theorem 6. Let , ,
j j jj A A AA T I F=    ( )1, 2, ,j n= 2  be a 

collection of MVNNs, and ( )1 2, , , nw w w w= 2  be the 

weight vector of 
jA ( )1,2, ,j n= 2 , with 

0jw ≥ ( )1,2, ,j n= 2  and 
1

1
n

j
j

w
=

=∑ . Then their 

aggregated result using the MVNPWG operator is also 

an MVNN, and 

 

( )

( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

1

1 1

1 2

1

1

1

1

1

1

1 1

1

PWG , , ,

2

V

2

M

,

N

j j

n

j jj

Aj j j j j

n n

j j j jj

j

j

w n

w S A

w S A
j

T w S A w S A

w S A

n

j

n n

j

w S A
j j

j

A A A

γ

γ

γ γ

=

= =

+

+

∈ + +

+

=

+
= =

 
 ∑
 =  
 

+∑ ∑ 
 

−

∏

∏ ∏


2


  

( )
( )( )

( )( ) ( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

,

1 1

j j j j

n n

j j j jj j

j Aj j j j j

n n

j j j jj j

w S A w S A

w S A w S A
j j

I w S A w S A

w

n n

j j

n n

j j

S A w S A
j j

η

η η

η η

= =

= =

+ +

+ +

∈ + +

+ +

= =

= =

 
 + − −
 
 
 

+ + − ∑ 
 

∑ ∑

∑

∏ ∏

∏ ∏
  

( )
( )( )

( )( ) ( )
( )( )

( )( )

( )
( )( )

( )( ) ( )
( )( )

( )( )

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

.

1 1

j j j j

n n

j j j jj j

j Aj j j j j

n n

j j j jj j

w S A w S A

w S A w S A
j j

F w S A w S A

w

n n

j j

n n

j j

S A w S A
j j

ξ

ξ ξ

ξ ξ

= =

= =

+ +

+ +

∈ + +

+ +

= =

= =

 
 + − −
 
 
 

+ + − ∑ 
 

∑ ∑

∑

∏ ∏

∏ ∏
  (10) 

Here ( ) ( )
1,

,
n

j j j i
i j i

S A w Supp A A
= ≠

= ∑  and satisfies the 

conditions in Definition 11. 

 

Proof. Theorem 2 can be proved by the mathematical 

induction and the process is omitted here.         

Similarly, the MVNPWG operator has the following 

properties. 
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 MVNSs and Power Aggregation Operators 

 

Theorem 7. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2

 
be a 

collection of MVNNs. If ( )1,2, ,jA j n′ = 2  is any 

permutation of ( )1, 2, ,jA j n= 2 , then  

( ) ( )1 2 1 2MVN MVPWG , , , PWG , ,N ,w n w nA A A A A A′ ′ ′=2 2 . 

 

Proof. The process of proof is omitted here.         

 

Theorem 8. Let , ,
j j jj A A AA T I F=    ( )1,2, ,j n= 2

 
be a 

collection of MVNNs and , ,A A AA T I F=     be an 

MVNN. If for all j , ,j jγ γ η η= =  and 
jξ ξ= , then  

( )1 2PWG , ,MVN ,w nA A A A=2 . 

Where ,j jγ η  and 
jξ  are elements of ,

j jA AT I   and 
jAF  

respectively, ,γ η  and ξ  are elements of ,A AT I   and 

AF  respectively. 

 

Proof. The process of proof is omitted here.        

 

Theorem 9. Let , ,
j j jj A A AA T I F=    ( )1, 2, ,j n= 2  and 

* * *

* , ,
j j j

j A A A
A T I F=    ( )1, 2, ,j n= 2

 
be two collections of 

MVNNs. If for all j , * *,j j j jγ γ η η≤ ≥  and *

j jξ ξ≥ , then  

( ) ( )* * *

1 21 2MVN MVPWG , , , PW ,N G , ,w n w nA A A A A A≤2 2 . 

Where ,j jγ η  and 
jξ  are elements of ,

j jA AT I   and 
jAF  

respectively, * *,j jγ η  and *

jξ  are elements of * *,
j jA A

T I   and 

*
jA

F  respectively. 

 

Proof. The process of proof is omitted here.            

 

4.4. MCGDM approach 

Assume there are n alternatives denoted by 

{ }1 2, , , nA α α α= 2  and m criteria denoted by 

{ }1 2, , , mC c c c= 2 , and the weight vector of criteria is 

( )1 2, , , mw w w w= 2 , where 0jw ≥  ( )1, 2, ,j m= 2  and 

1

1
m

j
j

w
=

=∑ . Suppose that there are l  decision-makers 

{ }1 2, , , lD d d d= 2  whose corresponding weight vector 

is ( )1 2, , , mω ω ω ω= 2 , where 0jω ≥  ( 1,2, ,j m= 2 ) 

and 
1

1
l

k
k

ω
=

=∑ . Let ( )k k

ij n m
R α

×
=  be the multi-valued 

neutrosophic decision matrix, and , ,k k k
ij ij ij

k

ij T I F
α α α

α = 〈 〉    

be the evaluation value of 
iα  for criterion 

jc  being in 

the form of MVNNs provided by the decision-maker 

kd D∈ , where k
ij

T
α
  indicates the truth-membership 

function, k
ij

I
α
  indicates the indeterminacy-membership 

function and k
ij

F
α
  indicates the falsity-membership 

function. This approach is an integration of MVNNs 

and the aggregation operators, and can be used to solve 

MCDM problems mentioned above. 

In general, there are maximizing criteria and 

minimizing criteria in MCDM problems. According to 

the IFSs method proposed by Xu
12

, the minimizing 

criteria can be transformed into maximizing criteria as 

follows: 

( )
, for maximizing criteria

, for minimizing criteria

k

ij j
k

ij c
k

ij j

c

c

α
β

α

= 


, ( )1, 2, , ; 1, 2, ,i n j m= =2 2 . (11) 

Here ( )c
k

ijα  is the complement of k

ijα  as defined in 

Definition 5. 

In the following, a procedure to rank and select the 

most desirable alternative(s) is given. 

 

Step 1. Transform the decision matrix.  

According to Eq. (11), the MVNN decision matrix 

( )k k

ij n m
R α

×
=  can be transformed into a normalized 

MVNN decision matrix ( )k k

ij n m
R β

×
= . 

In order to unify all criteria, we need to transform the 

minimizing criteria into maximizing criteria (Remark: if 

all the criteria belong to the maximizing criteria and 

have the same measurement unit, then there is no need 

to normalize them). Suppose that the matrix 

( )k k

ij n m
R α

×
= , where k

ijα  are MVNNs, is normalized 

into the corresponding matrix ( )k k

ij n m
R β

×
= . 

For the minimizing criteria, the normalization formula is 

 ( ) { } { } { }, 1 ,
k k k
ij ij ij

c
k k

ij ij F I T
α α α

ξ η γβ α ξ η γ∈ ∈ ∈= = −     ;(12) 

for the maximizing criteria, 

 { } { } { }, ,
k k k
ij ij ij

k k

ij ij T I F
α α α

γ η ξβ α γ η ξ∈ ∈ ∈= =      . (13) 
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Peng et al. 

Step 2. Calculate the supports ( ),k t

ij ijSupp β β .  

The supports can be obtained by the following 

formula: 

 ( ) ( ), 1 ,k t k t

ij ij ij ijSupp dβ β β β= − ,   

1, 2, , ; 1, 2, , ; , 1, 2, , ,i n j m k t l k t= = = ≠2 2 2 . (14) 

Here ( ),k t

ij ijSupp β β  is the support for k

ijβ  from t

ijβ , and 

satisfies the three conditions given in Definition 11. 

( ),k t

ij ijd β β  is the Hamming-Hausdorff distance between 

k

ijβ  and t

ijβ  as defined in Definition 9. 

Step 3. Calculate the weights k

ijτ  associated with the 

MVNN k

ijβ .  

The weighted support ( )k

ijS β  of the MVNN k

ijβ  by 

the other MVNNs ( )1,2, , andt

ij t l t kβ = ≠2  can be 

calculated using the weights ( )1, 2, ,k k lω = 2  of the 

decision-makers ( )1,2, ,kd k l= 2 . 

 ( ) ( )
1,

,
l

k k t

ij t ij ij
t t k

S Suppβ ω β β
= ≠

= ∑  ( )1, 2, ,k l= 2 . (15) 

Then, the weights ( )1, 2, ,k

ij k lτ = 2  associated with the 

MVNN ( )1, 2, ,k

ij k lβ = 2  can be obtained: 

 
( )( )
( )( )

1

1
, 1, 2, ,

1

k

k ijk

ij l
k

k ij
k

S
k l

S

ω β
τ

ω β
=

+
= =

+∑
2 . (16) 

Here ( )0 1, 2, ,k

ij k lτ ≥ = 2  and 
1

1
l

k

ij
k

τ
=

=∑ . 

Step 4. Aggregate the evaluation information of each 

expert.  

Utilize the MVNPWA operator or MVNPWG 

operators, Eq. (8) or Eq. (10), to aggregate the MVNNs 
k

ijβ  for all decision-makers: 

( )

( ) ( )

( ) ( )

2

1 1

1 1

1MVNPWA ,

1 1

,

, ,

1 1

k k
ij ij

k
k k

ij k
ij ijij

l l

l

ij ij ij ij

k k

ij ij

T
k k

ij

k

k
ij

k

l l

k

β

ω

τ τ

γ τ τ

β β β β

γ γ

γ γ

= =
∈

= =

=

 
  =  

+ − −

 


+ −
 

+

∏ ∏

∏ ∏


2


 

( )

( ) ( )
1

1 1

,

2

2
k
ij

k
k k

ij k
ij ijij

l

k

l l

k

ij

I

k k

k k

ij ij

β

τ

η τ τ

η

η η
∈

=

= =

 
  
 
 −
 

+


∏

∏ ∏
  

( )

( ) ( )
1

1 1

.

2

2
k
ij

k
k k

ij k
ij ijij

l

k

l l

k

ij

F

k k

k k

ij ij

β

τ

ξ τ τ

ξ

ξ ξ
∈

=

= =

 
  
 
 −
 

+


∏

∏ ∏
  (17) 

Or 

( )

( )

( ) ( )
1

1 1

1 2PWG ,M

,

, ,

2

N

2

V

k
ij

k
k k

ij k
ij ijij

l

ij ij ij ij

k

ij

T
k k

ij ij

l

k

l l

k k

β

ω

τ

γ τ τ

β β β β

γ

γ γ

=

= =

∈

 
  
 
 −
 

=

=
+



∏

∏ ∏


2


 

( ) ( )

( ) ( )
1 1

1 1

1 1

,

1 1

k k
ij ij

k
k k

ij k
ij ijij

l l

k k

l l

k k

ij i

k k

j

I
k k

ij ij

β

τ τ

η τ τ

η η

η η

= =

= =

∈

 
  

+ − −

+
 

 

− 


+

∏ ∏

∏ ∏
    

( ) ( )

( ) ( )
1 1

1 1

1 1

.

1 1

k k
ij ij

k
k k

ij k
ij ijij

l l

k k

l l

k k

ij i

k k

j

F
k k

ij ij

β

τ τ

ξ τ τ

ξ ξ

ξ ξ

= =

= =

∈

 
  

+ − −

+
 

 

− 


+

∏ ∏

∏ ∏
  (18) 

Step 5. Calculate the supports ( ),ij ipSupp β β .  

The supports can be obtained by the following 

formula: 

 ( ) ( ), 1 ,ij ip ij ipSupp dβ β β β= − . (19) 

Here 1, 2, , ; , 1, 2, , ;i n j p m j p= = ≠2 2 , ( ),ij ipSupp β β  

is the support for 
ijβ  from 

ipβ , and satisfies the three 

conditions given in Definition 11. ( ),ij ipd β β  is the 

Hamming-Hausdorff distance between 
ijβ  and 

ipβ  as 

defined in Definition 9. 

Step 6. Calculate the weights 
ijρ  associated with the 

MVNN 
ijβ .  

The weighted support ( )ijS β  of the MVNN 
ijβ  by 

the other MVNNs ( )1, 2, , andip p m p jβ = ≠2  can be 

calculated using the weights ( )1, 2, ,jw j m= 2  of the 

criteria ( )1, 2, ,jc j m= 2 . 

 ( ) ( )
1,

,
m

ij p ij ip
p p j

S w Suppβ β β
= ≠

= ∑ ( )1,2, ,p m= 2 . (20) 

Then, the weights ( )1, 2, ,ij j mρ = 2  associated with 

the MVNN ( )1, 2, ,ij j mβ = 2  can be obtained as 

follows: 

 
( )( )
( )( )

1

1
, 1, 2, ,

1

j ij

ij m

j ij
j

w S
j m

w S

β
ρ

β
=

+
= =

+∑
2 . (21) 

Here ( )0 1, 2, ,ij j mρ ≥ = 2  and 
1

1
m

ij
j

ρ
=

=∑ . 
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 MVNSs and Power Aggregation Operators 

 

Step 7. Calculate the comprehensive evaluation value of 

each alternative. 

Utilize the MVNPWA operator or MVNPWG 

operators, Eq. (8) or Eq. (10), to aggregate all the 

preference values ( )1, 2, ,ij j mβ = 2  of each alternative, 

then the comprehensive evaluation value 

( )1, 2, ,i i nβ = 2  of alternative ( )1, 2, ,i i nα = 2  can be 

calculated: 

( )

( ) ( )

( ) ( )
1 1

1 1

1 2

1 1

,

1

MVNP ,

1

WA , ,

ij ij

ij ij ij ij

i w i i im

ij ij

T

m m

ij ij

j j

m m

j j

β

ρ ρ

γ ρ ρ

β β β β

γ γ

γ γ

= =

= =

∈

=

 
  =  
 
 

+ − −

+
 

+ −

∏ ∏

∏ ∏


2


 

         
( )

( ) ( )
1

1 1

2

,

2

ij

ij ij ij ij

ij

m

j

m m

j

I

ij j
j

i

β

ρ

η ρ ρ

η

η η
∈

=

= =

 
  
 
 −
  

+

∏

∏ ∏
  

         
( )

( ) ( )
1

1 1

2

.

2

ij

ij ij ij ij

ij

m

j

m m

j

F

ij j
j

i

β

ρ

ξ ρ ρ

ξ

ξ ξ
∈

=

= =

 
  
 
 −
  

+

∏

∏ ∏
  (22) 

or 

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1

1 1

1

1

1

1

2

1

1 1

,

2

1 1

,

1 1

PWG , , ,

2

V

1

N

1

M

1

ij

ij ij ij ij

ij ij

ij ij ij ij

ij ij

ij

m

j

m m

j j

m m

j j

m m

j j

m m

j

i w i i im

ij

T

ij ij

ij ij

I

ij ij

ij j
j

i

ij

β

β

ρ

γ ρ ρ

ρ ρ

η ρ ρ

ρ ρ

ρ

β β β β

γ

γ γ

η η

η η

ξ ξ

ξ

=

= =

= =

=

∈

=

∈

= =

 
  
 
 −
  

+

=

=
+

 
  
 
 
 

− −

+ + −

+ − −

+



∏

∏ ∏

∏ ∏

∏ ∏

∏ ∏





2





( )
1 1

.

1
ij ij ij

m m

j j

F

ij

βξ ρ
ξ

= =

∈

 
  
 
 
 

−


+∏ ∏


 (23) 

Step 8. Calculate the score function value and the 

accuracy function value. 

Based on Definition 7, the score function value
 

( )is β
 
and the accuracy function value ( )ia β  of 

iα  

( 1, 2, ,i n= 2 ) can be obtained. 

 

 

Step 9. Rank the alternatives.  

According to Definition 8, all alternatives 
iα  

( )1,2, ,i n= 2  can be ranked with respect to superiority 

and finally the best one(s) can be chosen. 

5. Illustrative Example 

In this section, an example of MCDM problems is used 

to demonstrate the application and effectiveness of the 

proposed decision-making approach. 

There is an investment company, which wants to 

invest a sum of money in the best option (adapted from 

Ref. 37). The company has set up a panel which has to 

choose between four possible alternatives for investing 

the money: (1) 
1α  

is a car company; (2) 
2α  is a food 

company; (3) 
3α  is a computer company; (4) 

4α  is an 

arms company. Each company is evaluated based on 

three criteria, which are denoted by ( )1, 2,3jc j = : 
1c  is 

the risk analysis, 
2c  is the growth analysis and 

3c  is the 

environmental impact analysis, where 
1c  and 

2c  are of 

the maximizing type, and 
3c  is of the minimizing type. 

The weight vector of criteria is represented by 

( )0.35,0.25,0.4w = . There are three decision-makers to 

make decisions on this investment and the weight vector 

of them is ( )0.3, 0.5, 0.2ω = . They could evaluate these 

criteria based on their knowledge and experience. 

Moreover, the k -th decision-maker can provide their 

evaluations about the project 
iα  under the criterion 

jc  

in the form of MVNNs and denoted by 

, ,k k k
ij ij ij

k

ij T I F
α α α

α =     ( )1,2,3,4; 1,2,3,4; 1,2,3i j k= = = . 

k
ij

T
α
 , k

ij

I
α
  and k

ij

F
α
  are in the form of HFNs, which 

represents their degrees of satisfaction, uncertainty and 

dissatisfaction regarding an alternative by using the 

concept of “excellent” against each criterion. It is noted 

that one decision-maker could give several evaluation 

values for the degree of satisfaction, uncertainty and 

dissatisfaction regarding an alternative respectively. All 

of the possible values for an alternative under a criterion 

are collected, and each value provided only means that 

it is a possible value. So in the case where the decision-

maker gives two same value for one degree, it is 

counted only once, and k

ijα  is the set of evaluation 

values for the decision-maker. Then the multi-valued 

neutrosophic decision matrix ( )
4 3

k k

ijR α
×

=  can be found 

as follows: 
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{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

1

0.4 , 0.1 , 0.2 0.5 , 0.2 , 0.1 0.3 , 0.1,0.2 , 0.4

0.7 , 0.1,0.2 , 0.2 0.6 , 0.2 , 0.2,0.3 0.4 , 0.2 , 0.3

0.4,0.5 , 0.1 , 0.3 0.5 , 0.2 , 0.1 0.4,0.5 , 0.2 , 0.2

0.6 , 0.3 , 0.1 0.5,0.6 , 0.3 , 0.2 0.5 , 0.1 , 0.2

R

 〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉
  〈 〉 〈 〉 〈 〉 

; 

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

2

0.6 , 0.1 , 0.1,0.2 0.5 , 0.2 , 0.2 0.4,0.5 , 0.1 , 0.3

0.5 , 0.2 , 0.2 0.6 , 0.2 , 0.1,0.2 0.5 , 0.3 , 0.2

0.4,0.5 , 0.2 , 0.1 0.5 , 0.1 , 0.3 0.5 , 0.1 , 0.2,0.3

0.5 , 0.3 , 0.2 0.8 , 0.2,0.3 , 0.2 0.5 , 0.2 , 0.2

R

 〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉
  〈 〉 〈 〉 〈 〉 

; 

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

3

0.4,0.5 , 0.2 , 0.3 0.4 , 0.2,0.3 , 0.3 0.2 , 0.2 , 0.5

0.6 , 0.1,0.2 , 0.2 0.6 , 0.1 , 0.2 0.5 , 0.2 , 0.1,0.2

0.3,0.4 , 0.2 , 0.3 0.5 , 0.2 , 0.3 0.5 , 0.2,0.3 , 0.2

0.7 , 0.1,0.2 , 0.1 0.6 , 0.1 , 0.2 0.4 , 0.3 , 0.2

R

 〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉
  〈 〉 〈 〉 〈 〉 



. 

5.1. Decision-making procedure based on MVNNs 

Step 1. Transform the decision matrix. 

Since criteria 
1c  and 

2c  are of the maximizing type, 

and criterion 
3c  is of the minimizing type, so according 

to Eqs. (12) and (13), the normalized MVNN decision 

matrix ( )
4 3

k k

ijR β
×

=  can be obtained as follows: 

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

1

0.4 , 0.1 , 0.2 0.5 , 0.2 , 0.1 0.4 , 0.8,0.9 , 0.3

0.7 , 0.1,0.2 , 0.2 0.6 , 0.2 , 0.2,0.3 0.3 , 0.8 , 0.4

0.4,0.5 , 0.1 , 0.3 0.5 , 0.2 , 0.1 0.2 , 0.8 , 0.4,0.5

0.6 , 0.3 , 0.1 0.5,0.6 , 0.3 , 0.2 0.2 , 0.9 , 0.5

R

 〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉
  〈 〉 〈 〉 〈 〉 

 ; 

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

2

0.6 , 0.1 , 0.1,0.2 0.5 , 0.2 , 0.2 0.3 , 0.9 , 0.4,0.5

0.5 , 0.2 , 0.2 0.6 , 0.2 , 0.1,0.2 0.2 , 0.7 , 0.5

0.4,0.5 , 0.2 , 0.1 0.5 , 0.1 , 0.3 0.2,0.3 , 0.9 , 0.5

0.5 , 0.3 , 0.2 0.8 , 0.2,0.3 , 0.2 0.2 , 0.8 , 0.5

R

 〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉
  〈 〉 〈 〉 〈 〉 

 ; 

{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }

3

0.4,0.5 , 0.2 , 0.3 0.4 , 0.2,0.3 , 0.3 0.5 , 0.8 , 0.2

0.6 , 0.1,0.2 , 0.2 0.6 , 0.1 , 0.2 0.1,0.2 , 0.8 , 0.5

0.3,0.4 , 0.2 , 0.3 0.5 , 0.2 , 0.3 0.2 , 0.7,0.8 , 0.5

0.7 , 0.1,0.2 , 0.1 0.6 , 0.1 , 0.2 0.2 , 0.7 , 0.4

R

〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉 






. 

Step 2. Calculate the supports ( ),k t

ij ijSupp β β . 

For simplicity, we denote ( )( )
4 3

,k t

ij ijSupp β β
×

 with 

ktSupp . According to Eq. (14) and Definition 9, the 

supports ( ), 1, 2,3;ktSupp k t k t= ≠  can be obtained. As 

an example, 12

11Supp  can be calculated as follows: 

( )
{ } { } { } { } { } { }( )

12

11

1 2

11 11

0.4 , 0.1 , 0.2 , 0.6 , 0.1 , 0.1,0.

1

2

,

1

0.9167.

Supp

d

d

β β=

=

〉

−

− 〈 〉 〈=
 

Then the ( ), 1, 2,3;ktSupp k t k t= ≠  can be achieved: 

12 21

0.9167 0.9667 0.9000

0.9167 0.9667 0.9000

0.9000 0.9000 0.9333

0.9333 0.9000 0.9667

Supp Supp

 
 
 = =
 
 
 

, 

13 31

0.9167 0.8833 0.9167

0.9667 0.9667 0.9167

0.9333 0.9333 0.9667

0.9167 0.9167 0.9000

Supp Supp

 
 
 = =
 
 
 

, 

23 32

0.8667 0.9167 0.8167

0.9500 0.9500 0.9667

0.9000 0.9667 0.9333

0.8500 0.8833 0.9333

Supp Supp

 
 
 = =
 
 
 

. 

Step 3. Calculate the weights k

ijτ  associated with the 

MVNN k

ijβ .  

According to Eq. (15), the weighted supports ( )k

ijS β  

can be obtained. As an example, 1

11( )S β  can be 

calculated as follows: 

( ) ( )
3

1 1

11 11 11
1, 1

, 0.6417.t

t
t t

S Suppβ ω β β
= ≠

= =∑  

Then the ( )( )
4 3

k

ijS β
×

 can be calculated and denoted 

with ( )1, 2,3kS k =  in the following: 

1

0.6417 0.6600 0.6333

0.6517 0.6734 0.6333

0.6367 0.6367 0.6600

0.6500 0.6333 0.6634

S

 
 
 =
 
 
 

,  

2

0.4484 0.4734 0.6784

0.7500 0.4800 0.4633

0.4500 0.4633 0.4667

0.4500 0.4467 0.4767

S

 
 
 =
 
 
 

,  

3

0.7084 0.7233 0.6834

0.7650 0.7600 0.7584

0.7300 0.7633 0.7567

0.7000 0.7167 0.7367

S

 
 
 =
 
 
 

. 

Based on Eq. (16), the weights 

( ), 1, 2,3, 4; 1,2, ,k

ij i j k lτ = = 2  associated with the 

MVNN ( )1, 2, ,k

ij k lβ = 2  can be obtained using the 

weights ( )1, 2, ,k k lω = 2  of the decision-makers 

( )1,2, ,kd k l= 2 . ( )
4 3

k

ijτ ×
 is denoted by ( )1,2,3k kτ =  

as follows: 
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 MVNSs and Power Aggregation Operators 

 

1

0.3160 0.3153 0.2941

0.2875 0.3149 0.3114

0.3143 0.3117 0.3147

0.3173 0.3148 0.3149

τ

 
 
 =
 
 
 

,  

2

0.4647 0.4665 0.5038

0.5077 0.4642 0.4650

0.4641 0.4644 0.4634

0.4647 0.4647 0.4659

τ

 
 
 =
 
 
 

,  

3

0.2193 0.2182 0.2021

0.2048 0.2208 0.2235

0.2215 0.2239 0.2220

0.2179 0.2206 0.2192

τ

 
 
 =
 
 
 

. 

Step 4. Aggregate the evaluation information of each 

expert. 

According to MVNPWA operator, i.e., Eq. (17), the 

collective multi-valued neutrosophic decision matrix 

( )ij n m
R β

×
=  can be obtained. For example, 

11β  can be 

calculated as follows: 

( )
{ } { } { }

1 2 3

11 11 11 11

0.4996,0.5201 , 0.1168 ,

MVNPW

0.1599,0.

A

21

,

0

,

9 .

ωβ β β β

=

=
 

Then the other collective values can be obtained: 

{ } { }
{ } { } { } { } { } { }

{ }
{ } {

} { }
{ } { } {

}
{ }
{ }

0.4996,0.5201 , 0.1168 , 0.3727 , 0.8500, 0.8796 ,
0.4792 , 0.2000,0.2189 , 0.1770

0.1599 , 0.2190 0.3215, 0.3626

0.5851 , 0.1428,0.1645 , 0.6000 , 0.1722 , 0.1457,0.2000, 0.2099,0.2317 ,

0.1741,0.2000 , 0.2000 0.1666,0.2278 0.7529

R =
{ }

{
}

{ } { }
{ } { } { } { } { }

{ }

{ } { }
{ }

{ } { }
{ }

, 0.4672

0.3785,0.4000,0.4273,0.4669,
0.2000,0.2470 , 0.8229,0.8459 ,

0.4118,0.4326,0.4591,0.4788 , 0.5000 , 0.1456 , 0.2159
0.4668, 0.5000

0.1616 , 0.1829

0.5811 , 0.2388, 0.2752 , 0.6839,0.7072 , 0.1965,0.2381 ,
0.

0.1387 0.2000
{ } { } { }2000 , 0.8085 , 0.4767

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5. Calculate the supports ( ),ij ipSupp β β .  

According to Eq. (19), 

 ( ),ij ipSupp β β  ( )1, 2, , ; , 1, 2, , ;i n j p m j p= = ≠2 2  

can be calculated as follows: 

( ) ( )
( ) ( )

11 12 12 11

11 13 13 11

, , 0.9491;

, , 0.6541;

Supp Supp

Supp Supp

β β β β

β β β β

= =

= =
 

( ) ( )

( ) ( )

12 13 13 12

21 22 22 21

, , 0.6910;

, , 0.9808;

Supp Supp

Supp Supp

β β β β

β β β β

= =

= =
 

( ) ( )

( ) ( )

21 23 23 21

22 23 23 22

, , 0.5957;

, , 0.5866;

Supp Supp

Supp Supp

β β β β

β β β β

= =

= =

( ) ( )31 32 32 31, , 0.9599;Supp Suppβ β β β= =  

( ) ( )31 33 33 31, , 0.6072;Supp Suppβ β β β= =  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

32 33 33 32

41 42 42 41

41 43 43 41

42 43 43 42

, , 0.5891;

, , 0.9282;

, , 0.5765;

, , 0.5455.

Supp Supp

Supp Supp

Supp Supp

Supp Supp

β β β β

β β β β

β β β β

β β β β

= =

= =

= =

= =

 

Step 6. Calculate the weights 
ijρ  associated with the 

MVNN 
ijβ .  

According to Eq. (20), the weighted support 

( )( )
4 3

ijS β
×

 of the MVNN 
ijβ  by the other MVNNs 

( )1, 2, , andip p m p jβ = ≠2  can be calculated. 

( )( )
4 3

0.4989 0.6086 0.4017

0.4835 0.5816 0.3551

0.4829 0.5788 0.3598

0.4627 0.5431 0.3382

ijS β
×

 
 
 =
 
 
 

. 

So the weights ( )1, 2, ,ij j mρ = 2  associated with the 

MVNN ( )1, 2, ,ij j mβ = 2  can be obtained using the 

weights ( )1, 2, ,jw j m= 2  of the criteria 

( )1, 2, ,jc j m= 2  and Eq. (21). 

( )
4 3

0.3527 0.2704 0.3769

0.3564 0.2714 0.3721

0.3561 0.2708 0.3732

0.3573 0.2692 0.3735

ijρ
×

 
 
 =
 
 
 

. 
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Step 7. Calculate the comprehensive evaluation value of 

each alternative. 

Utilize the MVNPWA operator i.e., Eq. (22), to 

aggregate all the preference values ( )1, 2, ,ij j mβ = 2  

of each alternative, then the comprehensive value 

( )1, 2, ,i i nβ = 2  of the alternative ( )1, 2, ,i i nα = 2  

can be calculated: 

}{ { }
{ }

1 0.4481,0.4558 , 0.3119,0.3179,0.3192,0.3253 ,

0.2153,0.2260 ;

β =
 

}{ { }
{ }

2 0.4670,0.4737 , 0.2978,0.3119,0.3178,0.3326 ,

0.2567,0.2785,0.2657,0.2881 ;

β =
 

{

} { } { }

3 0.3507,0.3668,0.3746,0.3586,0.3688,0.3846,0.3995,

0.3839,0.3630,0.3789,0.3866,0.3708,0.3809,0.3966,

0.4041,0.3886 , 0.3119,0.3166 , 0.2757,0.2838 ;

β =

 

}{ { }
{ }

4 0.4916,0.5008 , 0.3783,0.3964,0.3965,0.4152 ,

0.2484 .

β =

 

Step 8. Calculate the score function value and the 

accuracy function value. 

Based on Definition 7, ( )is β  can be obtained: 

( ) ( ) ( ) ( )1 2 3 40.0291; 0.0390; 0.0718; 0.0496s s s sβ β β β= − = − = − = −  

The score values are different. Therefore there is no 

need to compute the values of the accuracy function 

value. 

Step 9: Rank the alternatives. 

According to Definition 8 and the results in Step 8, 

( ) ( ) ( ) ( )1 2 4 3s s s sβ β β β> > >  can be obtained. So for 

MVNPWA operator, the final ranking is 

1 2 4 3α α α α   . Clearly, the best alternative is 
1α  

while the worst alternative is 
3α .  

If the MVNPWG operator is utilized in Step 4 and 

Step 7, then the score function value
 ( )is β  can be 

obtained: 

( ) ( ) ( ) ( )1 2 3 40.0301; 0.0259; 0.0860; 0.0572s s s sβ β β β= − = − = − = −  

Since ( ) ( ) ( ) ( )2 1 4 3s s s sβ β β β> > >  and the score 

values are different. Therefore, for MVNPWG operator, 

the final ranking is 
2 1 4 3α α α α   , and the best 

alternative is 
2α  while the worst alternative is 

3α .  

From the results given above, the best one is 
1α  or 

2α , and the worst one is 
3α . In most cases, in order to 

calculate the actual aggregation values of the 

alternatives, different aggregation operators can be used. 

Moreover, we can find that two aggregation operators 

mentioned in the manuscript, the MVNPWA operator or 

the MVNPWG operator, are all used to deal with 

different relationships of the aggregated arguments, 

which can provide more choices for decision-makers. 

They can choose different aggregation operator 

according to their preference.  

5.2. Comparison analysis 

In order to verify the feasibility of the proposed 

decision-making approach based on the MVNNs power 

aggregation operators, a comparison analysis based on 

the same illustrative example is conducted here.  

The comparison analysis includes two cases. One is 

the other methods that were outlined in Ye
36, 37, 41

, which 

are compared to the proposed method using single-

valued neutrosophic information. In the other, the 

method that was introduced in Wang and Li
48

 are 

compared with the proposed approach using multi-

valued neutrosophic information. 

    The proposed approach is compared with some 

methods using single-valued neutrosophic information.  

• The proposed approach is compared with some 

methods using single-valued neutrosophic infor-

mation. 

With regard to the three methods in Ye
36–37, 41

, all 

multi-valued neutrosophic evaluation values are 

translated into single-valued neutrosophic values by 

using the mean values of truth-membership, 

indeterminacy-membership and falsity-membership 

respectively. Then two aggregation operators were used 

to aggregate the single-valued neutrosophic information 

first; and the correlation coefficient and weighted cross-

entropy between each alternative and the ideal 

alternative were calculated and used to determine the 

final ranking order of all the alternatives. If the methods 

in Ye
36–37, 41

 and the proposed method are utilized to 

solve the same MCDM problem, then the results can be 

obtained and are shown in Table 1. 
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Table 1. The compared results utilizing the different methods with SNSs 

Methods The final ranking 
The best 

alternative(s) 
The worst 

alternative(s) 

Ye [36] 1 4 2 3α α α α    
1α  

3α  

Ye [37] 
4 1 2 3α α α α    or 

1 4 2 3α α α α    
4α  or 

1α  
3α  

Ye [41] 4 2 1 3α α α α    
4α  

3α  

The proposed method 
1 2 4 3α α α α    or 

2 1 4 3α α α α    
1α  or 

2α  
3α  

If the aggregation operators proposed by Ye
37

 are 

used, for the weighted average operator, the final 

ranking is 
4 1 2 3α α α α   . Clearly, the best 

alternative is 
4α  while the worst alternative is 

3α . For 

the weighted geometric operator, the final ranking is 

1 4 2 3α α α α   , and the best alternative is 
1α  while 

the worst alternative is 
3α . However, if the methods of 

Ye
36,41

 are used, then the final ranking is 

1 4 2 3α α α α    or 
4 2 1 3α α α α    and the best 

alternative is 
1α  or 

4a . It can be seen that the results of 

the proposed approach are different from those that use 

the earlier methods of Ye
36–37, 41

.  

There are three reasons why differences exist in the 

final rankings of all the compared methods and the 

proposed approach. Firstly, the aggregation operators 

that are involved in the method of Ye
37

 are related to 

some impractical operations as was discussed in 

Examples 1-3. Secondly, if the correlation coefficient 

and cross-entropy proposed
36, 41

, proposed on the basis 

of the operations
37

, are extend to MVNNs, the 

shortcomings discussed in Section 2 would still exist. 

Finally, the aggregation values, correlation coefficients 

and cross-entropy measures of SNSs were obtained 

firstly in Ye
36–37, 41

 and the differences were amplified in 

the final results due to the use of criteria weights.  

• The proposed approach is compared with the method 

using multi-valued neutrosophic information. 

If the method in Wang and Li
48

 is utilized to solve the 

same MCDM problem, then the MVNPWA and 

MVNPWG operators were used to aggregate the eva-

luation information of each expert respectively; and the 

final ranking can be determined by using the TODIM 

method in Ref. 48. If the MVNPWA operator is used 

first, then the final ranking is 
1 2 4 3α α α α   , and 

the best alternative is 
1α  while the worst alternative is 

always 
3α ; if the MVNPWG operator is used, then the 

final ranking is 
2 1 4 3α α α α   , and the best 

alternative is 
2α . Apparently, the result of the proposed 

approach is the same as that using Wang and Li’s 

method
48

, and the best alternative is always 
1α  or 

2α  

while the worst alternative is always 
3α . 

From the analysis presented above, it can be 

concluded that the main advantages of the approach 

developed in this paper over the other methods are not 

only due to its ability to effectively overcome the 

shortcomings of the compared methods, but also due to 

its ability to relieve the influence of unfair assessments 

provided by different decision-makers on the final 

aggregated results. This means that it can avoid losing 

and distorting the preference information provided 

which makes the final results more precise and reliable 

correspond with real life decision-making problems. 

6. Conclusions 

MVNSs can be applied in solving problems with 

uncertain, imprecise, incomplete and inconsistent 

information that exist in scientific and engineering 

situations. Based on the related research of IFSs and 

HFSs, the operations of MVNNs were defined in this 

paper and the comparison method was also developed. 

Furthermore, two aggregation operators, namely the 

MVNPWA operator and MVNPWG operator, were 

provided. Thus, a MCGDM approach was established 

that was based on proposed operators. An illustrative 

example demonstrated the application of the proposed 

decision-making approach. Moreover, the comparison 

analysis showed that the final result produced by the 
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proposed method is more precise and reliable than the 

results produced by the existing methods. The 

contribution of this study is that the proposed approach 

for MCDM problems with MVNNs could overcome the 

shortcomings of the existing methods as was discussed 

earlier and relieves the influence of unfair assessments 

provided by different decision-makers on the final 

aggregated results. In future research, the authors will 

continue to study the related measures of MVNNs and 

applied them to solve more decision-making problems. 
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