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Abstract. The existence of a solution @, of the inequality
®(x) > H(x, d{f (x)])
implies the existence of a minimal solution ¢ — @, of the equation
(1 P(x) = Hix, 2[f (x)])

in some classes of multi-valued mappings. Moreover, if f and H are single-valued, then (under
suitable conditions) the minimal continuum-valued solution of (1) is almost everywhere a single-
valued mapping.

Let X be a non-empty set and let Y be a topological Hausdorff space.
We introduce the following classes of subsets of Y:

nY)={Ac Y A#0),
¢(Y)={A < Y: A% Q and A is compact},
C(Y)y={AcY: A# O and 4 is a continuum]}.

Let Z be a topological space. We say that @: Z - n(Y) is a closed
mapping if, whenever zoeZ, yoeY, yo¢ P(zo), there exist two open neigh-
bourhoods U (z,) and V (y,) such that &(z) "V (yo) = O for every ze U(z,).

Let zoe Z. We say that @ is upper semi-continuous (u.s.c.) at z, if for each
open set G containing @ (z,) there is an open neighbourhood U (z,) such that
@(z) = G for every ze U(z,). '

A mapping @: Z - n(Y) is usc. if it is us.c. at every zpeZ.

We consider the following equation:

(1) ¢ (x) = H(x, ®[f (x)]),

where the functions f/: X > n(X), H: X x Y - n(Y) are given and H(x, *) is
closed for every xe X, and @: X - n(Y) is the unknown function.
LemMAa 1. Let F be a family of functions @: X — c(Y) such that:

() if PeF, then H(:, ®[f()])eF and O[f (x)]ec(Y) for xeX;

(IN) if &,€F and &,., < &, for n =1,2,..., then [\ $,eF.
1
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If a function

2 Qe F

fulfils the inequality

(3) @o(x) > H(x, o [f (x)]),
then the formulas

(4) @y = H(, 2,[/ (1))
and

(5 5= o,

define a solution & < &, of (1) in the family F. If ¥: X — n(Y) is a solution
of (1) such that ¥ < &,, then ¥ c &.

Proof. It follows by (2), (I) and (4) that ¢,eF for n =
According to (2), (3) and (4) we have ®,,,(x) = @,(x) for n =
and for every xe X. Therefore by (II) and (5) we get $eF.

It is obvious that H(x, #[f(x)]) = H(x, ?,[f(x)]) < &,(x) for
n=20,1,2,... and for xe X. This implies the inclusion

0,1, 2,
0,1,2

e
9 s

H(x, $[f (x]) = &(x)

for every xe X.
Now, we take ze®(x). Then zed,,,(x) = H(x, ®,[f(x)]) for
n=0,1,2,... There exists a sequence [y, such that

Yne¢n[f(x)] < ¢0[f(X)], n = 0’ 1: 23 v

and
(6) zeH(x, y,).

If m 2 n, then y,e®,[f(x)]. Thus

(7) Ay = clyp Vattr -} € @[ (X)), n=0,1,2,...,

for the sets @,[f(x)] are closed (being compact). We have A4,,, < A4,, n
=0,1,2,..., and so there exists

® ye N A,

We shall prove that
) ze H(x, y).
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Suppose, conversely, that z¢ H (x, y). Then there exist two neighbourhoods U
and V of points y and z, respectively, such that

Hx, U)nV = 0.
It follows by (8) that there exists k, k = 0, 1, 2, ..., such that y, e U. Since
by (6)
zeH(x,y)nV < H(x, U)ynV,

we have a contradiction. To prove the first part of the lemma it is sufficient
to notice that according to (9), (8), (7) and (5) we have

zeH(x, y) « H(x, E\o A,) © H(x, (30 ®,[f(x)]) = H(x, D[S (x)]).

The second part of the lemma is obvious.
The set of all functions @: X — n(Y) is partially ordered by the relation:

&, P, iff @ (x) c P,(x) for every xeX.
LEMMA 2. Let F be a family of mappings ®: X —c(Y) such that
conditions (1) of Lemma 1 and
(IT') if ®,€F for every 1€ and the family {®,},.; is a chain, then () ®,eF

1€l
are fulfilled. Let a mapping ®y,eF fulfil inequality (3). Then there exists
a minimal solution @ — ®, of equation (1) in the family F.
Proof. Let

Fo:= {®eF: & < &, & is a solution of (1)}.
It follows by Lemma 1 that the family F, is not empty. Let T be a chain in .

Fy, and let &, = (| 9. According to (II'), @€ F. Moreover, if @€ T, then
®eT

we have

®(x) = H(x, 2L (9]) > H(x, Pr[f(x)])

and
Pr(x) o H(X, @[ f (x)])-

Lemma 1 guarantees the existence of a solution #; = @, of (1) in the family
F. This shows that & is a minorant of T in F,. The family F, possesses
a minimal element in virtue of Kuratowski—Zorn lemma.

LEMMA 3. Let X be a topological space and let &: X — n(Y) be us.c. at
xo€ X. Then the mapping x —(x, ®(x)) is u.s.c. at xo.

Proof. Let G be an open set in Y such that @(x;) = G and let Vbe an
open set in X such that x,e V. Then there exists an open neighbourhood
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U(x,) of xo such that if xe U(x,), then @(x) < G, because P i1s us.c. at x,.
For every xeU(xo)nV we have (x, #(x)) < VxG.

Lemma 4. Let X be a topological space. If ®: X - n(Y) is a closed

mapping, then the image ®(K) of a compact subset K of X is a closed set.

Proof. We shall prove that the set Y\ @(K) is open. Let y¢ @(K). Then
there exist neighbourhoods V*(y) and U(x) such that

S(UE)NV*() = O

for every xe K. Since the set K is compact, there exist elements x,, x,, ..., X,
in K such that K < U(x;)u...uU(x,). Putting V() = V@y)n...
... V*(y) we have

KNV () = 0.
Therefore Y\®(K) is open.

DeFINITION. We say that equation (1) has property (P) in the family F iff
the following statement is true:

If §,eF is a solution of (3), then formulas (4) and (5) define a solution
@ < @, of (1) in F and there exists a minimal solution @ < @, of (1) in F.

THeEOREM 1.1. If f: X — X, then equation (1) has property (P) in the family
of all functions @: X —c(Y).

2. If f: X —> X and H with connected values is u.s.c. with respect to the
second variable, then equation (1) has property (P) in the family of all functions
&: X - C(Y).

3. If X is a topological Hausdorff space, [: X - c¢(X) is us.c. and H is
us.c., then equation (1) has property (P) in the family of all us.c. functions
& X-c(Y) '

4. If X is a topological Hausdorff space, f: X — C(Y) is u.s.c. and H with
connected values is u.s.c., then equation (1) has property (P) in the family of all
u.s.c. functions @: X - C(Y).

Proof. In order to prove this theorem we must test that suitable
families fulfil conditions (I) and (II') of Lemmas 1 and 2.

. Let Fy = {®: ® c @y, P: X »c(Y)), where Py: X >c(Y) is
a given solution of (3). For every #cF, and xe X the sets [ f(x)] are
compact and H(x, ®[f(x)]) are closed, as the images of compact sets by
closed mappings. The inclusions

(10) H(x, ®[f(x)]) = H(x, ®o[f (0)]) = o(x)

imply that H(x, [ f(x)])ec(Y). Hence
H(, o[ f()])eF,.
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We suppose that {®,},, is a chain in F,. Then & ﬂ @, (x)ec(Y) and

& < @,. Therefore conditions (I) and (II') of Lemmas 1 and 2 are fulfilled.
The first part of the theorem is proved.

2. Let f: X = X and let H with connected values be us.c. with respect
to the second variable. Let F, = {&: & = @,, &: X » C(Y)}, where
®y: X - C(Y) is a solution of (3). The image of a connected set by an u.s.c.
mapping with connected values is connected (cf. [4]). The set H(x, @ [f (x)])
is closed by Lemma 4, and by the inclusions (10) it is compact. Thus we have
H(, ®[f()])eF,. The family F, has property (II'), because an intersection
of a chain of continuums is a continuum (cf. [3]). ~

3. We suppose that X is a topological Hausdorff space, f: X — c(X) is
usc. and H is usc. Let Fy = [&: & = &y, &: X —¢(Y), D is usc},
where @,: X — ¢(Y) is an us.c. solution of (3). The set @[ f(x)] is compact
for all x because @ is an u.s.c. mapping with compact values and f (x) is
compact. Since the composition of two u.s.c. mappings is an us.c. mapping
(cf. [2]), then by Lemmas 3 and 4 and by (10) we get H(-, #[f ()])eF5. The
family F, has property (II') because the intersection of a chain of compact
sets 15 compact and the intersection of a family of us.c. mappings with
compact values is us.c. (cf. [2]).

4. We suppose that X is a topological Hausdorff space, f: X - C(X) is
usc. and H with connected values is usc. Let F, = {®: @ < @, &:
X - C(Y), & is us.c.}, where @,: X —» C(Y) is an u.s.c. solution of (3). The
family F, is included in F,. It follows by the connectedness of
H(x, ®[f(x)]) that H(, #[f()])eF,. The family F, has property (II'),
because the intersection of a chain of continuums is a continuum.

THEOREM 2. Let f: X - X and H: X xR— R be continuous and in-
creasing with respect to the second variable. The function ®: X - C(R) is a '
solution of (1) if and only if @(x) = min &(x) and Y (x) = max @ (x) fulfil (1).

Proof. Necessity. The following equalities hold according to continuity
and monotonicity of H with respect to the second variable and by (1):

[H(x, @[S (), H(x, ¢ Lf 1] = H(x, [o[f (9], ¥ [f (x)]])
= H(x, 2[f (x)]) = &(x) = [o(x), y(x].

Thus H(x, ¢ [f(x)]) = ¢(x) and H(x, Y [f(x)]) = ¥ (x). Hence ¢ and y are
solutions of (1). '

The proof of the sufficiency is also easy.

As a corollary we get the following

THeOREM 3. Let f: X > X and H: XxR— R be an increasing and
continuous function with respect to the second variable. If ®&4: X — C(R) is
a solution of (3), then there exist a minimal solution &: X - C R) of (1),
® < @, and this solution is a single-valued mapping.
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We have by a direct verification

LeMMA 5. Let X be a topological space. If a mapping ®: X —c(R) is
us.c., then @(x) = min ®(x) is lower semi-continuous and Y (x) = max @ (x) is
upper semi-continuous. A mapping ®: X - C(R) is us.c. if and only if
@(x) = min®(x) is lower semi-continuous and (x) = max®(x) is upper
semi-continuous.

DerINITION. Let X and Y be topological spaces and let ¢: X — n(Y) be
a mapping. The closure of ® is the mapping cl® -defined by

cld(x) = [yeY: (x, y)eclly} for xeX,

where I'y is the graph of &.

If X and Y are metric spaces, the above definition in equivalent to the
condition:

yecl®(x) if and only if there exist sequences {x,} and {y,} such that x,
- X, y,—y and y,e®d(x,) for every n.

LeMMA 6. Let X be a topological space. Then the mapping cl® is closed
Jor every mapping &: X — n(Y).

Proof. Let y,¢cl®(x,). Then (xo, yo)écl Ie. There exist neighbour-
hoods U (x,) and V(y,) such that

(1 Ulxg)x V(yo)n T = O.
We shall prove that
()N V() = D

for every xeU(xp). Let zecld(x)nV(yy) for some xeU(xgy). Then
(x, z)eclI'y. There exist points x"e U (x,) and z'€ V(y,) such that (x', z')e I'y.
Thus (x', 2'ye U (xo) x V(yo) N I'p, but this is imposible by (11).

LemMa 7. Let X be a topological space and let Y be compact. If H: X x Y
— Y is continuous, f is an open and continuous function from X into X and if
®: X —»n(Y) is a solution of (1), then cl® is an us.c. solution of (1) with
compact values.

Proof. The set cl®(x) is closed, for the mapping cl® is closed. Thus
cl® has compact values and is us.c. The mapping cl®of is usc. as the
composition of u.s.c. mappings. Further, H (-, cl® [/ ()]) is us.c. by Lemma 3
and by the continuity of H. The inclusion

&(x) < H(x, cl®[f (x)])
implies
cl®(x) = clH(x, cl®[f (x)]) = H(x,cl®[f (x)]),

since an u.s.c. mapping with compact values is closed. Now, we shall prove.
the inclusion
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(12 H(x,cl®[f(x)]) < cld(x).
Let
(13) yeH(x, cld[f(x)])

and let U and V be any neighbourhoods of points x and y, respectively. It
follows by (13) that there exists

(14) zecld [ f(x)]
such that
y = H(x, z).

There exist neighbourhoods U, = U and W of points x and z, respectively,
such that

HU,xW) c V.
The function f is open; thus the set f(U,) is a neighbourhood of f (x).
Condition (14) implies

S[fUNNW % O.
Hence, there exist ue U, and we W such that we®[f(u)]. Consequently
H(u, w)eH(u, ®[f ()]) = @(v)
and
Hu,weH(U,xW) c V.

Thus

dU)NV # O,

which completes the proof of (12).

LeMMA 8. Let X be a topological space, f X - X and let H: X xR —> R
be continuous and increasing with respect to the second variable. If &
X > c(R) is a solution of (1), then ®(x) := conv[®(x)] is a solution of (1) with
compact and connected values. Moreover, if @ is u.s.c., then & is us.c., too.

Proof. We define ¢(x) = min®(x), Y(x) = maxP(x). By (1) and by
the monotonicity of H with respect to the second variable we have

(15) & (x) = conv[®(x)] = conv[H(x, ®[f (x)])]
= [H(x, o [f x)]), H(x, ¥ [f (9])]-
Since #(x) = [¢(x), ¥ (x)], we have

(16) H(x, [f(0)]) = H(x, [o[f ()], ¥ [f (x)]])
= [H(x, LS (x)]), H(x, ¥ Lf ()])],
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by the continuity and monotonicity of H with respect to the second variable.
From (15) and (16) we get

é(x) = H(x, [ (x)]).

Lemma 5 implies that, if @ is an us.c. function, then ¢ is lower semi-
continuous and y is an upper semi-continuous numerical function. Thus
®(x) = [o(x), ¥(x)] is usc. by Lemma 5.

TueoreM 4. Let X be a metric space and let f: X = X be a continuous
and open function X into X. Moreover, let a continuous function H: X x
x R — R be increasing with respect to the second variable. If ®,: X - C(R) is
an w.s.c. solution of inequality (3), and if there exists a compact set K = R such
that ®,(X) < K, then a minimal u.s.c. solution ®: X — C(R) of (1) such that
@ <= @, is almost everywhere (everywhere except a set of the first category)
a single-valued mapping.

Proof. The existence of a minimal us.c. solution ¢: X —- C(R) with
® < @, is guaranteed by Theorem 1. If @(x) = [o(x), ¥(x)], then (by
Theorem 2) the functions ¢ and  fulfil equation (1). According to Lemma 7
the functions cl¢ and cly are u.s.c. solutions of (1). Lemma 8§ implies that
@, (x) = conv[cle(x)] and @, (x) = conv[cly(x)] are u.s.c. solution of (1)
and ¢,: X>C(R), &,: X > C(R). By the minimality of & we have
¢, = @, = &d. The equality conv[cle(x)] = [¢(x), ¢ (x)] implies that
¥ (x)ecl¢(x). This means that there exist sequences {y,}, (x,} such that y,
-y (x), x,— x, and y, = ¢(x,). Thus there exists a sequence {x,} such that
x,—x and ¢(x,) = ¥ (x). If ¢ is continuous at x, then ¢(x) = ¥ (x). In virtue
of the Baire theorem the set of all x at which ¢ is not continuous is of the
first category.

Let @, be an u.s.c. solution of (3) with values in C(R). K. Baron in [1]
proved (under suitable assumptions) the existence of a single-valued us.c.
solution & of (1) such that & < @,. The following example indicates that the
assumptions of Theorem 4 do not ensure the existence of an us.c. single-
valued solution @ of (1) such that & < @,.

ExampLE. Let X = Y = R, f(x) = 2x, H(x, y) = y and let ¢, be given
by the formula

0 for x < 0,
Po(x) =< [0, 1] for x =0,
1—2""2x-3] for xe[27"*V, 2", n =0, +1, +2, ...
This mapping is an u.s.c. solution of (1) with compact and connected values.

Thus @, fulfils (3), but equation (1) does not possess any u.s.c. single-valued
solution.



Multi-valued solutions of a functional equation 97
References

[1] K. Baron, On the continuous solutions of a non-linear functional equation of the first order,
Ann. Polon. Math. 28 (1973), p. 201-205.

[2] C. Berge, Topological spaces, Edinburgh and London 1963.

[3]1 R. Engelking, General topology, Warszawa 1977.

[4] R. E. Smithson, Multifunction, Nieuw. Arch. Wisk. 20 (1972), p. 31-53.

Regu par la Rédaction le 1.12.1977



