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Abstract Climate change impact research needs regional climate scenarios of mul-
tiple meteorological variables. Those variables are available from regional climate
models (RCMs), but affected by considerable biases. We evaluate the application of
an empirical-statistical error correction method, quantile mapping (QM), for a small
ensemble of RCMs and six meteorological variables. Annual and monthly biases
are reduced to close to zero by QM for all variables in most cases. Exceptions are
found, if non-stationarity of the model’s error characteristics occur. Even in the worst
cases of non-stationarity, QM clearly improves the biases of raw RCMs. In addition,
QM successfully adjusts the distributions of the analysed variables. To approach
the question whether time series and inter-variable relationships are still plausible
after correction, we evaluate the root-mean-square error (RMSE), autocorrelation
and inter-variable correlation. We found improvement or no clear effect in RMSE
and autocorrelation, and no clear effect on the correlation between meteorological
variables. These results demonstrate that QM retains the quality of the temporal
structure in time series and the inter-variable dependencies of RCMs. It has to be
emphasised that this cannot be interpreted as an improvement and that deficiencies
of the RCMs in those features are retained as well. Our results give some indication
for the performance of QM applied to future scenarios, since our evaluation relies

Electronic supplementary material The online version of this article
(doi: 10.1007/s10584-013-0845-x) contains supplementary material, which is available
to authorized users.

R. A. I. Wilcke (B) · T. Mendlik · A. Gobiet
Wegener Center for Climate and Global Change and Institute for Geophysics,
Astrophysics, and Meteorology, University of Graz,
Brandhofgasse 5, 8010 Graz, Austria
e-mail: renate.wilcke@uni-graz.at

http://dx.doi.org/10.1007/s10584-013-0845-x


872 Climatic Change (2013) 120:871–887

on independent calibration and evaluation periods, which are affected by climate
variability and change. The effect of non-stationarity, however, can be expected to be
larger in far future. We demonstrate the retainment of the RCM’s temporal structure
and inter-variable dependencies, and large improvements in biases. This qualifies
QM as a valuable, though not perfect, method in the interface between climate
models and climate change impact research. Nonetheless, in case of no correlation
between re-analysis driven RCM and observation, one should consider that QM does
not correct this correlation.

1 Introduction

Climate change impact research needs regional climate scenarios of multiple me-
teorological variables. This typically includes temperature, precipitation, relative
humidity, global radiation, and wind speed (e.g. Finger et al. 2012), which are the
focus of this study. They are usually available from regional climate models (RCMs),
but affected by considerable biases.

RCMs are common tools to regionalise general circulation model (GCM) re-
sults and currently simulate the climate on grid spacing between 50 and 12 km
(e.g. ENSEMBLES project (http://ensembles-eu.metoffice.com), EURO-CORDEX
(http://www.euro-cordex.net/)). For complex terrain like the Alps or Scandinavia,
however, the biases of RCM results are considerable (Christensen et al. 2008;
Suklitsch et al. 2011; Kjellström et al. 2010).

One way to mitigate these errors is a quantile based empirical-statistical error
correction method, quantile-quantile mapping. It was introduced by Brier and
Panofsky (1968) as empirical transformation and first used for downscaling and error
correction by e.g. Déqué (2007) and Boé et al. (2007). Quantile based methods
are getting more popular lately and have been applied to downscale and error-
correct temperature and precipitation data from RCMs (e.g. Dobler and Ahrens
2008; Piani et al. 2009; Dosio and Paruolo 2011). Themeßl et al. (2011) compared
various downscaling and error correction methods and showed that a quantile based
method (quantile mapping; QM) performs best for daily precipitation. Räisänen and
Räty (2012) compared 10 bias correction methods on mean temperature using a
pseudo reality approach for far future evaluations and showed that QM performs
best for most percentiles but the highest (98 %). The question, however, whether
error correction degrades temporal characteristics and inter-variable dependencies
is an open issue. As many climate impact models use muliple variables at the same
time, not only consistent time series, but also inter-variable dependencies are of
importance.

In this study we investigate the performance of QM applied to a multi-variable
output of four RCMs with a grid-spacing of 25 km on daily basis. The particular focus
of this study is on biases, frequency distributions, temporal structure of time series,
and inter-variable dependencies. Comments on the application of QM to poorly
performing RCMs can be found in the conclusions. Data and the implementation
of QM are described in Sections 2 and 3. The results are discussed in Section 4, and
in Section 5 we draw the conclusions.

http://ensembles-eu.metoffice.com
http://www.euro-cordex.net/
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2 Data

2.1 RCM data

Daily mean RCM data were derived from the multi-model data-set of the
ENSEMBLES project. The RCMs have a horizontal grid-spacing of 25 km and cover
entire Europe. Four simulations are analysed in detail: performed at C4I (Commu-
nity Climate Consortium for Ireland) with the RCA3 RCM driven by the
HadCM3Q16 (GCM), at the ICTP (Italian Centre for Theoretical Physics) with the
REGCM3 RCM which was driven by the ECHAM5-r3 (GCM), at the METNO
(Norwegian Meteorological Institute) with the HIRHAM RCM which was driven
by the HadCM3Q0 (GCM), and at the SMHI (Sweden’s Meteorological and Hydro-
logical Institute) with the RCA RCM driven with the BCM (GCM), all for the SRES
A1B scenario. Compared to the other ENSEMBLES simulations C4I-RCA3 shows
a strong warming and wetter conditions in our study region, ICTP-REGCM3 shows
little warming and drier conditions, METNO-HIRHAM shows moderate warming
and moderate change in precipitation, and SMHI-RCA shows little warming and
wetter conditions in the future (Wilcke et al. 2012). For the evaluation of temporal
dependencies the same RCMs driven by re-analysis data (ERA40; Uppala et al. 2005)
are analysed.

2.2 Observational data

Daily mean observational data were obtained from about 80 stations of the Austrian
Central Institute for Meteorology and Geodynamics (ZAMG) and 18 stations of the
Swiss Federal Office of Meteorology and Climatology (MeteoSwiss). The ZAMG
data covers entire Austria for the period 1971 to 2010. The selected Swiss stations in
the Rhone catchment covers the period 1981 to 2010. To ensure a sufficiently large
sample size only stations with more than 80 % (compromise from experiences with
missing values) data coverage are included.

Observations are error-prone (e.g. Auer et al. 2001; Frei and Schär 1998; Schmidli
et al. 2002; Caussinus and Mestre 2004; Della-Marta and Wanner 2006) and partic-
ularly wind induces errors in precipitation measurements (e.g. Nešpor and Sevruk
1999; Frei et al. 2003). Consequently this influences model evaluation that strongly
depends on the quality of the observations. Here, however, we neglect observational
errors and the reader should keep in mind this limitation.

Four stations with different climatological characteristics were analysed in depth.
Hohe Warte (lon 16.35638889 E, lat 48.24861111 N) in Vienna is located in a flat
region between the north-eastern deviating veins of the Alps, in the north-western
part of the Vienna basin. Sonnblick is a meteorological observatory on top of the
mountain Hoher Sonnblick (lon 12.9575 E, lat 47.05416667 N) at 3,105 m above sea
level and is exposed to the free atmosphere. Innsbruck University (lon 11.38416667
E, lat 47.26 N) maintains an observation station at 578 m height that represents a val-
ley (Inn valley) with open ends on both sides. The valley lies in southwest-northeast
direction and has a width of about 7 km. The station of Zermatt (lon 7.752468 E,
lat 46.029282 N) at 1,608 m height lies at the inner end of the Matter valley, which
extends in south-north direction and has a width of about 1.5 km.
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3 Method

3.1 Error correction

Themeßl et al. (2011) proposed a QM method to correct RCM simulations based
on Déqué (2007). Themeßl et al. (2012) demonstrated its successful application to
future scenarios for precipitation. Such methods are often used in numerical weather
prediction and belong to deterministic downscaling methods in the family of model
output statistics (MOS) (Themeßl et al. 2011; Maraun et al. 2010). The process
combines downscaling aspects with model error correction (“bias correction”). The
correction of the altitude differences between the model and actual orography is
implicitly included. The QM method used in our study is purely empirical (i.e. no
assumption about the distributions of the meteorological variables are made) and is
based on Themeßl et al. (2012). Adaptation to the specific requirements of different
variables are described in this section.

Our implementation of QM fits modelled daily empirical cumulative distribution
functions (ECDFs) to corresponding observational ECDFs of one station. For each
day of year (DOY) in the calibration period, ECDFs are constructed using a sliding
window of 31 days, which results in, e.g., 620 values for 20 years of calibration. This
sensibilise the correction to varying error characteristics throughout the year. The
ECDFs are calculated by sorting the values into bins with adjustable width. The
bin width is set to the resolution of the observational data (mostly 0.1) and a linear
interpolation is applied between two percentiles (bins) (Déqué 2007). In some cases,
particularly in the case of low-quality observational data, this interpolation can lead
to inadequate approximations, as will be demonstrated in Sections 4.2 and 4.4. In
order to avoid the suppression of new extremes in the future periods (i.e. values
outside the calibration range), our implementation extrapolates the correction by
keeping the correction term of minimum and maximum values constant outside the
observational range.

We want to emphasise that we calculate daily ECDFs and apply them on daily
data, thus there is no temporal scale discrepancy. Spatially, we minimise the discrep-
ancy by using RCMs instead of GCMs.

For the correction of temperature, which is described here exemplarily, the cumu-
lative probability p for a modelled value is calculated at point i and day t (Eq. 1). The
correction term �xt,i is calculated as a difference of the inverse ECDFs (quantile)
of the observation (ECDFobs,cal−1

) and model (ECDFmod,cal−1
) for probability p at

a certain day of a station (Eq. 2). The ECDFs are created for a DOY in a 31-day
moving window for the calibration period.

pt,i = ECDFmod,cal
DOY,i

(
xmod,raw

t,i

)
(1)

�xt,i = ECDFobs,cal−1

DOY,i (pt,i) − ECDFmod,cal−1

DOY,i (pt,i) (2)

xmod,cor
t,i = xmod,raw

t,i + �xt,i (3)

The correction term �xt,i is then added to the raw model value xmod,raw
t,i (Eq. 3).
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Dealing with precipitation, a frequency adaptation is implemented to parry a
deficiency of QM leading to a wet bias. That bias occurs if the dry day frequency in
the raw model output (ECDFmod,cal) is larger than in the observations (ECDFobs,cal),
which would lead to a strong positive bias after the correction (Themeßl et al. 2012).
Thus, the model data below 0.1 mm/d is divided to finer bins with width of 0.01.
Dry days are generated by randomly sampling the observational distribution into
the first bin (0–0.01 mm/d). However, this bias is a rare case. More often the model
overestimates the light precipitation frequency (“drizzling-effect”; e.g. Gutowski
et al. 2003), which is caught by QM automatically.

The correction of relative humidity required minor adaptations, since the interpo-
lation can lead to values outside the physically reasonable range, in particular to val-
ues above 100 %. These non-physical values were set to the maximum value observed
on the corresponding ECDF. This adaptation, however, only takes effect in very
rare cases and the overall effect can hardly be noticed in climatological evaluation.

For wind speed, global radiation, and surface pressure QM works straightforward,
as it has been implemented for temperature.

3.2 Evaluation

Our evaluation focuses on biases, frequency distributions, temporal structure of time
series, and inter-variable dependencies in present and future climate. We use a split
sample evaluation approach to mimic the application to future climate as far as possi-
ble. The calibration period has no overlap with the evaluation period. The available
observation period from 1971 to 2010 is divided in halves, taking 1971 to 1990 as
calibration period and 1991 to 2010 as application period, and vice versa. Of course,
the split sample approach can only give rough indication about the performance of
QM in far future periods. However, since calibration and evaluation periods are
independent and climate variability and change results in different climate charac-
teristics in both periods, severe deficiencies can be expected to be detected. Wher-
ever possible, i.e. in the analysis of the inter-variable evaluation, we additionally
regard future periods.

In addition to the split sample approach described above, evaluation was done also
with equal calibration and application period, which is further on denoted as techni-
cal evaluation. This allows judging the performance of QM in an idealised world by
neglecting climate variability and climate change. To keep the comparability with the
split sample approach the technical test was performed on 20-year periods.

The evaluation is designed with two sets of RCMs: GCM driven and re-analysis
driven (perfect boundary). Most climate impact studies are interested in future
climate, which requires GCM driven RCMs. Re-analysis driven RCMs are expected
to simulate the past climate correctly, including the temporal structure. Those were
used to investigate the effect of QM on the temporal structure of RCMs.

For the evaluation of the GCM-driven RCM simulations three basic statistics were
inspected: the bias, the density distribution, and the inter-variable correlation. The
bias and density distribution describe the performance of QM on single variables
and are analysed on the past only, since observations are indispensable. The inter-
variable correlation—where we mainly focus on comparing raw and corrected RCM
results—is analysed additionaly in near- and far-future periods. For the re-analysis
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driven RCM simulations, the temporal structure of time-series was analysed by the
root-means-square error (RMSE) and autocorrelation.

4 Results and discussion

4.1 Bias

The bias is defined as long term average difference between model and observation.
For the ICTP-REGCM3 model the biases of temperature, precipitation, relative
humidity, and wind speed are shown in Figs. 1 and 2, exemplarily. Figure 1 shows
the annual mean bias of the raw and split sample corrected model for stations in
Austria. The biases for the other three models are presented in Figs. S1, S2, and S3
(the “S” indicates supplementary material).

Figure 2 shows the annual cycle of monthly biases. In this case, the spatial error
variability is indicated by box-and-whisker plots. This analysis shows both versions
of the split sample approach, one evaluated in the period 1991 to 2010 and calibrated
in the period 1971 to 1990 (blue), the other one vice-versa (green), together with the
raw RCM bias of each period (red and orange). The results for the other models are
presented in Figs. S4, S5, and S6.

4.1.1 Temperature

QM performs very well in removing the annual mean temperature bias from the
ICTP-REGCM3 model. In the split sample evaluation (Fig. 1a), the mean bias over
all stations is reduced from −1.5 ◦C to −0.3 ◦C and the biases of the individual
stations range to below 1.1 ◦C at maximum, compared to 3.5 ◦C before correction.
The results for the other models confirm these results.

The monthly temperature biases of the ICTP-REGCM3 model are shown in
Fig. 2a. The biases and their spatial variability are generally strongly reduced. In
some months, however, considerable errors remain after the correction (e.g., in
summer), which is caused by different model error characteristics in the calibration
and the application period (i.e. by non-stationarity). Similar analysis for other models
(c.f. Figs. S4–S6) show that ICTP-REGCM3 is rather extreme in this respect and
that bias correction of other models is mostly less affected by non-stationarity. Non-
stationarity, however, is a limitation of bias correction (and empirical-statistical
methods in general) and narrows their application to periods not too far in the
future. Maraun (2012) investigated non-stationarities of a very simple bias correction
method on a seasonal time scale and found that at the end of the 21st century
bias correction only partly improves RCM results. Here we demonstrate that the
improvement in case of non-stationarity is still large for near future (20 years)
applications, particularly when averaged over the year.

4.1.2 Precipitation

The ICTP-REGCM3 bias of precipitation is strongly improved in the split sample
evaluation with a bias reduction from +0.8 mm/d to −0.1 mm/d (Fig. 1b). The
results for other RCMs are very similar. On the monthly timescale (Fig. 2b), the
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Fig. 1 Annual mean RCM (ICTP-REGCM3) bias at observation stations (1991–2010) for a tem-
perature, b precipitation, c relative humidity, and d wind speed (top down) for the raw RCM (for
temperature altitude corrected), the error-corrected RCM with split sample evaluation

split sample evaluation generally results in smaller biases than the raw model
and in a smaller bias range. The influence of non-stationarity is smaller than for
temperature in this case. Bias correction of other models yields very similar results
(Figs. S1 to S6).
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Fig. 2 Monthly bias of a temperature, b precipitation, c relative humidity, and d wind speed as box-
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and orange), the error-corrected RCM (ICTP-REGCM3) with split sample evaluation (green and
blue, see Section 4.1 for detailed description). Box and whiskers indicate the (spatial) variability of
errors at the different Austrian stations. Boxes indicate the first (q25) and the third (q75) quantile,
the whiskers extend to q5 and q95, and the black horizontal line indicates the median

4.1.3 Relative humidity

With regard to relative humidity the mean bias of ICTP-REGCM3 is reduced to
close zero; the maximum of biases over the stations is reduced from 22 % to 8 % in
the split sample approach (Fig. 1c). Figure 2c reflects similar results on the monthly
scale. The median biases in both periods are close to zero in all months and the error
range over the stations is smaller than for the raw RCM. The analysis of the other
RCMs confirm these results, with some additional indication for non-stationarity in
the SMHI-RCA model.

4.1.4 Wind speed

The error correction of wind speed leads to a reduction of the mean bias from 2.1 m/s
to −0.2 m/s in the split sample approach (Fig. 1d). The range of biases over the sta-
tions is only reduced from 6.6 m/s to 4.2 m/s. However, this small reduction is caused
only by one single station. The mean bias of 0.2 m/s also is visible in the monthly
bias of the split sample analysis (Fig. 2d) and the technical evaluation (not shown).
A similarly small remaining bias can also be found in the other three RCMs. These
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remaining biases are mainly caused by lacking quality of the observational data: As
mentioned in Sections 2.2 and 3.1, an interpolation error occurs if the resolution
of the observational data is much lower than the resolution of the RCM. Wind
measurements sometimes have gaps in the data distribution of up to 0.6 m/s, already
at small velocities. The vertical stripes in the scatter-plots of Fig. 6a (see Section 4.4)
for wind speed demonstrates that. For testing, random noise was added to fill those
gaps, which results in a mean bias of zero. Nevertheless, also with a remaining bias
of 0.2 m/s after correction, QM strongly improves raw RCM output.

4.1.5 Surface air pressure

The main bias of surface air pressure results from the different altitudes of the model
grid and the station. This effect is fully corrected by QM, and results in a mean bias
of zero for the technical as well as for split sample evaluation, for the entire year as
well as for single months (not shown).

4.2 Density distribution

The correction of density distributions from all four RCMs is presented for the period
from 1991–2010 (calibration: 1971–1990) on seasonal scale (Fig. 3 for summer), and
the entire year in Fig. S7. Four selected stations are evaluated (see Section 2.2). We
compare the density distributions of observation (black fat curve) with raw (red thin
lines) and error-corrected (green thin lines) RCMs for temperature, precipitation,
relative humidity, wind speed, and global radiation.

Figure 3 demonstrates that the distributions of all models and variables are
nicely adjusted to the observed distribution. Various distortions of the temperature
distributions are corrected and the over-pronounced frequency of light and medium
precipitation (“drizzling effect”) is adjusted. More details on the performance of QM
for daily precipitation including extremes are discussed in Themeßl et al. (2012). With
regard to relative humidity, the overestimated frequency of near-100 % values and
with regard to wind speed and global radiation, underestimated frequency of higher
values are corrected.

Such adjustment of the distributions would be trivial if the calibration and
evaluation periods were the same, but is quite remarkable in the split sample analysis
with two independent periods. In particular, some variables (e.g., relative humidity)
and models (e.g., ICTP-REGCM3 for wind speed) feature distributions that are
very different from the observation. Such strong modification of the distribution by
error correction raises the question, whether the corresponding time series and inter-
variable relationships are still plausible after correction. These issues are analysed in
the following Sections 4.3 and 4.4.

4.3 Temporal structure

In order to analyse a potential distortion of the RCM’s temporal structure by QM, we
regard the autocorrelation and the RMSE of corrected and uncorrected time series
from re-analysis driven RCM simulations. In Fig. 4 the RMSE for the four RCMs
averaged over the period 1981–2000 (calibration period 1961–1980) are displayed.
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Fig. 3 Density distributions of the 4 raw RCMs (red thin lines), the split sampled error-corrected
RCMs (green thin lines), and the observations (black fat line) for summers (JJA) for the period
1991–2010 of Hohe Warte Vienna, Sonnblick, Innsbruck University, Zermatt for a temperature, b
precipitation, c relative humidity, d wind speed, and e global radiation

The box-and-whisker plots show spatial variability. The RMSE of temperature is
generally improved by QM, with stronger improvement for models with larger
RMSE (e.g., C4I-RCA3-ERA40). For precipitation, QM has no clear effect on the
RMSE. For relative humidity the RMSE is improving, comparable to temperature.
For wind speed, the RMSE is only clearly affected for the model with the largest
RMSE and the worst distribution (ICTP-REGCM3-ERA40). Improvements in the
RMSE are related to the correction of strong biases and shifts in distributions.

Figure 5 shows the autocorrelation of precipitation of the observation (black), the
raw (red), and corrected (green) ICTP-REGCM3-ERA40 model for lags of up to



Climatic Change (2013) 120:871–887 881

2
4

6
8

12
Temperature (°C)

R
M

S
E

METNO C4I SMHI ICTP

5
10

15
20

Precipitation (mm/d)

R
M

S
E

METNO C4I SMHI ICTP

10
20

30
40

Rel. Humidity (%)

R
M

S
E

METNO C4I SMHI ICTP

1
2

3
4

5
6

Wind Speed (m/s)

R
M

S
E

METNO C4I SMHI ICTP

Fig. 4 RMSE of ERA40 driven RCMs of raw model (red) and split sample corrected (val: 1981–
2000) (green) for whole years. Boxes contain RMSE of about 60 stations in Austria. Box and whiskers
indicate the (spatial) variability of errors at the different Austrian stations. Boxes indicate the first
(q25) and the third (q75) quantile, the whiskers extend to q5 and q95, and the black horizontal line
indicates the median

6 days (see Figs. S8 to S11 for the other variables and models). Autocorrelation
of the precipitation time-series is predominantly visible at lag-1 (around 0.3) with
very small values after that. The RCMs generally feature larger autocorrelation
than the observation, with slightly lower values of the corrected than the raw
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Fig. 5 Upper panel shows autocorrelation for 20-year period (validation period 1981–2000,
calibration period 1961–1980) of precipitation for observations (black), raw ICTP-REGCM3-
ERA40 (red), and split sample corrected ICTP-REGCM3-ERA40 (green). The difference in
autocorrelations of raw (red) and corrected (green) RCM to observations is shown in the lower
panels. Here the grey line represents the observation (zero)
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model. To emphasise the day-to-day structure of temperature we removed the
seasonal correlation by removing the annual cycle (Fig. S8). All four models catch
this autocorrelation well, which is not seriously disturbed by error correction. The
differences in autocorrelation coefficients (lower panels) between corrected and
uncorrected RCM are very small (about 0.01 to 0.15). With regard to relative
humidity (Fig. S10), the autocorrelation is partly over- and partly underestimated
by the RCMs, depending on the model. For wind speed, like for precipitation, the
inter-daily dependency is weak (Fig. S11). However, the RCMs show a stronger
autocorrelation than the observations do, and the corrected RCMs are always closer
to the observation than the raw ones.

In summary, we found improvement or no change in RMSE and autocorrelation
due to error correction. We want to emphasise, that this improvement cannot be
interpreted as an improvement of the temporal structure of the time series in a strict
sense, but is rather caused by correction of intensity and distribution. An actual
improvement of the temporal structure is out of the scope of the presented error
correction method. Our results mainly demonstrate, that QM conserves the temporal
structure of RCM time series, including their strengths and weaknesses.

4.4 Inter-variable relation

QM acts on each variable separately, so concern exists, whether inter-variable
dependencies are distorted by QM. Our focus here is not on the physical consistency
of raw RCMs, but on changes of inter-variable relations RCMs due to QM.

The correlations of five variables (omitting pressure here) are analysed pairwise
before and after correction. As additional information, the observed correlation is
shown. Figure 6 illustrates scatter-plots and correlation coefficients of each pair of
variables on the four selected stations. The correlations are discussed exemplarily
for the ICTP-REGCM3 model in summer. The other three models show the same
results (not shown). Results for further seasons are shown in Figs. S12 to S26.

Since most variables are not linearly correlated, we choose the Spearman rank
correlation coefficient, which is based on the ranks and not on linear relation like the
Pearson correlation coefficient (Wilks 1995). QM is a transformation that conserves
ranks. This, however, is only valid for a specific DOY in our implementation of QM,
since for each day of the year, single ECDFs are created. The Spearman coefficient
regards ranks of the entire time series under consideration which can be modified by
QM indeed.

The coefficients are shown as pie-charts in Fig. 6 and additionally in Table S1. The
correlation coefficients are calculated for period 1971–2010 (1981–2010 for Zermatt).
For the historical analysis, the technical approach (c.f. Section 3.2, calibration period
equals evaluation period) has been used. We do not focus on the comparison with
observations, but on the inter-comparison of the raw and corrected RCMs. In
addition, a similar analysis for future scenarios is shown in Fig. 7 for near (2021–2050)
and a further future (2069–2098) for the station of Innsbruck (for other stations see
Figs. S12 to S26).

Comparing the scatter-plots and the Spearman coefficients of the raw and error-
corrected model, no significant differences are visible (Fig. 6b and c). Table S1
underlines this for the station of Zermatt. The correlation of temperature with
global radiation shows small differences, same as precipitation with wind speed,
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Fig. 6 Correlation matrices for the period 1971–2010 (Zermatt 1981–2010) including temperature
(tas), precipitation (pr), relative humidity (hurs), global radiation (rsds), and wind speed (wss)
for selected stations in Austria and Switzerland for a observed, b modelled, c error-corrected
modelled data in summer (JJA). Pie charts show Spearman correlation coefficients, indicated with
counterclockwise (negative correlation) and clockwise (positive correlation) pie slices. Lines in
scatter plots are the Loess fit. The values above and below the variable names give the range of
the data. The model shown here is the ICTP-REGCM3

and precipitation with relative humidity. This counts for the other seasons as well.
Nevertheless, no systematic degradation of the RCM’s correlation by applying QM
can be detected. Differences in the scatter-plots are related to the mapping of the
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Fig. 7 Correlation matrices for Innsbruck for summer (JJA) of the periods 2021–2050 and 2069–
2098. Same as Fig. 6

value range towards the observations. This compresses or stretches the scatter-plots
without changing the correlation itself.

Comparing the correlations of observation (Fig. 6a) with those of raw RCMs,
considerable differences are visible. E.g., the observed correlations of wind speed
and relative humidity for Innsbruck and Sonnblick show opposite signs and different
shapes of scatter-plots. The correlation coefficient of wind speed with temperature is
much higher in the RCM than in the observation. Those differences can be caused
by model parametrisation, further model deficiencies, observational errors, or local
effects which RCMs cannot capture due scale discrepancies. QM does not correct
such effects, it rather conserves the inter-variable correlations of the RCMs.

For future periods, as for past periods, the correlation given by the RCM is not
systematically changed by QM.

5 Conclusions

We evaluate the application of an empirical-statistical error correction method,
quantile mapping (QM), for a small ensemble of RCMs and six meteorological
variables: temperature, precipitation, relative humidity, wind speed, global radiation,
and surface air pressure. The evaluation includes biases and measures for temporal
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and inter-variable consistency and is based on a split sample approach with strictly
independent calibration and evaluation periods.

Annual and monthly biases are reduced by QM to close to zero for all variables
in most cases. Exceptions are found, when non-stationarities of the model’s error
characteristics occur. Those non-stationarities are not restricted to highly variable
variables like precipitation and one particularly prominent case is found for tempera-
ture. Even in the worst cases of non-stationarity, QM still clearly improves the biases
of the raw RCM. We use independent calibration and evaluation periods, which are
affected by climate variability and change. Thus, these results give some indication
for the performance of QM applied to future scenarios. However, the effect of non-
stationarity can be expected to be larger in far future, which limits the scope of our
results. Maraun (2012) demonstrated that for periods at the end of the 21st century,
a simple bias correction method only partially improves the raw RCM results.

Our purely empirical implementation of QM successfully corrects variables with
very different density distributions, which makes it highly flexible and applicable to
various meteorological variables and regions. The drawback is the necessity to in-
terpolate between values of the empirical cumulative distribution function (ECDF),
which leads to small systematic errors in some cases with low-quality observational
data (in our case wind speed). For the proper representation of new extremes, an
extrapolation of the ECDF outside the calibration range is necessary, which was not
the focus of our study. Themeßl et al. (2012) found that a simple constant extrapola-
tion leads to satisfying results also for precipitation extremes that are outside of the
calibration range. One might circumvent these issues by fitting theoretical distrib-
utions or some functions to the data (e.g. Piani et al. 2009; Rojas et al. 2011), but
this would lead to less flexibility and the need for a specific implementation for each
variable and probably also for each climate regime.

We find considerable differences between the distributions of the uncorrected
RCMs and observations in some variables (e.g., relative humidity) and models (e.g.,
ICTP-REGCM3 for wind speed). QM successfully adjusts also these distributions.
Such strong modifications raise the question whether the time series and inter-
variable relationships are still plausible after correction. This question is examined
by analysing the autocorrelation and root-mean-square error (RMSE) of raw and
corrected hindcast simulations and the inter-variable correlations of historical and
future simulations. When applying QM to RCM output, we found improvement or
no clear effect in RMSE and autocorrelation, and no clear effect in the correlation
between meteorological variables.

These results demonstrate that QM retains the quality of the temporal structure
of the time series and the inter-variable dependencies of RCMs. We emphasise that
this is not an improvement and that deficiencies of the RCMs in those features
are retained as well. A similar situation arises regarding fine-scale spatial variability
(which was outside the scope of our study). Maraun (2013) demonstrated that spatial
and temporal variability show considerable deficiencies after applying QM compared
to observations. Those limitations are important to be aware of for the application of
error-corrected model results in climate change impact studies.

QM can, by construction, map any distribution onto an arbitrary other distrib-
ution. This, however, does not necessarily indicate that the mapping is sensible in
a physical way. The overall assumption for error-correcting RCMs is that RCMs
represents the regional climate in a physical correct way over space and time. The
open discussion if this assumption is justified is not a topic in this article. It is
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known that the performance of RCMs depends on region, season and meteorological
variable (e.g. Christensen et al. 2008). Nonetheless, in case of no correlation between
re-analysis driven RCM and observation (e.g. Fig. S27), one should re-consider or at
least be aware of it when applying QM to this RCM (Widmann et al. 2003; Eden et al.
2012). If simulation and observation are not correlated, there is also no confidence
about possible future trends in the observations. Further studies will investigate the
consistencies in RCMs regarding inter-variable relations and correlations.

However, the retainment of the RCM’s temporal structure and inter-variable-
dependencies together with large improvements with regard to biases qualifies QM
as a valuable, though not perfect, method in the interface between climate models
and climate change impact research.

Future improvements of QM with regard to multi-variable error correction can be
particularly expected from multi-variate approaches, which might lead to improved
inter-variable dependencies. However, such approaches are not straightforward to
implement due limitations in the sample sizes usually available to build or estimate
the distributions. In addition, more sophisticated inter- and extrapolation techniques
could mitigate the effect of low-quality observational data and improve the repre-
sentation of extremes. Particularly promising are also stochastic approaches, which
could be implemented as add-on to QM and could lead to improvements with regard
to spatial and temporal variability.
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