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Abstract: When the uni-variate risk measure analysis is generalized into the multi-variate setting,
many complex theoretical and applied problems arise, and therefore the mathematical models used
for risk quantification usually present model risk. As a result, regulators have started to require
that the internal models used by financial institutions are more precise. For this task, we propose a
novel multi-variate risk measure, based on the notion of the Wasserstein barycenter. The proposed
approach robustly characterizes the company’s exposure, filtering the partial information available
from individual sources into an aggregate risk measure, providing an easily computable estimation of
the total risk incurred. The new approach allows effective computation of Wasserstein barycenter risk
measures in any location–scatter family, including the Gaussian case. In such cases, the Wasserstein
barycenter Value-at-Risk belongs to the same family, thus it is characterized just by its mean and
deviation. It is important to highlight that the proposed risk measure is expressed in closed analytic
forms which facilitate its use in day-to-day risk management. The performance of the new multi-
variate risk measures is illustrated in United States market indices of high volatility during the global
financial crisis (2008) and during the COVID-19 pandemic situation, showing that the proposed
approach provides the best forecasts of risk measures not only for “normal periods”, but also for
periods of high volatility.

Keywords: wasserstein barycenter; multi-variate risk measures; value-at-risk; conditional value-at-
risk; location–scatter distributions

1. Introduction

There is a variety of risk measures based on profit and loss distribution to quan-
tify the different types of risk; examples include the variance, the Value-at-Risk, and
the Conditional Value-at-Risk; see McNeil et al. (2015), Wagalath and Zubelli (2018),
Arias-Serna et al. (2021), Faroni et al. (2022), Nageri (2022), and references there, for a
detailed review of the investment-portfolio-risk nexus. Perhaps the most commonly used
risk measure in finance is the Value-at-Risk (VaR), which has received the honor of being
utilized in industry regulations.

However, when the well-known uni-variate VaR analysis is generalized into the multi-
variate setting, many complex theoretical and applied problems arise. For example, under
the restriction of a perfect dependence, the simple summation approach computes the
total risk through summation of the stand-alone risks (see Embrechts et al. (2013) and
Li et al. (2015)). For a large number of assets, the variance-covariance approach fails, as
estimation of the corresponding matrix is extremely cumbersome due to the high amount
of correlations (see McNeil et al. (2015)). The number of unknown parameters of the
GARCH model rises exponentially with the number of assets, and its estimation will not be
possible even for a modest number of assets (Pesaran and Pesaran (2010), Engle and Kroner
(1995)). The copula approach attains a robust structure for dependence in a financial time
series by producing joint distributions with known non-Gaussian marginal distributions.
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Modeling the marginal distributions by copulas allows for VaR computations with better
performance than classical approaches, but involves some intractable assumptions in
the context of risk measures, which are difficult to elucidate; a similar quotation for the
multi-variate extreme value theory has also been addressed by Jin and Lehnert (2018)
and Barone-Adesi et al. (2018).

Inspired by the above discussions, as well as some interesting insights collected by
Li et al. (2012) and Kiesel et al. (2016) for risk models in the banking industry, and in
order to cope with risk management in situations where multiple competing models are
formulated for the various scenarios, new risk measure should be utilized, Papayiannis and
Yannacopoulos (2018), which is capable of combining efficiently the information provided
by all partial models into an aggregate model; this work proposes a new multi-variate
risk measure model based on the notion of the Wasserstein barycenter of probability dis-
tributions µ1, · · · , µN under a location–scatter family. The new approach allows effective
computation of Wasserstein barycenter risk measures in any location–scatter family, includ-
ing the Gaussian case. In particular, we demonstrate that the Wasserstein barycenter VaR
of a location–scatter family belongs to the same location–scatter family, which allows us to
obtain closed-form expressions for the Wasserstein barycenter risk measures, turning our
proposal into a methodology that is easy to apply in practice. Incorporating the concept
of Wasserstein distance in the quantification of risk measures allows for preserving such
important properties as the comparison of distributions with different supports, which
makes the proposed methodology very suitable for risk quantification in financial and
insurance risk management.

The concept in probability theory has been brought into financial models by proposing
Fréchet risk measures, which are calibrated through a certain metrization of the prob-
ability measure space. In this case, the well-studied Wasserstein metric supports the
method and provides fundamental connections for the rising concept of barycenter, in
the sense of Agueh and Carlier (2011); this is considered seminal for a number of gen-
eralizations and applications (see, e.g., Bigot et al. (2018), Álvarez Esteban et al. (2018),
Le Gouic and Loubes (2017), and the references therein). The Wasserstein metric has notably
enriched the risk management literature (see, e.g., Feng and Erik (2018), Wang et al. (2020),
Pesenti (2022), and Liu and Liu (2022)).

The proposed model is compared with GARCH models under a portfolio charac-
terized by S&P500 and NASDAQ stock indices. The results show that the Wasserstein
Barycenter VaR presented an excellent performance being close to the expected number of
exceptions. Unlike the GARCH models, our model only requires knowledge of the mean
and deviation for VaR quantification, regardless of the number of assets considered in the
portfolio, which represents an advantage over the GARCH models, in which the number of
unknown parameters rises exponentially with the number of assets. The new model was
also implemented for United States market indices, characterized by high volatility during
the COVID-19 pandemic situation and during the global financial crisis (2008). The new
approach can fit the volatile movements of the returns and predicts future losses notably,
in comparison with classical multi-variate VaR approaches. The results indicated that
the proposed approach provides the best forecasts of risk measures not only for “normal
periods”, but also for periods of high volatility.

The remainder of this paper is structured as follows: Preliminaries about risk measures
and the Wasserstein barycenter are given in Section 2. Then, in Section 3, the Wasserstein
barycenter in risk measures is defined, and results for Wasserstein barycenter VaR and
CVaR estimations are given under the considered family of location–scatter distributions;
we demonstrate that the Wasserstein barycenter VaR of a location–scatter family belongs to
the same location–scatter family. Section 4 details the application of the proposed method in
a portfolio consisting of major U.S. stock market indices. Section 5 draws some conclusions.
Appendix A provides the proofs of the theorems presented in Section 3.
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2. Preliminaries

This section provides the necessary background regarding risk measures and the
barycenter in a Wasserstein space.

2.1. Risk Measures

Given a random variable X on a probability space (Ω,F, P), we denote its distribution
function (d.f.) by FX ; unless otherwise stated, F−1

X is the ordinary inverse of FX . We consider
X as a loss variable and, hence, E(X) is called the expected loss.

The most commonly used risk measure in the financial area is the Value-at-Risk, which
has been defined Rockafellar and Uryasev (2002) as follows:

The Value-at-Risk (VaRα(X)) for a portfolio with loss variable X at the confidence
level α ∈ (0, 1) is a real number, such that

FX(VaRα(X)) = P(X ≤ VaRα(X)) = α. (1)

If the loss X has a distribution with mean µ and standard deviation σ, and X̂ = X−µ
σ ,

then VaRα(X) for the α-percentile of the assumed distribution can be calculated in a
straightforward manner, using the equation

VaRα(X) = µ + F−1
X̂

(α)σ.

Usually, the approaches described assume constant volatility over time. However, it is
possible to incorporate models describing non-constant volatilities. In practice, there are
numerous ARCH and GARCH models that can be chosen from (see, e.g., Stavroyiannis
et al. (2012), Han et al. (2014), Gabrielsen et al. (2015), and the references therein).

Although the Value-at-Risk thus defined may reflect risk aversion and satisfies impor-
tant properties such as monotonicity, positive homogeneity, and translation invariance, it
lacks some desirable properties, such as sub-additivity, which is the mathematical statement
of the response of risk concentration—a basic reality in risk management. Among other
objections raised regarding VaRα(X), we can also mention that it is unable to account for
the consequences of the established threshold being surpassed and that, in general, it is not
continuous with respect to the parameter α Arias-Serna et al. (2016).

A measure of risk closely related to Value-at-Risk is the Conditional Value-at-Risk,
defined as the conditional expected value of the (1− α)− tail. It is defined, in Rockafellar
and Uryasev (2000), as follows.

The Conditional Value-at-Risk (CVaRα(X)) of the loss associated with the confi-
dence level α ∈ (0, 1) is the mean of the α-tail loss distribution

CVaRα(X) =
1

1− α

∫ ∞

VaRα(X)
x fX(x)dx. (2)

2.2. Barycenters in the Wasserstein Space

Let P2(Rd) be the set of all probability measures defined on Rd with a finite second-
order moment. Denote P2,ac(Rd) as the subset of absolutely continuous measures, and
consider (Ω, σ, P) as a generic probability space. If µ, ν in P(Rd) are two measures, then
P(µ, ν) denotes the set of all probability measures π in the product set Rd × Rd. Here, µ
and ν are the corresponding first and second marginals.

For two measures µ, ν in P(Rd), the quadratic transportation cost between µ and ν
(also referred as the transportation cost with a quadratic cost function) is defined as follows:

T2(µ, v) = in fπ∈P(µ,v)

∫
Rd×Rd

d(x, y)2dπ(x, y).
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The transportation cost with quadratic cost function endows the set P2(R) with a
metric, called the 2-Wasserstein distance or Monge–Kantorovich distance metric, which is
given by

W2(µ, υ) = T2(µ, ν)
1
2 .

When d = 1, the 2-Wasserstein distance in the real line is simply given by the quantile-
like expression:

W2
2 (µ, υ) =

∫ 1

0
|F−1

ν (x)− F−1
µ (x)|2dx,

where F−1
ν and F−1

µ are the quantile functions of ν and µ, respectively.
The Wasserstein metric has notably enriched the risk management literature; see, for

example, Kiesel et al. (2016) and Feng and Erik (2018).
Now, in Euclidean space, the barycenter of points x1, ...xN with weights λ1, ..., λN , λj ≥

0, ∑N
j=1 λj = 1, is defined as

b =
N

∑
j=1

λJ xj.

In fact, b is the unique minimizer of

E(y) =
N

∑
j=1

λj|xj − y|2.

Motivated by the Euclidean version, the Wasserstein barycenter can be defined as
follows.

Definition 1. Let µ1, ..., µN be random probability measures over Rd, endowed with positive
weights λ1, ...λN satisfying ∑N

j=1 λj = 1. The measure µ ∈ P2(Rd) is a Wasserstein barycenter if
µ is a minimizer of the functional

E(µ) =
N

∑
j=1

λjW2
2 (µ; µj). (3)

This fact will be denoted by µB(λ) ∈ Bar((µj, λj)1≤j≤N).

The empirical consistency of the Wasserstein barycenter has been studied in Agueh
and Carlier (2011), Boissard et al. (2015), and Le Gouic and Loubes (2017).

In order to introduce a fundamental result, we recall the definition of a location–scatter
family

Definition 2. If M+
d×d denotes the set of d× d positive definite matrices, and X0 is a random

vector with measure µ0 ∈ P2,ac(Rd), then the set F (µ0) of probability laws defined by

F (µ0) := {l(AX0 + m) : A ∈ M+
d×d, m ∈ Rd}

is a location–scatter family induced by positive definite affine transformations from µ0.

The Wasserstein barycenters of measures on a location–scatter family satisfy the
following remarkable property (see Agueh and Carlier (2011), Álvarez Esteban et al. (2011),
and Álvarez Esteban et al. (2018)).

Proposition 1 (Theorem 3.10. Álvarez Esteban et al. (2018)). Let µ0 ∈ P2,ac(Rd) and µ ∈
W2(P2(Rd)). Assume that, for every ω ∈ Ω, the measure µω ∈ F (µ0). Then, the unique



Risks 2022, 10, 180 5 of 15

barycenter, µ of µ also belongs to F (µ0). The mean of µ is m :=
∫

mωP(dω) and the covariance
matrix, Σ, is the only positive definite root of the equation

Σ =
∫
(Σ

1
2 Σ1ωΣ

1
2 )

1
2 P(dω).

This result means that the Wasserstein barycenters are closed with respect to the
location–scatter family. An interesting case follows for N Gaussian measures on Rd.

Proposition 2 (Theorem 2.4. Álvarez Esteban et al. (2011)). Consider N Gaussian measures
µ1, ..., µN on Rd with corresponding means m1, ..., mN and positive definite covariances Σ1, ..., ΣN .
Let λ1, ..., λN be positive weights with ∑N

j=1 λj = 1. Then, the unique barycenter of the normal
measures µ1, ..., µN is the Gaussian distribution with mean mλ = ∑N

j=1 λjmj and covariance matrix
Σ, which is the only positive definite root of the equation

Σ =
N

∑
i=1

λi(Σ
1
2 ΣiΣ

1
2 )

1
2 .

According to Álvarez Esteban et al. (2016), Wasserstein barycenters inherit the strong
computational problems of the classical optimal transportation. However, in the real line,
some explicit distributions can be obtained.

Proposition 3. Let F−1
1 , ..., F−1

N be the quantile functions corresponding to µ1, ..., µN in the real
line. Thus, the barycenter of µ1, ..., µN is the probability with quantile function ∑N

j=1 λjF−1
i , where

λ1, ..., λN are positive weights such that ∑N
j=1 λj = 1.

Finally, using Proposition 3, with N Gaussian distributions, N(mi, σ2
i ), i = 1, ..., N, on

R, then the barycenter is a Gaussian N(∑N
j=1 λjmj, (∑N

j=1 λjσj)
2).

This notable aspect will be used below, in the context of risk measures.

3. Wasserstein Barycenter Risk Measures

This section proposes Wasserstein Barycenter Risk Measures based on the portfolio loss
distributions in finance, which are typically statistical quantities describing the conditional
or unconditional loss distribution of the portfolio over some pre-determined time horizon.

We consider risk measures such as VaR and CVaR for a loss random variable defined
by X+ = ∑N

i=1 ωiXi. Here, X1, ..., XN are real random variables attributed to risk types
endowed with positive weights ω1, ...ωN (where ∑N

j=1 ωj = 1) and over a fixed time period

T. For computation of these risk measures, a joint law for the random vector (X1, ..., XN)
′

is
required. The Wasserstein barycenter can be regarded as the aggregate model for a certain
set of probability measures. It is also suitable for reaching an “average” distribution. The
procedure also considers an optimal selection for the positive weights. They are connected
with the source credibility for every prior. Moreover, the weights must be chosen as equal
when all priors remain acceptable. Equality also holds under unknowing performance
reliability of the competing laws.

We are in a position to define the Wasserstein Barycenter Value-at-Risk.

Definition 3. Given the aggregate position X+, a set of measures M = (µ1, ..., µN), a set of quan-
tiles F = (F−1

µ1
, ..., F−1

µN
), and α ∈ (0, 1), the Wasserstein Barycenter Value-at-Risk (VaRα(X+, λ))

is defined as:
VaRα(X+, λ) = F−1

µB(λ)
(α), (4)

where F−1
µB(λ)

is the quantile function of the Wasserstein barycenter of µ1, ..., µN with weights

λ1, ...λN ∈ R, where λj ≥ 0, 1 ≤ j ≤ N, ∑N
j=1 λj = 1.



Risks 2022, 10, 180 6 of 15

Next, we use the notable property that the barycenter of distributions of location–
scatter families belongs to the same family. This allows use to derive closed-form formulas
for the Wasserstein Barycenter risk measures for location–scatter distributions.

Theorem 1. Let X+ be an aggregated random variable and µ1, ..., µN be location–scatter measures
in the real line, with respective means m1, ..., mN and standard deviations σ1, ..., σN . Then, the
Wasserstein Barycenter Value-at-Risk VaRα(X+, λ) is given by

VaRα(X+, λ) = mλ + σλG−1
Z (α), (5)

where Z = X+−mλ
σλ

, GZ is the cumulative distribution functions of the standard random variable,
mλ = ∑N

j=1 λjmj, σλ = ∑N
j=1 λjσj, and λj ≥ 0, 1 ≤ j ≤ N, ∑N

j=1 λj = 1.

Proof. See Appendix A.

The Wasserstein Barycenter Conditional Value-at-Risk is established next:

Theorem 2. Let X+ be an aggregated random variable and µ1, ..., µN be location–scatter measures
in the real line, with respective means m1, ..., mN and standard deviations σ1, ..., σN . Then, the
Wasserstein Barycenter Conditional Value-at-Risk (CVaRα(X+, λ)) is given by

CVaRα(X+, λ) = mλ +
1

σλ
gZ(G−1

Z (α))

1− α
σλ

2σ2
Z, (6)

where Z = X+−mλ
σλ

, gZ and GZ are the density and cumulative distribution functions of the standard
random variable, respectively, mλ = ∑N

j=1 λjmj, σλ = ∑N
j=1 λjσj, and λj ≥ 0, 1 ≤ j ≤ N,

∑N
j=1 λj = 1.

Proof. See Appendix A.

We now illustrate Theorems 1 and 2 under the Gaussian distribution.

Corollary 1. Let µ1, ..., µN be Gaussian measures with corresponding means m1, ..., mN and
standard deviations σ1, ..., σN . Then, the VaRα(X+, λ) and the CVaRα(X+, λ) are given by

VaRα(X+, λ) = mλ + σλΦ−1(α), (7)

CVaRα(X+, λ) = mλ + σλ
φ(Φ−1(α))

1− α
. (8)

Here, φ is the standard Gaussian distribution, Φ−1 is the inverse of the standard Gaussian
distribution, mλ = ∑N

j=1 λjmj, σλ = ∑N
j=1 λjσj, and λj ≥ 0, 1 ≤ j ≤ N, ∑N

j=1 λj = 1.

4. Empirical Analysis: Portfolio Risk under Gaussian Model

This section focuses on estimation of the multi-variate VaR for a risk portfolio ruled
by the NASDAQ and S&P500 stock indices. The NASDAQ log-returns and the S&P500
log-returns are denoted by X1 and X2, respectively. In this case, the portfolio log-return,
X+, has the form X+ = ω1X1 + ω2X2, where ω = (ω1, ω2) and ω1 and ω2 are the portfolio
weights of X1 and X2, such that ∑2

j=1 ωj = 1. Without loss of generality, a portfolio under
equal weights in both indices is considered. However, this is not a strict restriction, and they
can change freely. Finally, for the marginal returns, a Gaussian distribution is proposed,
and a one-day period VaR is considered.
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4.1. Results of Wasserstein Barycenter Approach

We followed the 2972 daily closing prices given by Palaro and Hotta (2006). The
database ranged from 2 January 1992 to 1 October 2003, and each stock is ruled by a
Gaussian distribution. The VaR estimation accuracy was measured using the Kupiec test
for back-testing the method in small quantiles α = 0.1, 0.05, 0.01, 0.005. Table 1 provides the
descriptive statistics of both series.

According to Table 1, the return series distributions of NASDAQ and S&P500 showed
small asymmetry but strong kurtosis, particularly for the former. Note also that both series
presented positive means (annualized).

Table 1. Descriptive statistics for log-returns series of daily NASDAQ and S&P500 stock indices.

Statistics NASDAQ S&P500

Mean 0.00038 0.00030
Mean (annualized) 10.141% 7.857%
Standard Deviation 0.01694 0.01076

Min. −0.1016800 −0.0711275
Median 0.00122 0.00028

Max. 0.13255 0.05574
Excess of Kurtosis 4.91481 3.78088

Asymmetry 0.01490 −0.10267

The Wasserstein Barycenter VaR is computed by using the equation

VaRα(X+, λ) = −mλ − σλΦ−1(α),

where Φ−1 denotes the inverse of the standard Gaussian distribution, and the mean and
the standard deviation are computed as mλ = ∑N

j=1 λjmj, and σλ = ∑N
j=1 λjσj, respectively.

The approach includes both “unfiltered” and “filtered” models. The filtered model con-
siders the volatility changes of the instrument, and is referred to as Wasserstein Barycenter-
G*. In the unfiltered model, Wasserstein Barycenter-G and all the σj, j = 1, ..., N re-
ceive the same value of the sample standard deviation. However, in the filtered model,
the σj are estimated using an Exponentially Weighted Moving Average model, where

σt =
√
(1− ζ)x2

i + ζσ2
t−1.

The Kupiec test evaluates the performance by computing the number of exceptions in
the corresponding test period. In this case, H0 : α = p represents the null hypothesis. If m
is the number of observations for the test period and x denotes the expected frequency of
exceptions, then h = x

m is the difference between the observed frequency of losses and VaR.
The corresponding test statistic is given by

LR = −2[ln(px(1− pm−x))− ln(hx(1− h)m−x)] ∼ χ2(1).

The null hypothesis is rejected, with a 95% confidence level, when LR > χ2(1). In
that case, the VaR estimates generated by the particular VaR model are not statistically
meaningful; see McNeil (1999).

The data set under consideration was then divided into sample and test periods, with
a selected window of 750 observations. Since we have 2971 observations, we had a total of
2220 tests for VaR at each level.

The corresponding results are presented in Table 2.
For all levels of α, the Wasserstein Barycenter-G* model showed the best performance,

in terms of VaR estimation. Moreover, for α = 0.1, 0.05, the Wasserstein Barycenter-G model
also provided satisfactory performance. In terms of the Kupiec test, applied to the number
of exceptions for the Wasserstein Barycenter-G* model, the null hypothesis was not rejected
for any of the α levels under consideration. In particular, high p-values of 0.2837, 0.9223,
0.8653, and 0.1668 were obtained for Wasserstein Barycenter-G * model, which implies that
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the null hypothesis was not rejected, and p-values of 0.8323 and 0.07130 were obtained for
the Wasserstein Barycenter-G model at the levels α = 0.1 and 0.05, respectively.

Table 2. Wasserstein Barycenter VaR, for t = 751 to 2971; number of exceptions where the estimated
VaR was exceeded by the portfolio loss with α = 0.1, 0.05, 0.01, 0.005. p-values of tests are included.

Model 0.1 (222) 0.05 (111) 0.01 (22) 0.005 (11)

Wasserstein Barycenter-G 0.0489 0.0442 0.0312 0.0243
Number of exceptions 225 130 46 30

p-Value 0.8323 0.0713 9 × 10−6 2 × 10−6

VaR Model rejected No No Yes Yes
Wasserstein Barycenter-G* 0.0387 0.0349 0.0247 0.0192

Number of exceptions 207 110 23 16
P-Value 0.2837 0.9223 0.8653 0.1668

VaR Model rejected No No No No

4.2. Comparisons

In the context of Li et al. (2012), research by the IFRI and CRO Forum has shown that
60% or more of the studied banks consider simple approaches, such as simple summation
and Variance–Covariance methods, for the aggregation of risk, while at least slightly
more advanced approaches (e.g., those supported by simulation) were used by only 20%
or less of the financial institutions in the survey. Next, we provide a summary of such
approaches. Then, performance comparison with the proposed model is described. In the
end, the new method is also compared with the hybrid GARCH approach proposed by
Palaro and Hotta (2006).

4.2.1. Classic Multivariate VaR Approaches

In this section, we describe computation of the multi-variate VaR under simple summa-
tion and variance–covariance approaches at different confidence levels. These approaches
are briefly described in the following.

Simple Summation: The integration of N risks is intuitively conducted by aggregating
the risks through summation of the particular VaRα(Xi) of each risk Xi, i = 1, . . . , N. Thus,
the total aggregated VaR, VaRα(X+), is expressed as:

VaRα(X+) = −
N

∑
i=1

VaRα(Xi); (9)

see Embrechts et al. (2013) and Li et al. (2015).
Now, the Gaussian model supports several approaches in probability and statistics

studies. In particular, calculating the VaR of multi-variate Gaussian models is a common
parametric method for multi-variate VaR models. This technique supposes a multi-variate
Gaussian distribution (with mean µ and covariance matrix Σ) for the returns of the compo-
nents in the portfolio. The method is characterized as follows:

Variance–Covariance: If σ+ =
√

λΣλ′ and µ+ = λµ are the deviation and expected
portfolio return, respectively, then the estimate of the VaR for the corresponding multi-
variate Gaussian distribution returns is given by

VaRα(X+) = −µ+ − σ+Φ−1(α), (10)

where Φ−1 represents the inverse of the standard Gaussian distribution.
The covariance matrix and the mean vector in the Variance–Covariance (Var–Covar)

approach are frequently unknown, meaning that the model requires extra estimates taken
from the observations; see Li et al. (2012) and Li et al. (2015).

A summary of the results follows:

• According to Table 3, the classic approaches did not predict future losses properly. On
one hand, the number of exceptions is small under Simple Summation, which explains



Risks 2022, 10, 180 9 of 15

an over-estimation of future losses. On the other hand, the number of exceptions was
large under variance–covariance, providing an under-estimation of future losses.

• The Wasserstein Barycenter-G* and Wasserstein Barycenter-G approaches exhibited re-
markable performance for future loss predictions. Moreover, the Wasserstein Barycen-
ter approaches are stronger, with respect to the other VaR models because, in the same
reference time, they provide a small exception probability, such that a high-level capi-
tal reserve is not required. In the set of the analyzed approaches, the VaR Forecasting
at all confidence levels was achieved with high performance by the proposed Wasser-
stein Barycenter-G* model. In fact, the Wasserstein Barycenter-G exhibited better VaR
forecasting than Var–Covar and Simple Summation approaches at all confidence levels.
The empirical results also demonstrated the known fact that the Simple Approach
provides an upper bound for the true VaR. In particular, for a confidence level of 0.1%,
a VaR of 0.0387 derived by Wasserstein Barycenter-G* was a third of the value (0.0978)
based on the Simple Summation approach. In such a context, our approach provides
several possibilities for a wide class of banks. Thus, under a conservative Wasserstein
Barycenter VaR, compared with the general average, the proposed method, being
indexed by different types of weights, allows for the inclusion of several criteria to im-
prove the results. In contrast, the Var–Covar method was preferably optimistic. Finally,
the notable closure property for the barycenter in the location–scatter distribution
family requires a profuse knowledge of the prior barycenter under the selected distri-
bution. Then, in the Gaussian case, an exact formula for the Wasserstein Barycenter
Value-at-Risk can be derived and applied in the complete reference class of distribu-
tions. This opens up an interesting perspective for risk management risk considering
series based on non-Gaussian models, as a complete mathematical description of the
Wasserstein Barycenter VaR can be found under the selected prior distribution.

Table 3. VaR for t = 751 to 2971, number of exceptions (in brackets), where the estimated VaR was
exceeded by the portfolio loss, with α = 0.1, 0.05, 0.01, 0.005.

Model 0.1 (222) 0.05 (111) 0.01 (22) 0.005 (11)

Simple summation 0.0978 (30) 0.0884 (14) 0.0625 (4) 0.0487(3)
Wasserstein Barycenter-G* 0.0387 (207) 0.0349 (110) 0.0247 (23) 0.0192 (16)
Wasserstein Barycenter-G 0.04891 (225) 0.0442 (130) 0.03123 (46) 0.0243 (30)

Var–Covar 0.0477 (248) 0.0430 (145) 0.0304 (52) 0.0237(38)

4.2.2. Other Multi-Variate VaR Models

Robust multi-variate approaches, including Copula and ARCH models, also involve
VaR estimation. However, under a large number of assets, such models tend to produce
biased parameter estimations and demand a high computational cost. For completeness,
we contrast our approaches with those derived by Palaro and Hotta (2006).

Note that the Wasserstein Barycenter-G* VaR provided the best performance for
α = 0.1, α = 0.05, and α = 0.01. When α = 0.01, the estimation matched the result of the
hybrid SJC Copula + GARCH-E method, while, for α = 0.005, it was near that of the hybrid
SJC Copula + GARCH-E model, which was noted by Palaro and Hotta (2006) as being the
best approach. In fact, note that the SJC Copula + GARCH-E method succeeded in VaR
forecasting at a 99.5% confidence level, but failed at 90% and 95%. The Table 4 highlighted
that our approaches had high performance at all confidence levels.
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Table 4. VaR for t = 751 to 2971, number of exceptions (in brackets), where the estimated VaR was
exceeded by the portfolio loss, with α = 0.1, 0.05, 0.01, 0.005.

Model 0.1 (222) 0.05 (111) 0.01 (22) 0.005 (11)

Wasserstein Barycenter-G* 0.0387 (207) 0.0349 (110) 0.0247 (23) 0.0192 (16)
Wasserstein Barycenter-G 0.0489 (225) 0.0442 (130) 0.0312 (46) 0.0243 (30)
SJC Copula + GARCH-E 0.0558 (124) 0.0104 (23) 0.0041 (9)

Bivariate GARCH (BEKK) 0.0819 (182) 0.0338 (75) 0.0248 (55)
Bivariate GARCH (DCC) 0.0432 (96) 0.0140 (31) 0.0113 (25)

EWMA (Bivariate) 0.0387 (86) 0.0144 (32) 0.0104 (23)
GARCH-N (Portfolio) 0.0666 (148) 0.0207 (46) 0.0144 (32)
GARCH-t (Portfolio) 0.0693 (154) 0.0131 (29) 0.0104 (23)

EWMA (Portfolio) 0.0527 (117) 0.0135 (30) 0.0099 (22)
H.S. (Portfolio) 0.1220 (271) 0.0293 (65) 0.0144 (32)

The results show that the Wasserstein Barycenter-G* VaR presented an excellent per-
formance being close to the expected number of exceptions. Unlike the GARCH models,
our model only requires knowledge of the mean and deviation for VaR quantification, re-
gardless of the number of assets considered in the portfolio, which represents an advantage
over the GARCH models, in which the number of unknown parameters rises exponentially
with the number of assets.

4.3. COVID-19: 2020 Stock Market Crash and the Global Financial Crisis (2008)

We end this section by demonstrating the performance of our method in the context of
the COVID-19 pandemic situation and during the global financial crisis (2008).

Explicitly, we researched the impact of the COVID-19 pandemic on the 2020 Stock
Market Crash, measured in terms of the Wall Street indices of NASDAQ Composite,
S&P500, and Dow Jones Industrial Average. These indices reported historical loss levels,
only otherwise registered during the financial crisis of 2008; see González and Gallizo
(2021), Song et al. (2022), Nageri (2022), Athari et al. (2022), and Athari and Thai Hung
(2022). As usual, the complete data set was split into sample and test periods. Sample data
ranged from 4 January 2010 to 31 December 2018. The 2264 daily return data for every stock
index also refer to the required historical data for a plausible VaR estimation. The test data,
used for detecting the VaR performance, ranged from 2 January 2019 to 31 December 2020.
The VaR was estimated for each day in the test period (505 days). Finally, the performance
of the VaR model was measured through a comparison of the current loss against the
estimated VaR. The division for the sample and test periods is summarized in Table 5.

Table 5. Sample and test periods.

Period Sample Period Test Period Total

Date 4 January 2010–31 December 2018 2 January 2019–31 December 2020
Number of observations 2264 505 2769

We compared the forecasting performance of the Wasserstein Barycenter-G* method
with the classic multi-variate VaR models. The best challenge for both approaches lies in
the financial market behavior in the year 2020 and its high volatility. First, Figure 1 shows
the forecasts for the next trading day VaR for 2019 and 2020 using both approaches. Under
a one-day holding period, the models were computed at a 99% confidence level.
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Figure 1. Daily Return series and VaR during the COVID-19 pandemic.

Finally, we also validate the performance of our method in the context of the global
financial crisis (2008). We investigated the performance of the same Wall Street indices
(NASDAQ Composite, S&P500, and Dow Jones Industrial Average) investigated during
the COVID-19 pandemic. As in this last event, these indices reported levels of losses during
2007, 2008, and part of 2009 that have been reported in history, see Degiannakis et al. (2012),
Pesaran and Pesaran (2010).

Sample data ranged from 5 January 1998 to 31 December 2006. The 2262 daily return
data for every stock index also refer to the required historical data for a plausible VaR
estimation. The test data, used for detecting the VaR performance, ranged from 3 January
2007 to 31 December 2008. The VaR was estimated for each day in the test period (504 days).
Finally, the performance of the VaR model was measured through a comparison of the
current loss against the estimated VaR. The division for the sample and test periods is
summarized in Table 6.

Table 6. Sample and test periods.

Period Sample Period Test Period Total

Date 5 January 1998–31 December 2006 3 January 2007–31 December 2008
Number of observations 2262 504 2766

As can be seen from Figures 1 and 2, the VaR estimate given by the Wasserstein
Barycenter-G* VaR model was highly accurate. The new approach fit the volatile move-
ments of the returns well and predicted future losses much better, in comparison with the
classical multi-variate VaR approaches.

As can be seen in both figures, the variance–covariance approach did not follow the
strong volatility, and always tended to under-estimate. In terms of the Simple Summation
model, the test period showed lower exceptions, but a strong conservative characteristic
was noted.

These results indicate that the proposed approach can provide the best forecasts of
VaR not only for “normal periods”, but also for the periods of high volatility, such as those
presented during the COVID-19 pandemic and the global financial crisis (2008).
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Figure 2. Daily Return series and VaR during the global financial crisis (2008).

5. Conclusions

In this work, we proposed a new multi-variate risk measure model based on the
Wasserstein barycenter of probability distributions under a location–scatter family. Con-
sidering that the Wasserstein distance in the quantification of risk measures preserves
desirable properties such as the comparison of distributions with different supports, so it is
suitable for models used in financial and insurance risk management.

We proposed exact formulae for the Wasserstein Barycenter VaR and CVaR for location–
scatter families, which makes it a precise model that is easy to implement by risk managers.

The model was compared with GARCH models under a portfolio characterized by
S&P500 and NASDAQ stock indices. The results show that the proposed model presented
an excellent performance being close to the expected number of exceptions. Unlike the
GARCH models, our model only requires knowledge of the mean and deviation for
VaR quantification, regardless of the number of assets considered in the portfolio, which
represents an advantage over the GAECH models, in which the number of unknown
parameters rises exponentially with the number of assets.

The new model was also compared with respect to United States market indices
characterized by high volatility during the COVID-19 pandemic situation and during the
global financial crisis (2008). The results indicated that the proposed approach provides
the best forecasts of risk measures not only for “normal periods”, but also for periods of
high volatility.

As future work, it is expected to generalize the proposed methodology to Distor-
tion Risk Measure and Coherent Distortion Risk Measure, such as those investigated in
Wang et al. (2020) and Pesenti (2022). Among other possible extensions of our paper, one
could introduce new risk indicators as the high-order TCE risk measure studied in Faroni
et al. (2022).
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Appendix A. Proofs

Proof of Theorem 1. By definition, VaRα(X+, λ) is a real number such that

P(X+ ≤ VaRα(X+, λ)) = α, α ∈ (0, 1).

Therefore,

P
(

X+ −mλ

σλ
≤ VaRα(X+, λ)−mλ

σλ

)
= α

or, equivalently,

P
(

Z ≤ VaRα(X+, λ)−mλ

σλ

)
= α.

Thus,

GZ

(
VaRα(X+, λ)−mλ

σλ

)
= α.

Finally,
VaRα(X+, λ) = mλ + σλG−1

Z (α).

Proof of Theorem 2. Note that

CVaRα(X+, λ) =
1

1− α

∫ ∞

VaRα(X+ ,λ)
x.

c
σλ

g

(
1
2

(
x−mλ

σλ

)2
)

dx.

By letting Zq = VaRα(X+ ,λ)−mλ
σλ

, we have

CVaRα(X+, λ) =
1

1− α

∫ ∞

Zq
c(mλ + zσλ)g

(
1
2

z2
)

dz

= mλ + σλ
1

1− α

∫ ∞

Zq
cz.g

(
1
2

z2
)

dz

= mλ +
1

σλ
gZ(G−1

Z (α))

1− α
σλ

2σ2
Z.
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