

University of Birmingham

Multi vehicle routing with nonholonomic constraints
and dense dynamic obstacles
Mansouri, Masoumeh; Lagriffoul, Fabien; Pecora, Federico

DOI:
10.1109/IROS.2017.8206195

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mansouri, M, Lagriffoul, F & Pecora, F 2017, Multi vehicle routing with nonholonomic constraints and dense
dynamic obstacles. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Computer Society Press, pp.
3522-3529, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 24/09/17.
https://doi.org/10.1109/IROS.2017.8206195

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 16. Aug. 2022

https://doi.org/10.1109/IROS.2017.8206195
https://doi.org/10.1109/IROS.2017.8206195
https://birmingham.elsevierpure.com/en/publications/93a2d3cd-7cab-4e32-8f95-030aa6370dc8

Multi Vehicle Routing with

Nonholonomic Constraints and Dense Dynamic Obstacles

Masoumeh Mansouri1 and Fabien Lagriffoul1 and Federico Pecora1

Abstract— We introduce a variant of the multi-vehicle routing
problem which accounts for nonholonomic constraints and
dense, dynamic obstacles, called MVRP-DDO. The problem is
strongly motivated by an industrial mining application. This
paper illustrates how MVRP-DDO relates to other extensions
of the vehicle routing problem. We provide an application-
independent formulation of MVRP-DDO, as well as a concrete
instantiation in a surface mining application. We propose a
multi-abstraction search approach to compute an executable
plan for the drilling operations of several machines in a very
constrained environment. The approach is evaluated in terms
of makespan and computation time, both of which are hard
industrial requirements.

I. INTRODUCTION

The Multi Vehicle Routing Problem (MVRP) [1] is a com-

binatorial optimization problem which consists of finding an

optimal set of routes for a fleet of vehicles delivering goods

to customers. The MVRP can be represented as a graph,

where nodes are the locations (one for each customer), and

the problem is to find a shortest closed path (tour) for all

vehicles such that every node is visited by only one vehicle,

exactly once. MVRP generalizes the well-known Traveling

Salesperson Problem (TSP), that is, to find the shortest

tour visiting every node in a graph exactly once. Strongly

motivated from robotics, particularly the surveillance domain

for UAVs, the TSP has also been adapted for vehicles

with nonholonomic/dubins constraints. Two variants of this

problem have been studied: the Euclidean TSP (ETSP),

where the Euclidean metric is used to measure the distance

between adjacent nodes; and the Dubins Traveling Salesper-

son Problem (DTSP) [2], where the problem is to find a

shortest tour composed of paths of bounded curvature [3].

In a MVRP, a node associated to a vehicle should be

traversed only once, and no other vehicle is allowed to

traverse that point in their tour. Roughly speaking, each

target along a vehicle’s tour acts as an “obstacle” that

appears dynamically once the node is visited, and which

must be avoided by the tour of other vehicles. However, the

MVRP employs the abstract notion of graph to represent

locations and their connectivity, thus ignoring the spatial

extent of the locations. The DTSP considers some physical

characteristics of the environment (e.g., kinematic constraints

of the vehicle), however these features are assumed to be

static. To the best of our knowledge, no variants of the DTSP

and MVRP that consider locations as emerging obstacles

have been studied (see examples in [2], [4]). Also, the only

1Center for Applied Autonomous Sensor Systems, Örebro University,
SE-70182 Sweden. {mmi, fll, fpa}@aass.oru.se

variant of the MVRP that considers nonholonomic/dubins

constraints [5] assumes a non-dense distribution of vehicle

locations. As we will see, this assumption cannot be made

in at least one important application domain.

In this paper, we introduce a variant of MVRP,

called MVRP-DDO, in which we consider (1) non-

holonomic/dubins constraints, (2) dynamic obstacles, and

(3) dense vehicle locations. It is easy to see why the

combination of these three factors makes MVRP-DDO a

significantly different (and harder) problem compared to

MVRP and DTSP. In the latter two, any decision on the

sequencing of locations preserves the solvability of the prob-

lem (although not necessary the optimality of the solution).

In MVRP-DDO, an obstacle emerges in a location when it

is visited by a vehicle, and locations may be densely placed.

Combined with non-trivial constraints on motion, this may

lead to locations being unreachable, hence even solvability

depends on location sequencing. MVRP-DDO is motivated

by a surface mining application, which we explain in the

following Section.

II. MOTIVATING INDUSTRIAL APPLICATION

Fig. 1. Two Atlas Copco drilling machines (Pitviper-351) in the process
of drilling targets in a bench.

MVRP-DDO is motivated by a mining application, where

a fleet of drilling machines operates on an open space (called

bench) in an open-pit mine. A set of drill targets in the

bench is given; at each target, a blast hole is to be drilled.

The blast holes are then filled with explosive material that

will be detonated after all targets have been drilled. After the

explosion, the ore is taken away and processed for mineral

extraction. The problem is to coordinate the motions of

multiple drills operating concurrently on the bench.

For each drill target, a machine can autonomously carry

out a set of tasks: auto-tramming (navigating to the target

from its current position), leveling (deploying jacks for

horizontally leveling the machine), drilling, and de-leveling

(retracting the jacks so the machine is placed back on its

tracks). Each drilling machine has a square dust guard around

its drill bit. The dust guard contains the pile of excess

material produced by drilling the hole. This pile constitutes

an obstacle for the machine that drilled the hole and for

all other machines. One side of the dust guard can be lifted

after drilling, which allows a machine to navigate to the next

target without colliding with the pile that has accumulated

under it after drilling. The distance between each target is

approximately 9 meters, and the vehicle’s base is a rectangle

of size 16×12 m2.

III. RELATED WORK

The variants of the TSP that are relevant to our problem

are the DTSP and the MVRP with nonholonomic constraints.

Most existing algorithms for DTSP work based on a solution

derived from ETSP (Euclidean TSP). In the ETSP, the

kinematic constraints of the robot are usually not taken into

account, whereas DTSP algorithms find optimal trajectories

between locations, given the ordering obtained by solving

a ETSP. When the minimum Euclidean distance between

any two locations is large compared to the turning radius

of the vehicle, the DTSP and ETSP are the same [6].

Conversely, if the locations are densely distributed in the

plane, as is the case in MVRP-DDO, then algorithms based

on the Euclidean metric are not necessarily a good choice,

since many maneuvers are required. For these cases, angular-

metric TSPs have been studied [7]. A variant of the TSP,

where locations are regions instead of point locations, is

called Traveling Salesperson Problem with Neighborhoods

(DTSPN). However, the algorithms that have been studied

for DTSPN do not consider these regions as obstacles for

other vehicles [4], [8], therefore, DTSPN is not considered

as an instance of MVRP-DDO.

Dynamic Vehicle Routing problems (DVR) [9] are on-

line variants of TSP and MVRP, where locations to be

reached become known only during execution. This makes

the objective function hard to compute. In MVRP-DDO, the

objective function is hard to compute despite the locations

being known beforehand. MVRP-DDO is a hard offline

problem, primarily because obstacle locations depend on

robot allocation and order of missions.

A consistent body of research has focused on MVRP with

nonholonomic constraints. Rathinam et al. [5] propose an

algorithm for solving an instance of this problem under the

assumption that no two locations are closer than twice the

minimum turning radius. This is a very restricting assump-

tion: in our mining application, for instance, the average

distance between locations (drill targets) is much less than

the length of the vehicle. The same type of restriction exists

in other work [10], [11] where transformation techniques

are employed to solve an Asymmetric TSP for solving the

original MVRP for a fleet of heterogeneous UAVs. These

approaches also rely on a procedure to efficiently calculate

the cost of transitioning between any two locations, which is

not trivial in MVRP-DDO due to the emergence of obstacles

in locations that depend on the order of graph traversal.

Another drawback which is common to all approaches

for MVRP with nonholonomic constraints mentioned above

is that none of them consider vehicle collision avoidance.

Considering collision avoidance between vehicles could be

achieved by altering the estimate of travel cost on the basis of

the positions of other vehicles, which would clearly levitate

the computational overhead of cost estimation. Collision

avoidance becomes crucial in small and/or dense environ-

ments when several vehicles move concurrently, and that is

why our formulation of the MVRP-DDO (see Section IV)

explicitly captures this requirement.

Motion planning with movable obstacles [12], as well as

some rearrangement problems such as the Sokoban puz-

zle [13], are also relevant to MVRP-DDO. Similarly to

MVRP-DDO, in these problems obstacles are dynamic. In

particular, a robot can move obstacles around (e.g., by

pushing), thus changing the state space of obstacles and

free space. It has been shown that motion planning with

movable obstacles is more complex than conventional mo-

tion planning [12], and even a simplified variant of this

problem is NP-hard [14]. Sokoban is proved to be NP-hard

and PSPACE-complete [15]. Because both MVRP-DDO and

these problems share the characteristic of a dynamic state

space, we suspect that MVRP-DDO is at least as complex1

as these problems.

IV. PROBLEM DEFINITION

In this section, we define MVRP-DDO formally. A set of n

vehicles is given, and let T = {τ1, . . . ,τm} be a set of targets.

The coordinates (xi,yi) of each τi are given. Let≺ be a partial

order on set T , and let (T,≺) be the corresponding poset. We

denote with τi ≺ τ j the fact that τi precedes τ j in the poset.

Let HT be the Hasse diagram of the poset, i.e., (τi,τ j) ∈HT

iff τi ≺ τ j and ∄τk : τi ≺ τk ≺ τ j. Given a poset (T,≺), and

A⊆ T , we refer to the least upper bound of A as lub, and the

greatest lower bound of A as glb. We denote lenHT
(A) the

length of a path in the Hasse diagram HT between the lub

and the glb. Let f (xxx) = C be the kinematic model2 of the

vehicles, where xxx is the state of a vehicle. Let P(i, j) be a

kinematically feasible path between the poses (xi,yi,θi) and

(x j,y j,θ j), and let lenP(i, j) denote the length of this path.

We denote that a path P(i, j) intersects a path P(k, l) with the

notation intersects(i, j,k, l), and that P(i, j) intersects with

the obstacle that emerges at the position of target τk with

the notation intersects(i, j,k). Let vi = j denote the fact that

vehicle i is assigned to reach target τ j. We define Q=
⋃n

k=1 qk

to be an n-partition of T , where qk = {τi ∈ T : vk = i}, that is,

each partition qk consists of the targets assigned to vehicle k.

Given qk ∈Q, let Hqk
be the Hasse diagram of poset (q,≺),

that is, Hqk
contains an edge (τi,τ j) if vehicle k reaches target

τ j right after it has reached target τi without visiting any other

1A formal proof of problem complexity is the topic of future work. Note
that MVRP-DDO may even be more difficult that these problems in practice,
as it involves multiple robots.

2We assume that all vehicles have the same kinematic model.

target. Note that the Hasse diagram HT may indicate that τ j

is preceded by τl , however vl is necessarily different from k

because (τi,τ j) ∈ Hqk
.

Now, given n vehicles and a set of targets T , the problem

is to determine θi and vi for all τi ∈ T and the partial order

≺ such that the following objective function is minimized

max
qk∈Q







η1lenHT
(qk)+η2 ∑

(τi,τ j)∈Hqk

lenP(i, j)







(1)

subject to the following constraints:

∀q ∈ Q,(τi,τ j) ∈ q2 s.t. i 6= j . τi ≺ τ j ∨ τ j ≺ τi (2)

∀q ∈ Q,(τi,τ j) ∈ q2 s.t. (τi,τ j) ∈ Hq . ∃P(i, j) (3)

∀(τi,τ j,τk) ∈ T 3 s.t. intersects(i, j,k) . τ j ≺ τk (4)

∀qz,qw 6=z ∈ Q,(τi,τ j) ∈ Hqz ,(τk,τl) ∈ Hqw s.t.

intersects(i, j,k, l) . τ j ≺ τk ∨ τl ≺ τi (5)

f (xxx) =C (6)

The objective function (1) provides an indirect measure of

the makespan of the solution: lenHT
(qk) counts the number

of direct precedences that are imposed on vehicle k, while

the summation over the edges of Hqk
measures the combined

length of all paths connecting targets that vehicle k will visit.

The constants η1 and η2 are normalization constants. The

maximum over all assigned vehicles ultimately identifies the

vehicle that travels the longest distance and has to yield

to other vehicles more. Constraint (2) guarantees that the

partial ordering is such that a sequence is assigned to each

vehicle. Constraint (3) ensures that the partial ordering is

such that there exists a feasible path between ordered targets.

Constraint (4) imposes that paths intersecting any target

occur before that target is reached (hence, before the target

is covered by an obstacle). Constraint (5) guarantees that

vehicle paths do not intersect with each other. Finally, paths

also must satisfy kinematic constraints (6).

The MVRP-DDO can be understood as a combination

of several sub-problems: deciding an allocation of vehicles

to targets (robot allocation), deciding approach angles at

which robots should place themselves on each allocated

target, deciding the order of target traversal (sequencing),

and computing feasible motions between subsequent targets

(motion planning). Some of these sub-problems have been

studied in combination, from which we can derive a partial

understanding of the complexity of MVRP-DDO: MVRP has

been shown to be NP-Hard [1], as has motion planning [16],

and multi-robot scheduling is an NP-complete decision prob-

lem [17]. A previous attempt at systematically exploring

the joint search-space of most sub-problems underlying the

MVRP-DDO [18] reveal just how hard the problem is, and

suggests that tackling sub-problems individually may be the

only way to scale to realistically-sized MVRP-DDOs.

In addition to being hard, the sub-problems subsumed

by MVRP-DDO are strongly dependent. For example, a

solution to the MVRP sub-problem must also guarantee that

the sequence of targets can be visited with kinematically

feasible motions in the presence of emerging obstacles. The

opposite dependency also exists, i.e., it may be impossible

to sequence targets due to a particular choice of motions.

For this reason, it is essential to consider the restrictions

imposed by other sub-problems in solving each of them. In

the following section, we propose an approach that explicitly

considers relations between sub-problems, and also takes

advantage of problem structure to identify easy choices early

on.

V. METHOD

We provide a solution to an instantiation of the

MVRP-DDO in a real surface mining application. Several al-

gorithms are used in sequence to find kinematically-feasible

and obstacle-free paths for a set of drilling machines that

must cooperatively visit all drilling locations in a bench.

As explained in Section II, piles are created as a result of

drilling which constitute obstacles for machines navigating

on the bench. In this MVRP-DDO, a good solution should

minimize the time to completion of all navigating and drilling

operations. Since all machines drill targets with similar effi-

ciency, this measure is roughly proportional to the objective

function (1). A desired final “parking” pose is given for each

machine (see Figure 3). This enforces that the solution should

be such that machines can reach their final parking pose

without running over the piles.

In addition to the constraints (2)–(5), the paths in a

solution of this MVRP-DDO must also be confined to a so-

called geofence, a virtual fence within which it is safe for the

vehicles to operate. A geological survey of the area and the

production target of the mine determine the locations of drill

targets and the geofence. The number of available machines

depends on the size of the bench, and is assumed given.

Realistically-sized benches usually consist of hundreds of

drill targets. Optimization problems of such scale often call

for approximate solutions rather than exact ones. In order

to solve this MVRP-DDO approximately, we decompose the

problem into several sub-problems, and devise a hierarchical

method to combine solutions of these sub-problems. The

hierarchical method uses multi-abstraction search for mini-

mizing the makespan. It is common that large-scale problems

have an almost-decomposable structure, where the problem

entities (in this case, the targets) can be clustered by one

or more common properties. Our multi-abstraction search

benefits from a pre-processing step, which clusters targets

into meaningful groups. As we show, grouping reveals equiv-

alence classes of sequencing and motion planning decisions,

which significantly reduces the overall search space.

The MVRP-DDO is divided into the following sub-

problems:

1) Grouping: divide targets into groups through pre-

processing.

2) Machine allocation: allocate machines to targets given

the available machines and their initial positions.

3) Sequencing: decide a sequence of targets for each

machine.

4) Approach angle: decide a pose for each machine at

each target.

5) Motion planning: decide how to navigate between

poses given sequences and approach angles.

6) Coordination: schedule machines given kinematics and

nominal speed of the vehicles.

Systematic Search
Coordination

Pre-processing
grouping

Local Search
sequencing

machine allocation

Hybrid Search
sequencing, approach
angle, motion planning

1

2
3

4
5

2
3

6

Fig. 2. An overview of multi-abstraction search for solving MVRP-DDO.

Figure 2 illustrates how the sub-problems above inter-

act within an overall architecture. The pre-processing step

creates an abstraction of the problem by clustering drill

targets into groups. Groups contain targets that are “aligned”,

that is, they can be visited sequentially along paths with

limited curvature. The pre-processing step is detailed below

in Section V-A. The number and location of groups will

be used by a local search method, namely, a Simulated

Annealing combinatorial optimizer (see Section V-B). Local

search contributes to solving the sequencing and the machine

allocation sub-problems. The solution is an abstraction, as it

does not prescribe specific paths to machines, nor does it

concern itself with fine-grained scheduling decisions. The

abstract solution is then refined by motion planning and

a hybrid search method. The motion planning finds paths

given the pile obstacles. The piles that should be considered

by motion planning are computed from the sequencing

decisions. Some approach angles are also decided as a direct

consequence of the sequencing, namely those of targets that

are far from the geofence. The approach angles of targets

that are close to the geofence, henceforth called hard targets,

are not trivially computed. We have developed a hybrid

search to decide the approach angles and the sequencing

of hard targets in an integrated manner (details are given

in Section V-C). The last step in the refinement process is

machine coordination, given the motion plans, sequencing,

and machine assignment. A solution to the coordination sub-

problem is a set of flexible temporal bounds within which

the machines can carry out their motion, drilling, leveling

and de-leveling operations. These bounds are computed by

a scheduling algorithm, which guarantees that machines do

not collide with other machines or with existing piles during

their motions (see Section V-D).

The overall multi-abstraction search is inspired by op-

timizing multi-agent placement with task assignment and

scheduling [19], where an abstract solution is refined incre-

mentally with different types of search at different levels

of abstraction. In the following, we explain the algorithm

pipeline in detail.

A. Pre-processing

In an open-pit mine, drill targets usually lie on an irregular

hexagonal grid (see Figure 3). We are interested in analyzing

the topology of a bench in order to extract the principal di-

rections of drill targets. This will allow to cluster targets into

groups for which there are only few reasonable sequencing

possibilities and that are easy to navigate in sequence.

A distance threshold is used to identify neighboring drill

targets. A K-Means clustering of the set of angular coeffi-

cients of topologically neighboring drill targets discovers the

principal directions. This yields clusters containing similarly

oriented edges of the topology. These are used to group

drill targets into roughly-parallel lines. There is usually more

than one principle direction in a bench (e.g., see Figure 3

for possible different groupings). Among all the groupings,

we select the one where the extracted lines are roughly

perpendicular to the open area (e.g., grouping A in Figure 3).

The reason is as follows: in grouping B, suppose that the first

machine is allocated to drill the groups 1 to 3, and the second

one is allocated to the groups 4 to 7. In the case of concurrent

movement of these machine, either the first machine is locked

in the bench due to the piles created by the second machine

(thus not being able to reach its final parking pose), or the

second machine should delay its operation in order to leave

an “escape corridor” for the first machine. Neither of these

problems would occur with grouping A, regardless of how

the two machines are allocated to groups.

1
2
3

4 1 2 3 4 65
7

bench with geofence grouping A grouping B

P1

P2

Fig. 3. A toy bench with drill targets (black circles), a geofence (green
polygon), two parking positions; two different groupings are shown.

B. Local Search

The next step in our pipeline is solving the sequencing

and the machine allocation sub-problems. This step considers

how the decisions in these sub-problems affect the motion

planning and the coordination sub-problems. We employ a

Simulated Annealing algorithm which minimizes a lower

bound of the makespan. Allocations and sequencing deci-

sions are explored, subject to some of the constraints in

MVRP-DDO. The sequencing of targets, constraint (2), is

enforced at the level of groups of targets, and for the targets

that are not hard. No motion planning is performed at this

level, therefore, explicitly omitting constraint (3) in the local

search. However, we use a rough estimation of the spatial

occupancy of piles to impose an ordering among the groups,

thus considering constraint (4) and (5) at a higher level of

abstraction than that of individual targets.

A state in the local search represents an assignment of

machines to groups, an ordering of groups, and an ordering

among the targets in a group. We call this ordering the

direction of a group, which can take one of two values:

upwards, and downwards. The upward direction indicates

that the sequence of targets explored by the machine should

start from the target that is furthest away from the geofence,

and end at the one closest to the geofence (groups 1, 6, 7,

8 and 10 in Figure 4); the downward direction indicates the

opposite (groups 2, 3, 4, 5, 9).

Machine 1 Machine 2 Machine 3

1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9 10

10

Fig. 4. A bench with grouped drill targets (red dashed rectangles) and
a geofence (green polygon). Black arrows represent the direction in each
group, blue arrows represent sequencing among the groups assigned to each
machine. The resulting dependency graph Gd is shown above.

The neighborhood function used by the local search to

generate a next state to explore randomly varies the machine

allocations, the group sequences, and the group directions

(see an example of a state in the Figure 4).

The cost function estimates the makespan of a state. Each

group i is associated with two intervals: Ih(i), representing

when the machine assigned to group i occupies (navigating

and drilling) an area containing the hard targets in the group;

and Io(i) representing the time taken by the machine to

traverse the area containing the other targets in the group.

The time intervals associated to a group are approximations

of the actual time it will take a machine to navigate and drill

the targets, as this estimate is obtained in the absence of

motion plans for transitioning between targets. We illustrate

the reason for associating two distinct intervals to every

group with an example. Consider the situation depicted in

Figure 4: machine 1 starts drilling upwards towards the

geofence; traversal over these targets most likely does not

affect the motions of other machines, and the motions

themselves are aligned to the principal direction of the group.

However, when the machine navigates over the hard targets,

finally transitioning from group 1 to group 2, its possibility

to maneuver will be impeded by the densely placed piles

it has created, as well as its proximity to the geofence.

As we explain in Section V-C, group transitions require

sequences that alternate drill targets in the two groups. More

importantly, group transitions also tend to require motions

that occupy more space. In the example, transitioning from

group 1 to group 2 may require the machine to maneuver

over an area that intersects the hard targets of groups 3 and

4. This is due to the confined space imposed by the geofence.

The area associated to the hard targets in a group includes

all of the group’s hard targets, plus the hard targets of the

three adjacent groups. The choice of three adjacent groups

reflects experimental observation.

Function cost-function(s): makespan

Gd ← Compute(N,E)1
if FeasibilityEval(s,Gd) then2

return ∞3

makespan ← 04

if |E|= 0 then5
for i : n do6

tv = Eval(s,vi, /0)7
if tv > makespan then8

makespan ← tv9

return makespan10

foreach R ∈P(n,n) do11
foreach v ∈ R do12

tv = Eval(s,v,Gd)13
if tv > makespan then14

makespan ← tv15

return makespan16

Given a state, cost−function first constructs a depen-

dency graph Gd = (N,E) (line 1). The nodes of Gd represent

the groups. An edge (i, j) exists in Gd if: (1) group i is

upwards, hence the machine k traversing it is going towards

the geofence; (2) its terminating targets are hard, hence the

machine will navigate close to the geofence; (3) the group

following group i is also assigned to machine k and is

downwards, i.e., machine k will require complex maneuvers

to leave group i; (4) group j is among the three adjacent

groups to group i; (5) group j is assigned to another machine

l. This situation implies that machine l cannot complete

drilling the targets in group j because the space may be

needed for machine k to complete a row transition. An

example is shown in Figure 4.

The feasibility of the state is evaluated in line 2. A

state in which both (i, j) ∈ Gd and (j, i) ∈ Gd is evaluated

as being infeasible. If there is no dependency among the

groups (line 5), i.e., the geofence is far from the groups,

then, the Eval function estimates the makespan tv for each

machine v, given the current state, the Euclidean distance

among the targets, a nominal speed, and a nominal drilling

time. The maximum makespan among the machines is the

output of the cost−function. If, on the other hand,

there are dependencies in Gd , the Eval function considers

the temporal overlaps of intervals associated to groups in

calculating the makespan. For example (see Figure 4), when

machine 1 switches from group 1 to group 2, it is considered

to occupy the space of the hard targets in groups 2, 3 and

4 while performing its maneuvers. In this case, (1,4) ∈
Gd and therefore, the temporal overlap between Ih(4) and

Ih(1) is summed to the makespan. Note that considering

these temporal overlaps is very important for estimating the

makespan, because machine 1 has to drill the hard targets

between its maneuvers, and drilling time is much longer than

driving time. Therefore, machine 2 has to wait for a very

long time, and this time has to be reflected in the makespan.

Since the order in which we compute the makespan of the

machines matters in this computation, all the permutations

of machines R ∈P(n,n) are considered in computing the

makespan (line 11).

C. Hybrid Search

Local search outputs a state where an allocation of ma-

chines to groups has been decided, as well as the direction of

group traversal and the sequencing of groups. The sequence

of non-hard targets within a group is directly determined

from the direction of group traversal, and motions between

each pair of targets in this sequence is easily computed via

a motion planner (see below). Conversely, the sequencing

of hard targets remains to be determined. Determining such

sequences is not trivial because of the constraints imposed

by previously drilled holes, and by the proximity of the

geofence. Consider the example in Figure 5, where all targets

are to be drilled by the same machine. The bottom group

(G1) has been drilled (hence each of its targets acts as an

obstacle), the middle group (G2) is about to be completed,

and G3 is to be drilled next. However, the geofence (green)

prevents the machine from performing a U-turn between

targets 5 and 4, therefore a more complex sequence needs to

be computed. The actual sequence computed for this example

is given by the numbers in the figure.

Fig. 5. Example of solution computed by the hybrid search algorithm. The
targets are drilled following the sequence indicated by the numbers.

For each sequenced pair of targets (τi,τ j), a kinematically

feasible path (i.e., satisfying constraints (3) and (6)) is

computed via a motion planner for a car-like mobile robot

based on cubic spirals [20]. The motion planner accounts for

the obstacles that are known to have emerged from the targets

τk : τk ≺ τ j that have been drilled by the same machine. This

is because only these obstacles are known to have appeared,

whereas the precedences between τ j and the targets drilled

by other machines are not known. These will be revealed

by coordination (see next Section), which adds precedences

based on precise travel times of machines along the decided

paths.

For the hard targets, sequencing and paths are computed

jointly via a hybrid search. In particular, the hybrid search

algorithm interleaves search between a discrete search space

(the space of possible target sequences) and a geometric

search space (the space of possible approach angles θi for

the targets). The combined search space grows very quickly

with the number of targets: for n targets, there are n! possible

drill sequences, and given k possible approach angles, this

results in kn ways of connecting the n targets. Moreover,

motion planning needs to be performed to validate/reject

each possible path.

Hybrid search needs to compute answers to these sub-

problems within a few seconds, as a bench typically includes

tens, if not hundreds, of hard targets. The hybrid search

algorithm tackles the complexity of the problem using two

key insights:

• backward search in the space of drill sequences;

• incomplete search in the space of approach angles.

The first idea uses the fail-first principle: forward search

often leads to situations where n−1 targets have been drilled,

but the last target is no longer reachable, which leads to

tremendous amount of backtracking. Backward search allows

us to quickly prune out these dead-ends. The second idea

consists in searching among the possible approach angles

in a forward manner, but without backtracking, i.e., if no

path is found after trying the k possible approach angles

for the current target, the whole sequence is discarded, and

another sequence is considered. The loss of completeness at

the geometric level is compensated by the fact that many

sequences are actually feasible.

D. Coordination

The last step in the refinement process is coordination. In

the previous section we have shown how the motion planner

ensures that no machine will collide with piles caused by

itself (partially enforcing constraint (4)). However, possible

collisions of a machine’s path with the piles created by other

machines have not been considered. Whether these collisions

can occur depends on the time interval within which piles

are created, therefore, a fine-grained representation of time

and space is needed to account for identifying and removing

these potential conflicts.

We employ a spatio-temporal representation of trajecto-

ries, called trajectory envelopes [21]. A trajectory envelope

is a set of constraints that curtails the possible poses of

a vehicle, and the times at which the vehicle can be in

these poses. The piles are also represented by trajectory

envelopes, which consist of one polygonal spatial constraint

and a time interval that starts when the target is drilled

and lasts forever. A precedence τ j ≺ τk should be decided

if the obstacle emerging from τk intersects P(i, j) in space

and its temporal interval intersects that of the trajectory

envelope P(i, j) (see constraint (4)). Similarly, two trajectory

envelopes P(i, j) and P(k, l) should be sequenced if they

intersect spatially and temporally (i.e., one of τ j ≺ τk or

τl ≺ τi should be decided, see constraint (5)). The set of

precedences that needs to be imposed is decided by the

Earliest Start Time Approach precedence-constraint posting

algorithm for vehicle coordination [21]. This is essentially a

backtracking search in the space of precedence constraints

between spatio-temporally overlapping trajectory envelopes.

VI. EXPERIMENTS

Automated fleet management solutions for the mining

industry need to satisfy two requirements. First, drill plans

should have a short makespan; computation times should be

in the order of hours rather than days.

Short makespan can be understood as how close the

makespan obtained by our approach is to the makespan of

plans designed by humans (which is the current practice in

the industry). Such a comparative analysis is not feasible, as

the disclosure of sufficiently many human-generated plans

by mining companies is problematic. In order to explore

a spectrum of easy and hard problems, we generate a

benchmark of artificial problems where density and closeness

of targets to the geofence is varied. We then compare the

makespan of the solutions obtained by our algorithm with

a lower bound on makespan that can be computed for each

problem in the benchmark.

Our benchmark consists of 400 problems, all with 150

drill targets organized in an irregular hexagonal grid. These

problems are divided into four types (100 problems for each

type); each problem type is a tuple 〈(µr,σr),(µg,σg)〉, where

(µr,σr) is the mean and standard deviation of the Normal

distribution of radii of the hexagons. The drill targets are

placed on the vertices of these hexagons. (µg,σg) is the

mean and standard deviation of the distance between the

geofence and each drill target on the external border of

the grid. The problems of type 1 are 〈(9.0,0.5),(9.0,0.5)〉,
i.e., drill targets are densely placed, and the geofence is

very close to the drill targets; problems of type 2 are

〈(9.0,0.5),(36.0,0.5)〉, i.e., the drill targets are dense, but

the geofence is far from the targets; problems of type 3

are 〈(14.0,0.5),(9.0,0.5)〉, i.e., the geofence is close to the

targets, but the targets are far from each other; and problems

of type 4 are 〈(14.0,0.5),(36.0,0.5)〉, i.e., the geofence is

far from the targets, and the targets are sparse3.

In order to evaluate the quality of solutions, we compute

a lower bound (LB) of the makespan for each problem in

all problem types. The LB is computed assuming straight-

line movements between targets, a fair assignment of targets

between machines, the shortest sequencing of targets with

respect to the Euclidean distance, and a constant time for

drilling. The first row of Table I shows the average percent-

age deviation of makespan obtained by our approach with

respect to the LB. In the most constrained problems, our

approach yields only a 13.24% higher makespan than the

LB. Notice that in reality, machines need to perform many

maneuvers to reach targets, and they also may need to delay

their operations if the space they would use to maneuver is

required by other machines. As expected, the deviation from

the LB decreases as problems become less constrained (e.g.,

1.68% increase in type 4).

All problems in the benchmark were solved by invoking

each solver in the pipeline once. As we have discussed,

the approach is incomplete. Failure to find a solution can

be used to re-invoke the pipeline of solvers with new

information (see below). In order to verify how effective

the cost−function is for abstracting the spatio-temporal

characteristics of the problem, we measure the success

rate of one invocation of the pipeline. We solve all four

types of problems with and without constructing Gd in

the cost−function. The second row of Table I shows

3The video attachment shows solutions to smaller problem instances in
the first and last category.

the percentage of solved problems. The result shows that

a spatio-temporally rich cost−function that employs Gd

significantly outperforms not considering Gd with regards to

solvability. This also emphasizes that the source of difficulty

is a combination of closeness of the geofence to the targets

and target density, as the success rate in problems of type 1

is low.

We can also observe the quality of solutions with and

without using Gd , as shown in Figure 6. Makespans of

solutions to problems of type 4 (which are considered easy,

since both the geofence and the targets are far from each

other) are not affected, while those of hard problems (type

2) are.

TABLE I

SOLUTION QUALITY AND SOLVABILITY IN FOUR TYPES OF PROBLEMS.

Comparison type 1 type 2 type 3 type 4

Makespan vs. LB 13.24% 8.56% 2.30% 1.68%

w/ Gd vs. w/o Gd 70:0 % 90:60% 100:3% 100:100%

type 1 type 2 type 3 type 4

4.5

5

5.5

6

6.5
·104

m
ak
es
p
an

(s
ec
)

SA W Gd

SA W/O Gd

Fig. 6. Boxplot of the makespan for four types of problems, with and
without Gd .

In order to evaluate the computation time (CT) of the over-

all multi abstraction process, we generate a further bench-

mark of 360 random problems of type 1 (hard problems) and

360 problems of type 4 (easy problems). In each type, there

are 40 problems per problem size. Problem size varies from

100 targets to 900 targets by step increments of 100. We

expect to see exponential growth of CT, as coordination is

exponential in problem size due to the backtracking nature of

the algorithm. In practice, however, we observe polynomial

growth for both types of problems. A weighted least squares

method for curve fitting finds a cubic polynomial fit as a best

fit for the easy problems (with the root mean square (RMS)

error equal to 0.2), as well as for the hard problems (with

the RMS error equal to 0.09)4.

These results are explained as follows. For easy problems,

no backtracking was necessary during coordination. For hard

problems, we show in Table II (row 1) the percentage of

problems that required backtracking for various problem

sizes. The second row shows the average number of back-

tracks per problem. What we understand from this result is

that due to the spatio-temporal aware cost−function used

in the local search, the need for coordinating machines is

4The RMS error of an exponential fit for hard problems is 0.2.

reduced, which in turn, leads to a lower number of backtracks

and milder growth rate in CT. We also report the average

computation time used for motion planning and sequencing

via hybrid search (row 3). As shown, this value is very low,

as each group transition search involves few targets (only

those that a particular machine uses to transition between two

groups), and thanks to the most-constrained first principle.

100 200 300 400 500 600 700 800 900
0

200

400

600

800

1,000

1,200

1,400

1,600

Number of targets

C
T

(s
ec
)

Hard problems
Easy problems

Fig. 7. Computation time vs. problem size.

TABLE II

BACKTRACKING AND HYBRID SEARCH TIMES FOR HARD PROBLEMS.

100 200 300 400 500 600 700 800 900

BT% 67 20 20 10 15 10 20 32 20

BT AVG 11.8 2.55 1.75 0.57 1.2 0.7 0.9 0.7 0.8

HS (s) 0.09 0.12 0.13 0.15 0.17 0.19 0.22 0.21 0.19

VII. CONCLUSION

In this paper, we have introduced the MVRP-DDO, a

problem which accounts for many features that are ab-

stracted away in similar problems reported in the literature.

MVRP-DDO is motivated by a real industrial application,

and can be understood as a composition of tightly dependent

sub-problems. We have also presented an instantiation of the

problem in a mining application, and described a method

for solving it via a combination of algorithms. These span

levels of abstraction and deal with complementary aspects

of the overall problem. We have shown how we can achieve

high scalability and high solution quality (both of which are

hard industrial requirements) by considering aspects of other

sub-problems in each algorithm — e.g., considering time

and space in the high-level local search, or exploiting the

structure of the problem to identify easy choices.

MVRP-DDO in general is relevant to other application

domains. These include multi-robot wheat harvesting [22],

where machines must avoid areas that are already harvested.

MVRP-DDO captures problems where the area covered by

obstacles depends dynamically on the actions performed by

robots. Other application domains where this is the case can

be envisaged, e.g., multi-robot mopping or painting.

As suggested in Section VI, the cost−function can be

learned incrementally from failures. An iterative version of

the “one-shot” method used here would then explore many

high-level solutions considering feedback obtained from the

refinement process. This is the topic of ongoing work.

Acknowledgments. This work is supported by the Swedish

Knowledge Foundation (KKS) project “Semantic Robots”

and Atlas Copco Rock Drills AB. We are grateful to Pontus

Bergsten and Robert Lundh for their support.

REFERENCES

[1] P. Toth and D. Vigo, Eds., The Vehicle Routing Problem. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2001.

[2] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and traveling
salesperson problems for Dubins’ vehicles,” in Proc. of the American

Control Conference, vol. 2, Portland, OR, June 2005, pp. 786–791.
[3] L. E. Dubbins, “On curves of minimal length with a constraint on

average curvature and with prescribed initial and terminal position
and tangents,” American J. Mathematics, vol. 79, pp. 497–516, 1957.

[4] P. Váňa and J. Faigl, “On the dubins traveling salesman problem
with neighborhoods,” in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on. IEEE, 2015, pp. 4029–4034.
[5] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation

algorithm for multivehicle systems with nonholonomic constraints,”
IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 1, pp. 98–104, 2007.

[6] J. Le Ny, E. Frazzoli, and E. Feron, “The Curvature-Constrained Trav-
eling Salesman Problem For High Point Densities,” in Proceedings of

the 46th IEEE Conference on Decision and Control, 2007.
[7] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and

B. Schieber, “The angular-metric traveling salesman problem,” in
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, ser. SODA ’97. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1997, pp. 221–229.

[8] X. Zhang, J. Chen, B. Xin, and Z. Peng, “A memetic algorithm for path
planning of curvature-constrained {UAVs} performing surveillance of
multiple ground targets,” Chinese Journal of Aeronautics, vol. 27,
no. 3, pp. 622 – 633, 2014.

[9] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[10] S. G. Manyam, S. Rathinam, and S. Darbha, “Computation of lower
bounds for a multiple depot, multiple vehicle routing problem with
motion constraints,” in Proceedings of the 52nd IEEE Conference on

Decision and Control, CDC 2013, December 10-13, 2013, Firenze,

Italy, 2013, pp. 2378–2383.
[11] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s traveling salesman

problem,” IEEE robotics & automation magazine, vol. 17, no. 4, pp.
70–77, 2010.

[12] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal

of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.
[13] A. Junghanns and J. Schaeffer, “Sokoban: A challenging single-agent

search problem,” in In IJCAI Workshop on Using Games as an

Experimental Testbed for AI Reasearch, 1997.
[14] G. Wilfong, “Motion planning in the presence of movable obstacles,”

in Proceedings of the Fourth Annual Symposium on Computational

Geometry, ser. SCG ’88. ACM, 1988, pp. 279–288.
[15] J. Culberson, “Sokoban is pspace-complete,” Technical Report TR 97-

02, Dept. of computing scinence, University of Alberta, 1997.
[16] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-

bridge University Press, 2006.
[17] P. Brucker, Scheduling algorithms. Springer, 2004.
[18] M. Mansouri, H. Andreasson, and F. Pecora, “Hybrid reasoning

for multi-robot drill planning in open-pit mines,” Acta Polytechnica,
vol. 56, no. 1, pp. 47–56, 2016.

[19] C. Zhang and J. A. Shah, “Co-optimizating multi-agent placement with
task assignment and scheduling,” in Proc. of Inter. Joint Conference

on Artificial Intelligence (IJCAI-16), 2016.
[20] T.-C. Liang, J.-S. Liu, G.-T. Hung, and Y.-Z. Chang, “Practical

and flexible path planning for car-like mobile robot using maximal-
curvature cubic spiral.” Robotics and Autonomous Systems, vol. 52,
no. 4, pp. 312–335, 2005.

[21] F. Pecora, M. Cirillo, and D. Dimitrov, “On mission-dependent coor-
dination of multiple vehicles under spatial and temporal constraints,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2012.
[22] S. Scheuren, S. Stiene, R. Hartanto, J. Hertzberg, and M. Reinecke,

“Spatio-temporally constrained planning for cooperative vehicles in a
harvesting scenario,” KI, pp. 341–346, 2013.

